
Recursive PCA
and the Structure of Time Series.

Thomas Voegtlin
Institute for Theoretical Biology

Humboldt University
Berlin, Germany

E-mail: t.voegtlin@biologie.hu-berlin.de

Abstract— A recurrent linear network can be trained with
Oja’s constrained Hebbian learning rule. As a result, the net-
work learns to represent the temporal context associated to
its input sequence. The operation performed by the network
is a generalization of Principal Components Analysis (PCA) to
time-series, called Recursive PCA. During learning, the weights
of the network are adapted to the temporal statistics of its
input, in a way that maximizes the information retained by the
network. Sequences stored in the network may be retrieved in the
reverse order of presentation, thus providing a straight-forward
implementation of a logical stack.

I. INTRODUCTION

Time and its representations play a crucial role in most
high-level cognitive tasks, such as planning, language capa-
bilities, or the representation of complex objects. Among the
most plausible and interesting neural representations of time,
are representations based on recurrent networks, where the
activities of neurons having recurrent connections represent
the temporal context associated with the input. In a recurrent
network, the representation of time is implicit. The most
influential example illustrating this is the Simple Recurrent
Network by Elman [4]. In this case, the values of the recurrent
synapses are learned using the supervised back-propagation
algorithm. However, it has been demonstrated that gradient-
based methods fail to learn complex temporal dependencies in
the input [2].

In this paper, we propose an unsupervised approach to
training recurrent networks. Instead of training a network
to predict future values of a series, we train it to represent
the temporal context associated to its input time series. We
demonstrate that this method effectively leads to learning
temporal dependencies in the input, and that the resulting
representation of context are linearly separable.

This paper is organized as follows. In the next section,
we explain why optimizing a representation of context can
be a way to extract the temporal structure of the associated
process. Then we present the Recursive PCA algorithm, and its
neural implementation. Finally, we present simulation results
obtained with binary time series.

II. REPRESENTING TEMPORAL CONTEXT

Consider the problem of representing the temporal context
associated with a time-varying input, x(t), where x denotes
a zero-mean bounded input vector, and t is the time index.

Formally, the context at time t is the set of previous vectors
(x(t − k))k≥0

. Since a representation must be finite, only
partial knowledge of the infinite sequence of past events is
possible in most cases. In addition, the number of possibilities
exponentially grows with the number of considered elements.
In other words, representations of temporal context face a
problem of capacity.

In order to address this issue, it is possible to exploit the
temporal statistics of the input. Statistical dependencies intro-
duce redundancy in the input, which should not be included
in a compressed representation. For example, if a given input
vector x1 is always preceded by another vector x2, then
x(t) = x1 implies that x(t − 1) = x2. At time t it is not
necessary to code both x(t − 1) and x(t), because any of
these vectors can be deduced from the other one.

This generalizes to first-order statistical correlations. For
example, if vector x1 is often preceded by vector x2, then
P [x(t − 1) = x2] 6= P [x(t − 1) = x2|x(t) = x1]. In
that case, depending on the amount of correlation, it might
be interesting to use a compressed representation for both
events, rather than two independent representations. Such a
compressed representation is typically obtained by by using
Principal Components Analysis.

Principal Components Analysis (PCA) consists in finding
the orthogonal directions of highest variance in the distribution
of a random vector. An interesting property of PCA is that it
generates an optimal linear encoding of its input vector [1].
PCA also roots several of simple and efficient unsupervised
learning methods for neural networks [7], [8], [11]. These
methods can adapt their representation to the possibly non-
stationnary statistics of the input.

PCA is based on variance; it projects an input space onto
a feature space, where the ordered basis vectors are the
orthogonal directions of maximal variance of the input. An
appropriate dimension reduction in the feature space reduces
the input vector to a set of effective features, which correspond
to its projections in the directions of highest variance. This set
of effective features is useful because it minimizes the mean-
squared error :

E =< ||x(t) − x̄(t)||2 > (1)

between the input at time t, x(t) and its projection x̄(t),
where || || denotes the Euclidean norm, and < > denotes the

statistical expectancy. In other words, PCA finds a compressed
representation, adapted to the statistical dependencies between
the components of the input vector.

