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Abstract The standard SVR formulation for real-valued function approximation on multi-
dimensional spaces is based on the e-insensitive loss function, where errors are
considered not correlated. Due to this, local information in the feature space
which can be useful to improve the prediction model is disregarded. In this pa-
per we address this problem by defining a generalized quadratic loss where the
co-occurrence of errors is weighted according to a kernel similarity measure in
the feature space. We show that the resulting dual problem can be expressed
as a hard margin SVR in a different feature space when the co-occurrence er-
ror matrix is invertible. We compare our approach against a standard SVR on
two regression tasks. Experimental results seem to show an improvement in the
performance.
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1. Introduction

Statistical Learning Theory [Vapnik, 1998] provides a very effective frame-
work for classification and regression tasks involving numerical features. Sup-
port Vectors Machines are directly derived from this framework and they work
by solving a constrained quadratic problem where the convex objective func-
tion to minimize is given by the combination of a loss function with a regular-
ization term (the norm of the weights). While the regularization term is directly
linked, through a theorem, to the VC-dimension of the hypothesis space, and
thus fully justified, the loss function is usually (heuristically) chosen on the
basis of the task at hand. For example, when considering binary classification
tasks, the ideal loss would be the 0-1 loss, which however cannot directly be
plugged into the objective function because it is not convex. Thus, convex up-
per bounds to the 0-1 loss are used, e.g., the Hinge loss or the quadratic loss.
In general, however, the used loss does not exploit the correlation that the in-
put patterns may exhibit. A first attempt to exploit this type of information for
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classification tasks has been presented in [Portera and Sperduti, 2004], where
a family of generalized quadratic loss is defined. The basic idea is to first
of all take into consideration the correlation between input patterns (eventu-
ally corrected by the targets of the involved examples), which can be coded as
cross-coefficients of pairs of errors in a fully quadratic form, and then to modu-
late the strength of these cross-coefficients through a new hyperparameter. The
“right” value of this new hyperparameter is then chosen by a search in the hy-
perparameters space (eventually involving a validation set) of the machine so
to optimize the final performance [Zhang and Oles, 2001]. The experimental
results presented in [Portera and Sperduti, 2004] seem to indicate a systematic
improvement in the performance.

In this paper, we show that the same idea and advantages can be extended to
real-valued function regression. Specifically, we suggest to use a loss function
that weights every error associated to two patterns proportionally to the pattern
similarity. This can be done by modifying the primal objective function of the
SVR model with a loss that is a quadratic expression of the slack variables,
weighting couples of errors by a pattern similarity measure based on a kernel
function. In addition, signed slack variables are used so that given two distinct
patterns, the modified SVR solution will penalize couple of errors (of similar
patterns) that are both due to an overestimate (or underestimate) of the target
values versus couple of errors (of similar patterns) that are due to an overesti-
mate of one of the target values and an underestimate of the other target value.
This method should bias the learning towards solutions where the local con-
centration of errors of the same type (either underestimate or overestimate) is
discouraged.

We show that using this generalized quadratic loss function in a Support
Vector Regression method, the resulting dual problem can be expressed as a
hard margin SVR in a new feature space which is related to the original fea-
ture space via the inverse of the similarity matrix and the target information.
Thus, in order to get a well-formed dual formulation we need to work with a
similarity matrix which is invertible.

We compare our approach against a standard SVR with e-insensitive loss
on a couple of regression tasks. The experimental results seem to show an
improvement in the performance.

2. SVR definition for a generalized quadratic loss

Suppose that [ inputs (&1, y1), ..., (Z,%;) are given, where x; € RY are
the input patterns, and y; € R are the related target values of our supervised
regression problem. The standard SVR model for 2-norm e-insensitive loss
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function [Cristianini and Shawe-Taylor, 2000], that we denote QSVR, is:
. — o Bnd = =
min g, = |2 + (@€ + € ¢F)
s.t. (1)

wW-Zi+b—y <e+&, i=1,...,1
yz—lﬁfz+b§€+§:<, i=1,...,1

where «f and b are the parameters of the linear regressor Wz + b, &; is the slack
variable associated to an over-estimate of the linear regressor over input Z; and
&; is the slack variable associated to an under-estimate on the same pattern; e
determines the size of the approximation tube and c is the constant that controls
the tradeoff between the empirical error as measured by the loss function and
the regularization term. Note that non negativity constraints over £ and &*
components are redundant. The solution of (1) can be expressed in general
using a kernel function K (z, ) with f(Z) = %Zﬁzl(af — a; K (%, %) +
b™ where a:“‘, o is the dual optimal solution and an optimal bias value b™
can be derived from the KKT conditions.

