
Statistical Learning Theory: the informal roadmap

Started by Vapnik and Chervonenkis in the Sixties (Vapnik 1995,
1998)

Statistical point of view: data generated by an unknown stochastic
source

Problem (supervised learning): how to guarantee that the empirical
error converges to true error ?

Law of large numbers ? No, increasing the size of the training
set is not su�cient by itself to guarantee convergence, we need
to require a statistical property called consistency
a necessary and su�cient condition to guarantee consistency is
uniform convergence

It turns out that VC-dimension can be used to derive bounds on
uniform convergence

Support Vector Machines use hypotheses with “large margin” (small
VC-dimension)
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Probability Tools: basic facts

Let A and B be some events (i.e. elements of a �-algebra), and X
some real-values random variable.

Basic Facts
Union: P[A or B]  P[A] + P[B]
Inclusion: if A ) B , then P[A]  P[B]
Inversion: if P[X > t]  F (t) then with probability at least
1 � �, X  F�1(�)
Expectation: if X � 0,

E [X ] =

Z 1

0
P[X � t]dt

Hoe↵ding: Let X1, . . . ,Xn be n i.i.d. random variables with
f (X ) 2 [a, b].Then 8✏ > 0, we have

P
"�����

1

n

nX

i=1

f (Xi ) � E [f (X )]

����� > ✏

#
 2e

� 2n✏2

(b�a)2
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Statistical Learning Theory: data and risk

Training Set: {(x1, y1), . . . , (xn, yn)}, generated i.i.d from
P(x , y)

if yi 2 R, then we have a regression task
if yi 2 {�1, 1}, then we have a (binary) classification task

let focus on binary classification tasks

in SLT the true error is called risk (or expected loss) and is
written as

R[h] =

Z
Loss(x , y , h(x)) dP(x , y)

where h() is a hypothesis (output in {�1, 1}) and Loss() is a
function which measures how much any specific error costs

for now let consider Loss(x , y , h(x)) = 1
2 |h(x) � y |2 {0, 1}
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Statistical Learning Theory: Induction Principle

The problem in finding

hopt = arg min
h2H

R[h]

(notice that hopt may not be unique) is that

we don’t know P(x , y)

we just have a finite training set

How to use the training set ? We need to define an Induction Principle
We can minimize the training error (empirical error)

Remp[h] =
1

n

nX

i=1

|h(xi ) � yi |

This corresponds to use as Induction Principle the so called

Empirical Risk Minimization (ERM)
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Statistical Learning Theory: Problem

The main problem: can we use the Law of Large Numbers to guarantee

Remp[h] ! R[h] as n ! 1 ?

Let use a statistical point of view:

let define ⇠i =
1
2 |h(xi ) � yi |

since all the examples are drawn independently, then we are faced
with Bernoulli trials

thus the ⇠1, . . . , ⇠n are independently sampled from a random
variable defined as ⇠ = 1

2 |h(x) � y |
There is a famous inequality which characterizes how the empirical mean
1
n

Pn
i=1 ⇠i converges to the expected value (or expectation) of ⇠, denoted

by E[⇠]:

P
"�����

1

n

nX

i=1

⇠i � E[⇠]

����� � ✏

#
 2e�2n✏2
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Statistical Learning Theory: Law of Large Numbers

Great! Recalling that

Remp[h] =
1
n

Pn
i=1 ⇠i

R[h] = E(⇠)

we get
P [|Remp[h] � R[h]| � ✏]  2e�2n✏2

So, not only the empirical risk converges to the risk, but it converges
exponentially fast in the number of training example!
WARNING: the bound is probabilistic in nature, i.e. it does not rule
out the presence of cases where the deviation is large. However, if we
have many hypotheses, the probability that

h# = arg min
h2H

Remp[h]

(h# need not be unique) will have a large deviation seems to be very

small...
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Statistical Learning Theory: Law of Large Numbers

...however, h# is a very atypical hypothesis since it tries to reduce the
mean of the ⇠i as small as possible, moving away from the “natural”
average loss of the variable ⇠

we are no longer looking at independent Bernoulli trials!

