Richiamo di Concetti di Apprendimento Automatico ed altre nozioni aggiuntive

Libro di riferimento: T. Mitchell

Ingredienti Fondamentali Apprendimento Automatico

- ullet Dati di Allenamento (estratti dallo Spazio delle Istanze, X)
- Spazio delle Ipotesi, H
 - costituisce l'insieme delle funzioni che possono essere realizzate dal sistema di apprendimento;
 - si assume che la funzione da apprendere f possa essere rappresentata da una ipotesi $h \in \mathcal{H}$... (selezione di h attraverso i dati di apprendimento)
 - o che almeno una ipotesi $h \in \mathcal{H}$ sia simile a f (approssimazione);
- Algoritmo di Ricerca nello Spazio delle Ipotesi, alg. di apprendimento

ATTENZIONE: \mathcal{H} non può coincidere con l'insieme di tutte le funzioni possibili e la ricerca essere esaustiva \rightarrow Apprendimento è inutile!!!

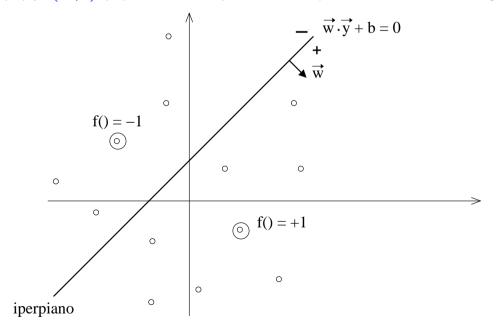
Si parla di Bias Induttivo: sulla rappresentazione (\mathcal{H}) e/o sulla ricerca (alg. di apprendimento)

Spazio delle Ipotesi: Esempio 1

Iperpiani in \mathbb{R}^2

- ullet Spazio delle Istanze o punti nel piano: $X=\{ec{y}\in\mathbb{R}^2\}$
- ullet Spazio delle Ipotesi o dicotomie indotte da iperpiani in \mathbb{R}^2 :

$$\mathcal{H} = \{ f_{(\vec{w},b)}(\vec{y}) | f_{(\vec{w},b)}(\vec{y}) = sign(\vec{w} \cdot \vec{y} + b), \vec{w} \in \mathbb{R}^2, b \in \mathbb{R} \}$$

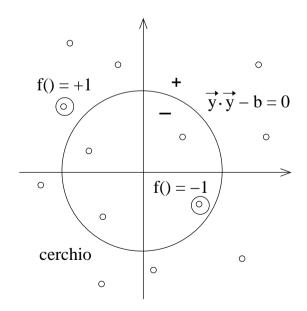


Spazio delle Ipotesi: Esempio 2

Dischi in \mathbb{R}^2

- Spazio delle Istanze o punti nel piano: $X = \{ \vec{y} \in \mathbb{R}^2 \}$
- ullet Spazio delle Ipotesi o dicotomie indotte da dischi in \mathbb{R}^2 centrati nell'origine:

$$\mathcal{H} = \{ f_b(\vec{y}) | f_b(\vec{y}) = sign(\vec{y} \cdot \vec{y} - b), b \in \mathbb{R} \}$$



5

Spazio delle Ipotesi: Esempio 3

Congiunzione di m letterali positivi

- Spazio delle Istanze \rightarrow stringhe di m bit: $X = \{s | s \in \{0,1\}^m\}$
- Spazio delle Ipotesi \to tutte le sentenze logiche che riguardano i letterali positivi l_1,\ldots,l_m (l_1 è vero se il primo bit vale 1, l_2 è vero se il secondo bit vale 1, etc.) e che contengono solo l'operatore \land (and):

$$\mathcal{H} = \{ f_{\{i_1, \dots, i_j\}}(s) | f_{\{i_1, \dots, i_j\}}(s) \equiv l_{i_1} \wedge l_{i_2} \wedge \dots \wedge l_{i_j}, \{i_1, \dots, i_j\} \subseteq \{1, \dots, m\} \}$$

```
Es. m=3, X=\{0,1\}^3
Esempi di istanze \to s1=101, s2=001, s3=100, s4=111
Esempi di ipotesi \to h_1\equiv l_2, h_2\equiv l_1\wedge l_2, h_3\equiv true, h_4\equiv l_1\wedge l_3, h_5\equiv l_1\wedge l_2\wedge l_3
Notare che: h_1,h_2, e h_5 sono false per s1,s2 e s3 e vere per s4;h_3 è vera per ogni istanza;
```

 h_4 è vera per s1 e s4 ma falsa per s2 e s3

Principali Paradigmi di Apprendimento: Richiamo

Apprendimento Supervisionato:

- dato in insieme di esempi pre-classificati, $Tr = \{(x^{(i)}, f(x^{(i)}))\}$, apprendere una descrizione generale che incapsula l'informazione contenuta negli esempi (regole valide su tutto il dominio di ingresso)
- tale descrizione deve poter essere usata in modo predittivo (dato un nuovo ingresso \tilde{x} predire l'output associato $f(\tilde{x})$)
- si assume che un esperto (o maestro) ci fornisca la supervisone (cioè i valori della f() per le istanze x dell'insieme di apprendimento)

