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Abstract - We review a recent extension of the self-organizing map (SOM) for temporal
structures with a simple recurrent dynamics leading to sparse representations, which allows an
efficient training and a combination with arbitrary lattice structures. We discuss its practical
applicability and its theoretical properties. Afterwards, we put the approach into a general
framework of recurrent unsupervised models. This generic formulation also covers a variety of
well-known alternative approaches including the temporal Kohonen map, the recursive SOM,
and SOM for structured data. Based on this formulation, mathematical properties of the
models are investigated. Interestingly, the dynamic can be generalized from sequences to
more general tree structures thus opening the way to unsupervised processing of general data
structures.
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1 Introduction

Biological information processing systems possess remarkable capacities with respect to ac-
curacy, speed, noise tolerance, adaptivity and generalization ability for new stimuli, which
outperform the capability of artificial systems. This ability is astonishing as the processing
speed of biological nerve cells is orders of magnitudes slower than the processing speed of
transistors in modern computers. To reach this power, biological systems rely on distributed
and parallel processing and highly efficient representation of relevant stimuli within the cells.
Self-organization plays a major role to reach this goal. As demonstrated in numerous simu-
lations and applications [13, 17], self-organizing principles allow the development of faithful
topographic representations leading to clusters of given data, based on which an extraction
of relevant information and supervised or unsupervised postprocessing is easily possible.
Stimuli typically occuring in nature have a time characteristic: data from robotics, sensor
streams, speech, EEG and MEG, or other biological time series, to name just a few. However,
most classical unsupervised models are restricted to vectorial data. Thus, the question arises,
how signals with a specific time characteristic can be faithfully learned using the powerful
principles of self-organization. Several extensions of classical self-organizing models exist for
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dealing with sequential data, involving, for example

1. fixed length time windows as used e.g. in [19, 24];

2. specific sequence metrics, e.g. operators or the edit distance [5, 17, 18, 25]; thereby,
adaptation might be batch or online;

3. statistical modeling incorporating appropriate generative models for sequences such as
proposed in [2, 31];

4. mapping of temporal dependencies to spatial correlation, e.g. as traveling wave signals
or potentially trained temporally activated lateral interactions [4, 23, 34];

5. recurrent processing of the time signals and recurrent winner computation based on the
current signal and previous activation [3, 6, 11, 12, 15, 28, 29, 32, 33]

Many of these approaches have been proposed recently, demonstrating the increasing interest
in unsupervised learning models for time series. A more detailed overview is provided e.g. in
[1]. However, there does not yet exist a ‘canonical’ model or notation which captures the main
aspects of unsupervised sequence processing in a common dynamic. In addition, the capacity
of these models and their mutual relation is hardly understood. Thus, there is a need for a
unification of the notation and an exact mathematical investigation and characterization of
the benefits and drawbacks of these models.
Here, we will focus on recurrent self-organizing models. For recurrent models, a unifying
notation can be found [10] which allows the formalization of the important aspects within
one unified dynamical equation and which identifies a crucial part of model design: recurrent
models essentially differ in the context, i.e. the way how sequences are internally represented.
This internal representation of sequences severely influences the processing speed, the flexibil-
ity with respect to the neuron topology, and the capacity of the models. Interestingly, these
issues can be investigated in an exact mathematical way in many cases [8, 9]. We will discuss
this fact for a recent recurrent model, the Merge SOM (MSOM) [28], in detail. Afterwards,
we review (some) known results about the capacity of recurrent models, and we conclude
with a short look at a generalization of this approach for more general data structures.

2 MSOM

The MSOM has been proposed in [28] as an efficient and flexible model for unsupervised
processing of time series. The goal of unsupervised learning is to represent a set of stimuli
faithfully by a set of neurons (prototypes). We are interested in stimuli with a temporal
characteristic, i.e. one or more time series of the form (s1, . . . , st, . . .) with elements st ∈
R

n. Time series are processed recursively, i.e. the entries st are fed consecutively to the
map, starting from s1. A neural map is given by a set of neurons or prototypes {1, . . . , N}
The neurons are characterized by a neighborhood structure (often a regular two-dimensional
lattice) which can be used for visualization and neighborhood cooperation during training,
and a weight which represents a typical stimulus. Given an input, the weight vector is
compared to the input and the best matching neuron becomes winner in this computation
step. Since we deal with time series, a typical stimulus consists of two parts:

1. the current input st,

2. the context of the computation provided by the previous time step.
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MSOM characterizes this context by the merged content of the winner neuron in the previous
time step. Thus, a weight vector (wi, ci) ∈ R

n × R
n is attached to every neuron i, wi

representing the expected current stimulus, ci representing the expected context. We fix a
similarity measure d (e.g. the euclidean metric) for R

n, a merge parameter γ ∈ (0, 1), and a
context weight α ∈ (0, 1). Then, the recurrent dynamic of the computation at time step t for
sequence (s1, . . . , st, . . .) is determined by the following equation: the winner for time step t
is

I(t) = argmini{d̃i(t)}

where
d̃i(t) = α · d(wi, st) + (1 − α) · d(ci, Ct)

denotes the activation (distance) of neuron i, and C t is the expected (merged) weight/context
vector, i.e. the content of the winner of the previous time step

Ct = γ · cI(t−1) + (1 − γ) ·wI(t−1) .

Thereby, the initial context C0 is set to zero. Training takes place in Hebb style after each
time step t:

4wi = −η · nhd(i,w, t) ·
∂d(wi, st)

∂wi
and 4ci = −η · nhd(i,w, t) ·

∂d(ci, Ct)

∂ci

where η > 0 is the learning rate and nhd(i,w, t) denotes the neighborhood range of neuron i.
For standard SOM, this is a Gaussian shaped function of the distance from the winner I(t)
of i. For neural gas (NG), it is a Gaussian function which depends on the rank of neuron i if
all neurons are ordered according to their distance from the current stimulus [19]. It is also
possible to use non-euclidean lattices such as the topology of hyperbolic SOM [22].
Obviously, MSOM accounts for the temporal context by an explicit vector attached to each
neuron which stores the preferred context of this neuron. The way in which the context is
represented is crucial for the result, since the representation determines the induced similarity
measure of sequences. Thus, two questions arise:

1. Which (explicit) similarity measure on sequences is induced by this choice?

2. What is the capacity of this model?

Interestingly, both questions can be answered for MSOM:

1. If neighborhood cooperation is neglected and provided enough neurons, Hebbian learn-
ing converges to the following stable fixed point of the dynamics:

wopt(t) = st, copt(t) =
t−1
∑

i=1

γ(1 − γ)i−1 · st−i

and opt(t) is winner for time step t [8].

2. If sequence entries are taken from a finite input alphabet, the capacity of MSOM is
equivalent to finite state automata [28].
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Figure 1: Left: Orthogonal projection of context weights ci ∈ R
3 of 2048 prototypes trained

with MNG on DNA-sequences. The shape of these points has strong similarity with images
of fractals. Right: Temporal quantization error for different unsupervised models and the
Mackey-Glass time series. Results marked with (*) are taken from [33].

Result (1) states that the representation of context which arises in the weights ci consists of
a leaky integration over the sequence entries, which is also known as a fractal encoding of the
entries. This behavior can be demonstrated by inspection of the weight vectors which arise
during training if the underlying source is fairly uniformly distributed, as shown in Fig. 1(left).
The points depicted in this figure are obtained as context vectors if MSOM is trained using
the NG neighborhood (MNG) and 2048 neurons for the DNA-sequences provided in [26].
Thereby, the letters T, C, G, A of the sequences are embedded as points into R