So the learning process (using the ERM) is looking for the worst case

In conclusion, the Law of Large Numbers by itself is not enough!

What we actually need is consistency, i.e.:

Remp[h
#] ! R[hopt ] and R[h#|Tr ] ! R[hopt ] as n ! 1

where R[h|Tr ] =
Pn

i=1
1
2 |h(xi ) � yi |P(xi , yi ), i.e. the unknown

true risk evaluated on the training set

Actually we need nontrivial consistency: consistency should hold for ALL

hypotheses...
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Statistical Learning Theory: Uniform Convergence

Key Theorem of Learning Theory (Vapnik and Chervo-
nenkis, 1989):
For bounded loss functions, the ERM principle is consistent if
and only if the empirical risk (i.e., empirical error) converges
uniformly to the (true) risk in the following sense:

lim
n!1 P[sup

h2H
(R[h] � Remp[h]) > ✏] = 0

for all ✏ > 0
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Statistical Learning Theory: Bounds

The Key Theorem of Learning Theory tell us that we have to
focus our attention to the following probability:

P[sup
h2H

(R[h] � Remp[h]) > ✏]

What we can do is to try to derive upper bounds that can be used
to establish under which conditions increasing the size of the
training set implies a significant reduction of the probability itself.
Two important “tools” for deriving such bounds are:

the Union Bound

Symmetrization
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Statistical Learning Theory: the Union Bound

If we just have two hypothesis, h1 and h2, in our Hypothesis
Space, then uniform convergence of risk trivially follows from the
law of large numbers. In fact, let us define

C i
✏ ⌘ {Tr | (R[hi ] � Remp[hi ]) > ✏}

then, by definition

P[sup
h2H

(R[h] � Remp[h]) > ✏] = P(C 1
✏ [ C 2

✏ )

= P(C 1
✏ ) + P(C 2

✏ ) � P(C 1
✏ \ C 2

✏ )

 P(C 1
✏ ) + P(C 2

✏ )
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Statistical Learning Theory: the Union Bound

Generalizing to a finite set of hypotheses H ⌘ {hi , . . . , hk}, we get
the Union Bound:

P[suph2H(R[h] � Remp[h]) > ✏] = P(C 1
✏ [ . . . [ C k

✏ )  Pk
i=1 P(C i

✏)

Finally, we apply the Law of Large Numbers for each individual
P(C i

✏) and since we have a finite number of these terms, uniform
convergence is guaranteed:

P[9h 2 {h1, . . . , hk} : R[h] � Remp[h]) > ✏] 
kX

i=1

P(C i
✏)  ke�2n✏2

Thus, if the Hypothesis Space is finite, we can use the Union
Bound... but what happens if the Hypothesis Space is infinite ?
...we end up having an infinite number of nonzero quantities!
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Statistical Learning Theory: Symmetrization

Vapnik and Chervonenkis solved this problem by reducing the infinite
case to the finite case, via the introduction of the so called ghost sample.

In few words: the probability that the empirical risk di↵ers from the true

risk by more than ✏, can be bounded by twice the probability that it

di↵ers from the empirical risk on a second sample (test set) of the same

size n by more then ✏/2

Symmetrization (Vapnik and Chervonenkis):
For n✏2 � 2, we have

P[suph2H(R[h] � Remp[h]) > ✏]  2P[suph2H(Remp[h] � R 0
emp[h]) > ✏/2]

Here, the first P refers to the distribution of i.i.d. samples of size n, while
the second one refers to i.i.d. samples of size 2n. In the latter case, Remp

measures the loss on the first half of the sample, and R 0
emp on the second

half.

63 of 216



Implication of Symmetrization

Symmetrization is telling us that, for the purpose of bounding, the
Hypothesis Space can be considered finite:

the number of distinct (boolean) functions (recall we are considering
binary classification) over 2n elements is 22n.

Let Tr2n ⌘ {(x1, y1), . . . , (x2n, y2n)} denote the given 2n-sample, and
denote by N (H,Tr2n) the number of hypothesis that can be
distinguished from their values on {x1, . . . , x2n}
Then we can characterize the capacity of an (infinite) Hypothesis Space
H by looking at the maximum (over all possible choices of a 2n-sample)
number of distinct functions that can be implemented by H, denoted as
N (H, 2n) .
But, wait a moment! This looks familiar...it is connected with
shattering!!