Here we want to optimize a representation of temporal
context. Our hypothesis is that by doing so we will also extract
the temporal statistics of the input. In order to capture temporal
dependencies, it is possible to perform PCA on both vectors
x(t) and x(t − 1) together (i.e. on a concatenation of both
vectors, which implements a time window of size 2 events). By
increasing the size of the time window, longer dependencies
can be taken into account. However, a solution of this type
would correspond to a spatialization of time, which has several
major limitations [4]. For example, in such a representation the
size of the time window has to be predefined.

A more robust solution is to use a recurrent representation
of context, i.e. a representation devised by a recurrent neural
network [4]. In this case, the representation of time is implicit.
In order to learn the values of recurrent synaptic weights,
we propose to use PCA, because of the properties mentioned
above.

III. RECURSIVE PCA

Let y(t) denote a recurrent representation of the temporal
context at time t. At time t, y(t) is computed from vectors
x(t) and y(t−1). Our goal is to use PCA for this computation.
Let n and m denote the respective dimensions of vectors x(t)
and y(t). Note that m might be higher than n here, which is
not the case in the traditional PCA framework,

In order to derive a representation y(t) of the context at
time t, we build an (n + m)-dimensional vector, z(t), by
concatenating vectors x(t) and λy(t − 1), where 0 < λ < 1
is a gain :

z(t) =

(

x(t)
λy(t − 1)

)

(2)

The idea here is to derive y(t) from z(t). This makes sense
because z(t) supposedly contains all the information about
the context at time t. Let the components of y(t) be the m

principal components of z(t) :

y(t) = Wz(t) (3)

where W is an orthogonal m by (n + m) matrix, whose m

lines contain vectors that form an orthonormal basis of the m-
dimensional dominant eigenvector subspace of the correlation
matrix of z(t). Recursive PCA consists in finding W, z and
y satisfying (2), (3) and the above condition on W.

Note that this definition does not provide a practical way
of finding W, nor does it show that such a matrix does
actually exists. Since the distribution of vector z depends on
the weights, the existence of solutions cannot be guaranteed a
priori, and is a difficult problem.

In what follows, we develop an iterative method to find a
solution to this problem. This method can be implemented
in a recurrent neural network. We do not provide a proof of
convergence for this method, however. Since the distribution
of z(t) depends on y(t), finding W iteratively is a “moving

target” problem, and convergence of the procedure is not easy
to establish.

Experimentally, however, we observe convergence of our
learning procedure for all λ < 1. Values of the gain equal
or higher than one lead to numerical instability. Note that
convergence of an iterative method demonstrates the existence
of solutions a posteriori.

IV. RECOVERING PREVIOUS EVENTS

In order to reconstruct the input, it is possible to apply the
transpose WT of W to the output vector. This generates a
reconstruction z̄(t) of z(t) :

z̄(t) =

(

x̄(t)
λȳ(t − 1)

)

= WT y(t) (4)

In addition to x̄(t), z̄(t) contains the reconstruction ȳ(t−1) of
y(t−1). This allows us to recursively reconstruct the context.
Given an estimation ȳ(t−k) of y(t−k), WT can be applied
in order to reconstruct y(t − k − 1), for all k ≥ 0 :

z̄(t − k) =

(

x̄(t − k)
λȳ(t − k − 1)

)

= WT ȳ(t − k) (5)

With the successive applications of WT , previous events are
retrieved in the reverse order of presentation. This implements
a logical stack, where a “push” operation corresponds to
reading a new input with matrix W, and a “pop” corresponds
to reconstructing the previous input with WT .

We may define mean-squared errors associated to the re-
constructions of previous events. At each time step, it is
possible to reconstruct a sequence of previous events. Thus, for
each value of k, there is an expectancy of the corresponding
squared reconstruction error. Let ek denote the mean squared
reconstruction error:

ek =< ||x(t − k) − x̄(t − k)||2 > (6)

This error reflects how well a past event that happened k steps
in the past can be reconstructed from the current input.