To weight the co-occurrence of errors corresponding to close patterns we
adopted the following formulation :

ming , = |02 + e(§ — £°)'S(€ - €°))
s.t.:
.o . )
W-T;+b—y <e+&, i=1,...,1
yz—lﬁfz—b§€+§:, i=1,...,1
where S is a positive definite matrix. Defining 6; = & — £ we obtain:
minw’b’gﬂu_z’“2 +¢d'Sé
s.t.:
Lo . ©)
W-oT;+b—y; <e+ o+, i=1,...,1
y—w-Ti+b<e—06+&, i=1,...,1
and since when one of the first constraints is active, the related £ is 0, and
viceversa, when one the second constraints is active, the related &; is 0, we can

write: L
minw’b’gﬂu_z’ﬂ2 +¢d'Sé
s.t.
S . (4)
W-Zi+b—y; <e+d;, i=1,...,1
yi—w-Ti+b<e—20; i=1,...,1

Finally we obtain:
minwbgHu_}’HQ—i-Cg’Sg
s.t.: ©)
—e<W-Ti+b—y;—0;<e, 1=1,...,1



Figure 1. In our generalized quadratic loss, the error configuration generated by patterns &;
and Z; is more expensive than the error configuration generated by patterns Z; and #,. Here
we assume that Si; = Skq = s.

A solution of this problem is a function with the best tradeoff between its
smoothness and a uniform error on the training set. In addition, since we are
considering signed slack variables (5), we penalize errors on close patterns of
the same sign, preferring errors with opposite signs. In Figure 1 we give a
graphical exemplification about which type of error co-occurrence we prefer
to penalize. Let X be the [ x d matrix of input patterns. Given problem (5) the
corresponding Lagrangian objective function is:

—

L = |[@]|2+cd' S6+a& (Xi+bl —j—b—el)+ o (6— X —bI+ij—el) (6)

where ; > 0,7 > 0fori=1,...,1L.
The Kuhn Tucker conditions for optimality are:
g—g =20+ X'(d - a*) = 0= ¥ = L X'(a* — @)
G (@-a*)I=0= (a* -a@)I=0 @)
- = - S—l(g— Tk
U — 9085 — (@ — o) = 0= § = TL=)

if S is invertible. Supposing that S—! exists, substituting (7) in (6) gives:

(a*—d’)g—e(a_;‘—i—d’)’f—%(o?‘—a)% K—i—S 1)(o?‘—éé)
st: (a*—a@)'1=0, ;>0,af >0i=1,...,1

(8)

Notice that when S—! exists, problem (8) is equivalent to a hard margin SVR
problem with a kernel matrix equal to %(K + ST_I), while the regression
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function is defined over the feature space induced by kernel K. Actually, in
this case it is also possible to explicitly build a feature map. Let consider
the following mapping ¢ : R? — R4+ that, for all i < [1,...,1], maps

Ty — &(@): o(Z;) = [@, (1/ S:a)’]’ where ¢&; is the i-th vector of the canon-
ical base of R'. It is not difficult to see that the kernel matrix obtained with this
transformation is equal to K + S% In the following we denote the overall

method with QLSVR.

3. Definition of the similarity matrix

The dual solution of problem (5) is based on the inversion of S. Note that
when all patterns are distinct points and S is generated by a Gaussian RBF
kernel then S is invertible ([Micchelli, 1998]). Under some experimental con-
ditions, however, a similarity matrix defined in this way may be ill-conditioned
and inversion can be problematic.

For this reason we also considered an exponential kernel e”¥, defined by
el = Y ro v K. A kernel matrix obtained by this formula is always in-
vertible and its inverse is (e/%)~! = =K, Experimentally we never had
problems in computing the inverse of the exponential matrix.

A similarity matrix generated by an RBF kernel can be understood as a way
to take into account local similarity between patterns, where the amount of
locality is regulated by the width of the RBF function. The exponential kernel,
besides to guarantee the invertibility of the .S matrix, has been proposed in the
context of discrete domains [Kondor and Lafferty, 2002], and it appears to be
particularly suited when the instance space is composed of structured objects,
such as sequences or trees.

4, Experiments

To measure the performance of the regression methods we used the average
absolute error (AAE = %21‘11 ly; — f(27)]) and the average squared error
(ASE = % S (yi— £(2))?). Since the reported performances are averaged
across different shuffles, we also report their standard deviation computed as
o= \/ﬁ > (Ei — pg)?, where n is the number of data shuffles, E; is
the AAE (or ASE) error on the i-th shuffle and .z is the mean AAE (or ASE)
error on the shuffles set.

We tested the two regression methods on two datasets: the Abalone dataset
from the UCI repository and a QSPR problem involving alkanes, i.e. chem-
ical compounds represented as trees. For both datasets we report the results
obtained by SVR and QLSVR. We employed a modified version of SVMLight
5.0 [Joachims, 1998] enabled to work with a kernel matrix generated by Scilab
2.7 ©INRIA-ENPC.




The Abalone dataset comprises 3000 training patterns and 1177 test pat-
terns and the input patterns are normalized to zero mean and unit variance
coordinate-wise. We considered 10 independent shuffles of the Abalone dataset
and we calibrated the hyperparameters using a split of each original training
set. The calibration procedure is based on the first 2000 patterns for training
and on the last 1000 patterns for validation.