3, and the
merging parameter is set γ = 0.5. Interestingly, a posterior labeling of the prototypes into
introns/non splice sites yields an error < 15% on the test set. (The situation is worse for
exons for which only a short consensus string exists.) This is quite remarkable provided the
fact that the training is done in an unsupervised way using simple Hebbian learning.
Result (2) gives an exact characterization of the capacity of MSOM networks in classical
terms, similar to well-known results for supervised recurrent networks [21]. However, this
fact does not tell us how to learn such an automaton based on given data. Because of (1),
Hebbian learning might not be the best choice because of its focus on the most recent entries.
It has been pointed out in [9], that Hebbian learning can be interpreted as a truncated
gradient descent on an appropriate cost function in terms of the distances, the quantization
error. Alternative learning schemes arise for different cost functions in terms of the distances
and a different optimization strategy, e.g. a full gradient or EM approaches.
MSOM networks can be used for time series inspection or clustering since the map arranges
the stimuli according to their recent context on the map taking the temporal statistics into
account. A posterior labeling extends the application area to supervised time series classi-
fication or regression. This method is most suited for those tasks where the representation
derived in (1) captures relevant information. This is the case e.g. for the speaker identification
task based on the utterance of Japanese vowels provided in the UCI-KDD archive: 9 different
speakers have to be identified based on the utterance of the Japanese vowel ’ae’, represented
by the cepstrum vectors with different stream length. MNG with posterior labeling allows to
achieve a test error of 2.7% for 150 neurons and 1.6% for 1000 neurons (for details see [28])
which beats the error rate of 5.9% (rule based) resp. 3.8% (HMM) reported by the donator
of the data set [16].
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3 General recurrent networks

It has been pointed out in [9, 10] that several popular recurrent SOM models share their
principled dynamics (up to minor details) whereby they differ in their internal representation
of the context. In all cases, the context is extracted as the relevant part of the activation of
the map in the previous step. Thereby, the notion of ‘relevance’ differs between the models.
Assume an extraction function is fixed

rep : R
N → R

r

where N is the number of neurons and r is the dimensionality of the context representation.
Then the general dynamics is given by

d̃i(t) = α · d(wi, st) + (1 − α) · dr(c
i, Ct)

where
Ct = rep

(

d̃1(t − 1), . . . , d̃N (t − 1)
)

extracts the relevant information from the activation of the previous time step, ci ∈ R
r, and dr

is a similarity measure on R
r. This formulation emphasizes the importance of an appropriate

internal representation of complex signals by means of a context ci. The representation
function rep extracts this information from the computation.
MSOM is obtained for r = n, dr = d, and rep as the merged content of context and weight
of the winner in the previous step. Alternative choices are reasonable (see [9]):

1. Only the neuron itself : the temporal Kohonen map (TKM) [3] performs leaky integra-
tion of the distances of each neuron. The dynamics can be obtained by setting r = N ,
rep = id, dr as the standard dot product, and ci as the i’th unit vector, which realizes
the ‘focus’ of neuron i on its own activation. The recurrent SOM [15] is similar in spirit,

but it integrates vectors instead of distances and requires a vectorial quantity d̃i(t).

2. Full information: the recursive SOM (RecSOM) [33] chooses r = N . rep(x1, . . . , xN ) =
(exp(−x1), . . . , exp(−xN )) is one-one, i.e. all information is kept. The feedback SOM
is similar to RecSOM with respect to the context, however, the context integrates an
additional leaky loop onto itself [11].

3. Winner location: the SOM for structured data (SOMSD) [6] is restricted to regular
lattice structures. Denote by L(i) the location of neuron i in a d-dimensional lattice.
Then r = d and rep(x1, . . . , xn) = L(i0) where i0 is the index of the winner argmini{xi}.
This context representation is only applicable to priorly fixed, though not necessarily
euclidean lattices. SOMSD for a (fixed) hyperbolic lattice has been proposed in [29].

4. Supervised recurrent networks: share the dynamics; they result for r = N , rep(x1,
. . . , xn) = (sgd(x1), . . . , sgd(xN )), and d = dr as the dot product. In this sense, the
proposed dynamic is generic; it directly extends the dynamic of supervised recurrent
networks.

For all settings, Hebbian learning can be applied, as discussed e.g. in [8]. Thereby, Hebbian
learning can be interpreted as a truncated gradient descent on an appropriate cost function
which depends on the distances and neighborhood structure of the map. The truncation
disregards contributions back in time.
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Obviously, these unsupervised recurrent methods separate into two categories: representation
of the context in the data space as for TKM and MSOM, and representation of the context
in a space which is related to the neurons as for SOMSD and RecSOM. In the latter case, the
representation space can be enlarged if more neurons are considered. In the first case, the
representation capability is restricted by the data dimensionality. We would like to point out
that MSOM can be interpreted as the ‘correct’ implementation of TKM and RSOM regarding
the following aspect: it has been pointed out in [32] that optimum weight representations of