V. NEURAL IMPLEMENTATION

Recursive PCA can be performed by a recurrent neural
network with two layers, encoding the input and the context
representation, and denoted by X and Y respectively. The ac-
tivity yi(t) of neuron i in layer Y results from the combination
of feed-forward connections, denoted by w, from X to Y and
recurrent connections, denoted by w′, from Y to Y :

yi(t) =

n
∑

j=1

wijxj(t) + λ

m
∑

k=1

w′
ikyk(t − 1) (7)

where xj is the activity of neuron j in X , wij is the weight
from j to i and w′

ik is the weight between units k and i

in Y . Note that matrix W is entirely defined by the set of
weights (w) and (w′). The gain λ controls the influence of
the recurrent connections. The time difference between the
feed-forward term and the recurrent term can be interpreted
either as a time delay in the recurrent connections, or as an
explicit “context” layer as in [4]. The operation of the network

is illustrated in Figure 1, for both the forward mode (push),
and the backward mode (pop).

Both feed-forward and recurrent connections are updated
every time step, using Oja’s constrained Hebbian learning rule
[8] applied to vectors x(t) and λy(t−1) simultaneously :

∆wij = ηyi(t)

(

xj(t) −
m
∑

k=1

wkjyk(t)

)

(8)

∆w′
ij = η′yi(t)

(

λyj(t − 1) −

m
∑

k=1

w′
kjyk(t)

)

(9)

where η and η′ are learning rates. From a biological perspec-
tive, the transpose of W used in the previous section can be
implemented by additional synapses symmetric to (wij) and
(w′

ij).

output y(t)

context y(t−1)x(t)

y(t−k)

y(t−k−1)x(t−k)

Fig. 1. Function of a simple recurrent network performing Recursive PCA.
Connections are linear. Top: Forward mode. The input x(t) is fed at the
bottom. Both the input x(t) and context y(t − 1) are combined together in
order to form the output y(t), using feed-forward connections (represented
by full arrows). Dashed arrows indicate recurrent time-delayed one-to-one
connections. Bottom: Backward (reconstruction) mode. The transpose of the
connection matrix is used to reconstruct the input x(t − k) and the context
y(t−k−1), from the current output y(t−k). Recurrent one to one connections
(dashed arrow) are used to iterate over many events.

As mentioned above, we do not present a proof of conver-
gence for (8) and (9) here; the classical convergence results
from [8] cannot be easily generalized here, due to the recur-
rent connections in our architecture. However, convergence is
experimentally observed for λ below one. Experimental results
are presented in the next section.

VI. EXPERIMENT: STATISTICS OF A SIMPLE AUTOMATON

In order to evaluate the performance of our learning method,
we compared too conditions: In a control condition (A), the
input time-series was i.i.d., and thus no dependencies could
be learned. In a test condition (B), the input had temporal
structure, and we expected the network to learn these time
dependencies.

We used binary time-series in both conditions. The first
series (A) was random i.i.d, and was was generated by picking
+1 or −1 randomly with equal probabilities 0.5 (coin toss).

The second series (B) was a simple Markov process, generated
by a finite machine with two states, labeled +1 and −1. On
each time step the probability of transition from one state to
the other was equal to 0.3, while the probability of staying in
a given state was 0.7. Note that in both the control condition
(A) and the test condition (B), the input series have zero mean
and variance equal to one.

The input was encoded using a single unit (n = 1), whose
value was either +1 or −1. The representation of context and
the output used m = 20 units.

In order to evaluate how well temporal context is encoded,
the mean-squared reconstruction errors of previous events, ek,
were computed for 0 ≤ k < 40. Reconstructions of previous
events were computed on each time step, by exploiting the
stack property described in section IV. On each time step,
40 previous inputs were reconstructed, and the corresponding
mean-squared error terms ek were estimated. These recon-
structions were performed using separate memory buffers,
so that the reconstruction process did not interfere with the
function of the network.