In fact, the function N (H, n) is referred to as the shattering coe�cient.
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Uniform Convergence Bound

Now we are ready to derive a bound for uniform convergence.
Using symmetrization, we have to bound

P[suph2H(Remp[h] � R 0
emp[h]) > ✏/2]

The basic idea is as follows:

1 pick a maximal set of hypotheses {h1, . . . , hN (H,Tr2n)} that can be
distinguished based on their values on Tr2n

2 then use the Union Bound

3 finally bound each term by the first bound we introduced

However, before doing this an auxiliary step of randomization should be
performed since each hi depends on Tr2n.

We skip the technical proof...
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Uniform Convergence Bound

... and go directly to the final result:

P[ sup
h2H

(Remp[h] � R 0
emp[h]) > ✏/2]  4E[N (H,Tr2n)]e

�n✏2/8

= 4e� lnE[N (H,Tr2n)]n✏
2/8

We conclude that if E[N (H,Tr2n)] does not grow exponentially in n,
then we get a nontrivial and potentially useful bound.
Similar bounds can be derived within the field of empirical processes
(concentration).
The term ln E[N (H,Tr2n)] (called annealed entropy) is di�cult to
evaluate (it depends on a possibly unknown distribution...)
Because of that, it is substituted by other capacity concepts, e.g.:

ln E[N (H,Trn)]  ln N (H, n) ⌘ GH(n) (Growth function)
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Growth function and VC-dimension

It is not di�cult to recognize that the Growth function GH(n) and
VC-dimension are intimately related: the VC-dimension is the
maximal number of instances which can be shattered by a
Hypothesis Space H.
Thus, if we study the behavior of the Growth function as a
function of the sample size n, we get:

if n  VC (H) then GH(n) = n ln(2) (useless for the bound)

if n > VC (H) then it is possible to prove that

GH(n)  VC (H)
⇣
ln( n

VC(H)) + 1
⌘

and the bound becomes useful: learning can succeed!
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Confidence Intervals

The uniform convergence bound can be rewritten in a “PAC-learning
style” by specifying the probability with which we want the bound to
hold, an then derive a confidence interval. This can be done as follows:

set � = 4e� lnE[N (H,Tr2n)]n✏
2/8

solve the above equation with respect to ✏

The result is that, with probability at least 1 � �

R[h]  Remp[h] +
q

8
n

�
ln E[N (H,Tr2n)] + ln 4

�

�

which holds 8h 2 H, and in particular for the hypothesis h# minimizing
the empirical risk
Using VC-dimension to bound the annealed entropy, the general structure
of bound of this type is

R[h]  Remp[h]| {z }
A

+ ✏(n,VC (H)/n, �)| {z }
B
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Confidence Intervals and VC-dimension

Where

- A ONLY DEPENDS on the hypothesis returned by the learning
algorithm

- B is INDEPENDENT from the hypothesis returned by the learning
algorithm, however it DEPENDS on the ratio between VC (H) and
the number of training examples n, and from the confidence (1 � �)
with which the bound holds

B is usually called VC-
confidence and it is mono-
tone with respect to VC(H)

n ;
given n it grows with
VC (H).
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Structural Risk Minimization

Problem: as the VC-dimension grows, the empirical risk (A) decreases,
however the VC confidence (B) increases !
Because of that, Vapnik and Chervonenkis proposed a new inductive
principle, i.e. Structural Risk Minimization (SRM), which aims to
minimizing the right hand of the confidence bound, so to get a tradeo↵
between A and B:
Consider Hi such that

- H1 ✓ H2 ✓ · · · ✓ Hn

- VC(H1)  · · ·  VC(Hn)

- select the hypothesis with the
smallest bound on the true risk

Example: Neural networks with
an increasing number of hidden
units

E
rr

o
r

HnH3H2H1

VC−dim

Bound on true risk

Empirical error

Bound on VC−confidence
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