TKM and RSOM for a given sequence have the form wopt(t) =
∑

t−1
i=0(1−α)ist−i/

∑

t−1
i=0(1−α)i

which is quite similar to MSOM. However, there exist essential differences between the models;
TKM does not converge to these optimum weights when using Hebbian learning. RSOM does
because it uses a different learning rule, but the parameter α occurs in the encoding formula
and in the dynamics. Usually, the dynamics is not very stable for large (1 − α). Thus the
encoding space cannot be utilized optimally by RSOM because instabilities of the dynamics
would arise. MSOM allows to control these two parameters independently.
Apart from the encoding space, these methods differ with respect to several aspects: their
memory and time complexity (RecSOM is quite demanding because of a large context dimen-
sionality, MSOM is reasonable, SOMSD is cheap), the possibility to combine the approaches
with alternative lattices (no restriction for MSOM and RecSOM, SOMSD requires a fixed
prior lattice), and their principled capacity. This latter aspect is particularly interesting since
it characterizes principled limits of these models. The following results have been achieved
so far

1. TKM cannot represent all automata [28]. Thus it is strictly weaker than MSOM.

2. MSOMs are equivalent to finite automata, as already mentioned [28].

3. The same holds for SOMSD [8].

4. For RecSOM, the situation is difficult because of the quite complex context computa-
tion. On the one hand, an infinite reservoir is available because of real-valued context
activations; on the other hand, however, information is very easily blurred because no
focus in form of a winner computation takes place. The technical situation can be com-
pared to the difficulties to investigate the capacity of supervised sigmoidal recurrent
networks [14]. So far, it is known that

(a) RecSOMs with small α can implement at most definite memory machines [30], i.e.
focus on a finite time window.

(b) RecSOMs with a slightly modified (i.e. normalized) context can simulate finite
state automata [20].

(c) RecSOMs with a simplified winner-takes-almost-all context (i.e. only the maximum
values remain, the exponential function is substituted by a semilinear function)
can simulate pushdown automata [20]. Pushdown automata are important for
embedded constructions, e.g. embedded sentences in language processing.

Thus, there remain several open problems in particular for RecSOM. Note that these results
do not state that these dynamics can be achieved using Hebbian learning, but they limit
the principled capacity of the systems. In practice, the accuracy of the models depends
on several factors including, in particular, the lattice topology and characteristics of the
data (i.e. data topology and sparseness). The different capability of the models to adapt to
temporal characteristics is exemplarily demonstrated in Fig. 1(right). The figure shows the
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temporal quantization error as defined in [33] for the Mackey-Glass time series (see [33] for
the description of the experiment) and two models without context (standard SOM and NG),
the simple context of recurrent SOM, the full context provided by recursive SOM, SOMSD
with rectangular and with hyperbolic (HSOMSD) lattice, and MSOM with data optimum NG
context (MNG) (see [8] for details). Obviously, a different capability to learn the temporal
structure arises, demonstrated by different quantization errors for past events.

4 Outlook on recursive networks for tree structures

We conclude with a remark on a generalization of the recurrent dynamic to tree structures.
Binary trees or, more generally, trees with limited fan-out constitute good structures to
represent data from interesting application areas such as chemistry, language parsing, bioin-
formatics, or image processing [27]. Supervised recurrent neural networks can be extended
to so-called recursive neural networks by introducing more than one context vector. This
principle is well established and it is accompanied by several successful applications and in-
vestigations of the models (see e.g. [7, 27] and references therein). A similar extension has
been proposed for unsupervised models. For binary tree structures, two vectors ci

1 and ci
s

represent the context provided by the left and right subtree of a given vertex of the tree.
Starting from the leafs of a tree, the distance of a tree v with label l(v) and subtrees t1(v)
and t2(v) can be determined by

d̃i(v) = α · d
(

wi, l(v)
)

+ (1 − α)
(

0.5 · dr

(

ci

1, C (t1(v))
)

+ 0.5 · dr

(

ci

2, C (t2(v))
))

with context
C(t1(v)) = rep

(

d̃1 (t1(v)) , . . . , d̃N (t2(v))
)

and analogous for t2. Hebbian learning can be directly transferred to this setting. This
principle has been tested for different data sets for SOMSD. A topological mapping of trees
according to their structures and labels arises [6, 8, 27]. However, only preliminary results of
the capacity of unsupervised models for tree structures have been presented so far [8, 9].
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