The mean-squared reconstruction errors corresponding to
the 40 previous events is plotted on Figure 2, for several
conditions. Curve A corresponds to the input time series
with no temporal dependencies. Its shape was independent
from the value of the gain λ. Curves B(λ) correspond to
the reconstruction error of sequences generated by the state
machine. Several curves are plotted, corresponding to different
values of the gain between 0.7 and 0.9.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

re
co

ns
tr

uc
tio

n
er

ro
r

k

 A: iid
 lambda = 0.7
 lambda = 0.8
 lambda = 0.9

Fig. 2. Mean-squared reconstruction error, ek , versus k, for binary random
sequences. A: Reconstruction of a sequence with no temporal structure. B:
Reconstruction of a sequence generated by the state machine, using different
values for the gain λ: 0.7, 0.8 and 0.9.

Curve A corresponds to the i.i.d. sequence. It has the shape
of a step function. This indicates that if there are no temporal
dependencies in the input, exactly 20 events (0 ≤ k < 20)
can be recovered from the activity of the 20 neurons, with a
reconstruction error that is nearly equal to zero. For k ≥ 20,
the reconstruction error is equal to the variance of the input,
which means that performance is not better than chance. In
fact, we observe that the reconstructions performed by the

network for k ≥ 20 are nearly equal to zero. Hence, the weight
matrix that was learned by the network is almost a rotated
permutation matrix.

Curves B(λ) correspond to the sequence generated by the
state machine, for different values of the gain. Their general
shape is a sigmoid, with a variable slope that depends on
the gain. This means that if there are temporal dependencies,
temporal context can be retrieved beyond the former “horizon”
of 20 events. This implies that temporal dependencies are
exploited by the network, in order to represent more than 20
events.

The counterpart of this ability to represent more previous
events, is that reconstructions for 0 ≤ k < 20 are not perfect.
The error increases with k, at a rate that depends on λ.
Hence, the gain controls a trade-off between quality of the
reconstructions and depth of the neural stack. Interestingly,
when λ decreases, the shape of the sigmoid B(λ) approaches
the shape of curve A.

Despite this trade-off between quality and depth, we observe
that the overall result is a net gain of information. For example,
it is possible to measure the area between these curves and the
chance level (equal to 1). This measure reflects the average
number of events that can be correctly reconstructed. For λ =
0.9 this measure is equal to 28.3, while the reference value is
20 for the i.i.d. series.

This experiment demonstrates that temporal dependencies
are exploited by the network, in order to gain information
about past events. If there are no temporal dependencies, the
representation is restricted to m events because no information
can be gained from the statistics of the input. If there are
dependencies, the network learns to exploit them in order to
represent more than m events. The progressive loss of quality
of the reconstructions reflects incorrect reconstructions that
occur when low-probability transitions are encountered.

For the iid. input series, the number of correctly recon-
structed events is exactly equal to the number of neurons
used in the representation. This observation is general, and
we observed that it still holds for networks of size up to 50
(data not shown). The only limiting factor seems to be the
time required to train those networks.

VII. CONCLUSION

Recusive PCA generates a linear encoding of the tempo-
ral context associated to a time series. The purpose of the
algorithm is not to predict the future values of an input, but
to represent past values. However, by optimizing this repre-
sentation, one imposes that the temporal correlations of the
input time series are extracted. In that sense, Recursive PCA
generalizes PCA to time-series. The resulting representations
exploit the temporal structure of the input.

Recursive PCA is easily implemented in a linear recurrent
neural network trained with Oja’s unsupervised learning rule.
In a previous work, we demonstrated that Sanger’s generalized
Hebbian algorithm can also be used in a recurrent network
[13]. In these networks, PCA is performed recursively, using
linear recurrent connections. We observed that the memory

of the network increases linearly with its size. Moreover, the
internal representation of context that is learned by the network
exploits the temporal statistics of the input, in order to gain
information about past events. As a result, the capacity of the
network is higher when the input has temporal dependencies.

In a recurrent network, time has an implicit representation.
Here, the orthogonality of the weights matrix makes it possible
to reconstruct the sequence of past events. For this reason, the
network presented here combines the advantages of implicit
representations with potential explicit recovery.