For the SVR algorithm we adopted a RBF kernel K (Z, ) = e /¥4Il for
the input feature space. We applied on each shuffle of the dataset a calibration
process that involved a 5 x 5 mesh of powers of 10 starting from 10, 0.1 for ¢
and -, while the e parameter was increased by steps of size 0.3 starting from
0 up to 1.2. For each shuffle we selected the hyperparameters set that gave
the best performance in terms of ASE, we trained the SVR on the original
training set, and finally the obtained regressor was evaluated on the original
test problem.

For QLSVR we considered the same setting as the SVR and a similarity ma-
trix S generated by an RBF kernel with parameter ~g. During the calibration
phase ~vg was varied from 4 to 24 by steps of size 5. Hyperparameters selection
and final evaluation were performed using the same procedure as adopted for
SVR.

We also considered a QSPR problem consisting in the prediction of the boil-
ing point for a group of acyclic hydrocarbons (alkanes). The dataset comprises
150 alkanes with up to 10 carbon atoms, each represented as a tree (for more
details, see [Bianucci et al., 2000; Bianucci et al., 2003]). The target values are
in the range [-164 , 174] in Celsius degrees.

In order to deal with trees as input instances, we have chosen the most pop-
ular and used Tree Kernel proposed in [Collins and Duffy, 2002]. It is based
on counting matching subtrees between two input trees.

For the calibration of SVR hyperparameters, we shuffled the 150 com-
pounds and we created 30 splits of 5 patterns each. The calibration involved a
set of 3 parameters: the SVR training error weight constant ¢, the Tree Kernel
downweighting factor A and the SVR regression tube width e. On the last 3
splits we applied a 3-fold cross validation that involved a 5 x 5 mesh of powers
of 10 starting from 10, 0.1 for ¢ and v/X, while the e parameter is increased by
steps of size 0.01 starting from 0 up to 0.04. We selected the parameter vector
that gave the median of the best AAE on the three splits and then we used these
parameters on 10 different splits of the original dataset to obtain the final test
results.

For QLSVR we considered the same setting as the SVR and a similarity
matrix generated by an exponential kernel (S = e7K), since the exponential
kernel has been proposed in the context of discrete domains [Kondor and Laf-
ferty, 2002], such as set of trees. During the calibration phase v was varied
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Table 1. Results for the Abalone dataset. We report also the unbiased standard deviation
measured on the 10 different shuffles of the dataset. SVR ¢y, refers to [Chu et al., 2004].

Method AAE tr ASE tr AAE ts ASE ts

SVRChy - - 0.454-£0.009 0.441+0.021
SVR 0.4324-0.008 0.39740.017 0.456+0.010 0.435+0.020
QLSVR 0.006+-2.2E-4 3.4E-54+2.9E-6 0.461+-0.009 0.4244-0.019

from 0.5 to 0.65 by steps of size 0.015. Hyperparameters selection and final
evaluation were performed using the same procedure adopted for SVR.

The results for the Abalone dataset, both for the training set (¢r) and the test
set (¢s), are shown in Table 1 where we report also the results obtained for SVR
in [Chu et al., 2004]. From the experimental results it can be concluded that
the proposed approach and the SVR method give a similar result in terms of
the absolute mean error, while the quadratic loss produces an improved mean
squared error with a reduced standard deviation.

Table 2 reports the results obtained for the Alkanes dataset, including the
values for the hyperparameters, as returned by the calibration process described
above. Also in this case we got a similar result in terms of the absolute mean
error, while the quadratic loss produces an slightly improved mean squared
error, but with an increased standard deviation.

These results, however, should be considered very preliminary for the QLSVR
method, since the presence of an additional hyperparameter for the generation
of the similarity matrix S, as well as the possibility to use different methods
for its generation, require a more intensive set of experiments in order to get a
better coverage for .S.

Table 2. Results for the alkanes dataset. We report also the unbiased standard deviation mea-
sured on the 10 different shuffles of the dataset.

Method Parameters AAE tr ASE tr AAE ts ASE ts
c=1FE5

SVR A=0.25 1.684+0.03  3.19+0.08  3.8240.97 30.274+32.08
e = 0.02
c=1F4

QLSVR A=10.25 1.67+0.02 3.164+0.06 3.824+1.09  30.00+ 32.63

e = 0.02
v=20.8




5. Conclusions

In this paper we proposed a generalized quadratic loss for regression prob-
lems that exploits the similarity of the input patterns. In fact, the proposed
generalized quadratic loss weights co-occurrence of errors on the basis of the
similarity of the corresponding input patterns. Moreover errors of similar pat-
terns of the same sign are discouraged. We derived a SVR formulation for the
proposed loss showing that if the similarity matrix is invertible the problem is
equivalent to a hard margin SVR problem with a kernel matrix which depends
also on the inverse of the similarity loss matrix. Experimental results on two
regression tasks seem to show an improvement in the performance.

A problem with this approach is the need to invert the similarity matrix and
how to define it in a meaningful way. Thus further study will be devoted to
these issues and to the extension of the framework to multiclass and ranking
problems. Finally, the robustness of the approach should be studied, both the-
oretically and empirically.
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