Since the reconstruction process is a linear operation, being
able to correctly reconstruct a sequence of inputs implies
that its internal representation is linearly separable from the
representations of other sequences. Linear separability ensures
that the representation of temporal context is non-ambiguous,
in which case it may be used as the input of a classifier. In
our network, linear separability results from increasing the
dimension of the representation. In that aspect, our approach
is similar to so-called “liquid state” computing [6]. However,
a key difference is that the network presented here, although
it is linear, is able to learn and optimize its representation.

Previous events are recovered in the reverse order of presen-
tation. This constitutes a neural implementation of a logical
stack. This property has theoretical implications, concerning
the type of operations that are possible in a neural network.
Several authors have proposed neural implementations of
logical stacks, to demonstrate that neural networks can perform
the same type of operations as a Turing Machine [12], [9]. The
stack property is sufficient for that, because a Turing Machine
can be simulated by a Push-Down Automaton with two stacks
[5].

In [12], the demonstration uses linear neurons. In order to
push and pop arbitrary high number of elements in the stack,
arbitrary precision of real numbers is invoked. However, phys-
ical systems are subject to noise and cannot afford arbitrary
precision. In the Sequential RAAM [10], memory depends on
the numbers of neurons rather than on precision, which makes
it a more robust alternative. However, the number of binary
patterns that can be efficiently encoded in Sequential RAAM
tends to increase linearly with the size of the representation.
In contrast, there is no such limitation in our model. For a
binary i.i.d. input, we demonstrated that the resulting stack
is of depth m, which means that it can store 2m different
binary patterns. Capacity is further improved if the input has
statistical dependencies, because they are learned.

In practice, the stack property can be used for representing
hierarchical structures [10], or for language processing, where
nested grammatical structures typically require such a mech-
anism. An example of a combination of a neural network and
an external stack is the Neural Network Pushdown Automaton
[3], which learns to infer context-free grammars from exam-
ples. In that model, however, it is required that the operation
of the stack is continuous, while the stack model presentd here
is discrete.

ACKNOWLEDGMENT

This work was supported by the Alexander von Humboldt
Foundation.

REFERENCES

[1] P. Baldi and K. Hornik, “Neural networks and principal component anal-
ysis: Learning from examples without local minima”, Neural Networks
2(1) pp. 53-58, 1988

[2] Bengio, Y., Simard, P., Frasconi, P. “Learning long-term dependencies
with gradient descent is difficult.” IEEE Trans. on Neural Networks 5(2)
pp. 157-166, 1994

[3] Das, S., Giles, C.L., Sun, G.Z. ”Learning Context Free Grammars:
Capabilities and Limitations of a Recurrent Neural Network with an
External Stack Memory,” Proceedings of the 14 Annual Conference of the
Cognitive Science Society, Morgan Kaufmann, San Mateo, p. 79, 1992.

[4] Elman, J.L. “Finding structure in time.” Cognitive Science 14 pp. 179-
211, 1990

[5] Hopcroft, J.E. & Ullman, J.D. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, New York, 1979

[6] W. Maass and H. Markram “Temporal integration in recurrent microcir-
cuits.” In: The Handbook of Brain Theory and Neural Networks (2nd
edition), MIT Press, pp. 1159-1163, 2003

[7] Oja, E. “A simplified neuron model as principal component analyzer.”
Journal of Mathematical Biology 15(3) pp. 267-273, 1982

[8] Oja, E. “Neural networks, principal components and subspaces.” Interna-
tional Journal of Neural Systems 1(1) pp. 61-68, 1989

[9] Pollack, J. B. “The induction of dynamical recognizers. “ Machine
Learning vol. 7, pp. 227-252, 1991

[10] Pollack, J.B. “Recursive Distributed Representations.” Artificial Intelli-
gence 46(1-2) pp. 77-105, 1990

[11] Sanger, T.D. Optimal unsupervised learning in a single-layer linear feed-
forward neural network. Neural Networks 2(6) pp. 459-473. 1989

[12] Siegelman, H. T. & Sontag, E. D. “Turing-Computability with Neural
Nets.” Applied Mathematics Letters, 4(6) (1991) pp. 77-80.

[13] Voegtlin, T. “Learning principal components in a contextual space.”
Proceedings of the ESANN, Bruges, 2000, pp. 359-364.