Find-S è un algoritmo di apprendimento supervisionato

Consideriamo il paradigma di Apprendimento Supervisonato

Dati a nostra disposizione (off-line)

$$\mathsf{Dati} = \{(x^{(1)}, f(x^{(1)})), \dots, (x^{(N)}, f(x^{(N)}))\}$$

Suddivisione tipica ($N=N_{tr}+N_{ts}$):

- Training Set = $\{(x^{(1)}, f(x^{(1)})), \dots, (x^{(N_{tr})}, f(x^{(N_{tr})}))\}$ usato direttamente dall'algoritmo di apprendimento;
- Test Set = $\{(x^{(1)}, f(x^{(1)})), \dots, (x^{(N_{ts})}, f(x^{(N_{ts})}))\}$ usato alla fine dell'apprendimento per stimare la bontà della soluzione.

Training Set

Test Set

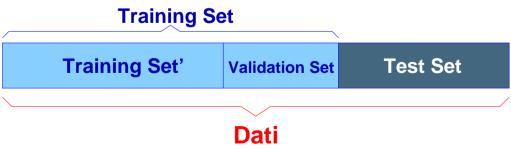
Dati

8

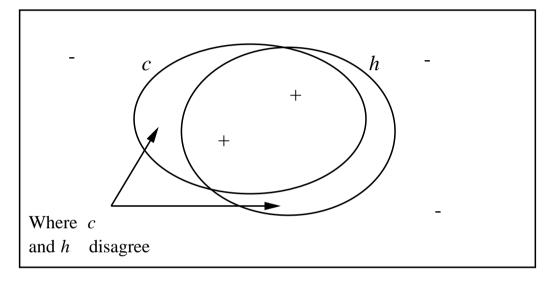
Se N abbastanza grande il Training Set è ulteriormente suddiviso in due sottoinsiemi ($N_{tr}=N_{\widehat{tr}}+N_{val}$) :

- Training Set' = $\{(x^{(1)}, f(x^{(1)})), \ldots, (x^{(N_{\widehat{tr}})}, f(x^{(N_{\widehat{tr}})}))\}$ usato direttamente dall'algoritmo di apprendimento;
- Validation Set = $\{(x^{(1)}, f(x^{(1)})), \dots, (x^{(N_{val})}, f(x^{(N_{val})}))\}$ usato indirettamente dall'algoritmo di apprendimento.

Il Validation Set serve per scegliere l'ipotesi $h \in \mathcal{H}$ migliore fra quelle consistenti con il Training Set'



Instance Space X



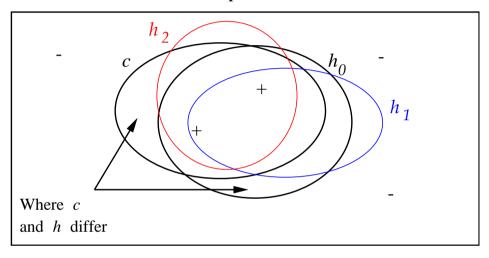
Supponiamo che la funzione f da apprendere sia una funzione booleana (concetto):

$$f: X \to \{0,1\} (\{-,+\})$$

Def: L'**Errore Ideale** $(error_{\mathcal{D}}(h))$ di una ipotesi h rispetto al concetto f e la distribuzione di probabilità \mathcal{D} (probabilità di osservare l'ingresso $x \in X$) è la probabilità che h classifi chi erroneamente un input selezionato a caso secondo \mathcal{D} : $\underbrace{error_{\mathcal{D}}(h)}_{x \in \mathcal{D}} = \underbrace{Pr}_{x \in \mathcal{D}}[f(x) \neq h(x)]$

Errore di Apprendimento

Instance Space



Dato Tr = Training Set', pi'u ipotesi possono essere consistenti: h_0 , h_1 , h_2 quale scegliere?

Def: L'Errore Empirico $(error_{Tr}(h))$ di una ipotesi h rispetto a Tr è il numero di esempi che h classifi ca erroneamente: $erron_{Tr}(h) \equiv \#\{(x,f(x)) \in Tr|f(x) \neq h(x)\}$

Def: Una ipotesi $h \in \mathcal{H}$ è sovraspecializzata (**overfit**) Tr se $\exists h' \in \mathcal{H}$ tale che $error_{Tr}(h) < error_{Tr}(h')$, ma $error_{\mathcal{D}}(h) > error_{\mathcal{D}}(h')$.

Il Validation Set serve per cercare di selezionare l'ipotesi migliore (evitare overfit).

VC-dimension

Definizione: Frammentazione (Shattering)

Dato $S\subset X$, S è frammentato (shattered) dallo spazio delle ipotesi ${\mathcal H}$ se e solo se

$$\forall S' \subseteq S, \ \exists h \in \mathcal{H}, \ \text{tale che} \ \forall x \in S, \ h(x) = 1 \Leftrightarrow x \in S'$$

(${\mathcal H}$ realizza tutte le possibili dicotomie di S)

Definizione: VC-dimension

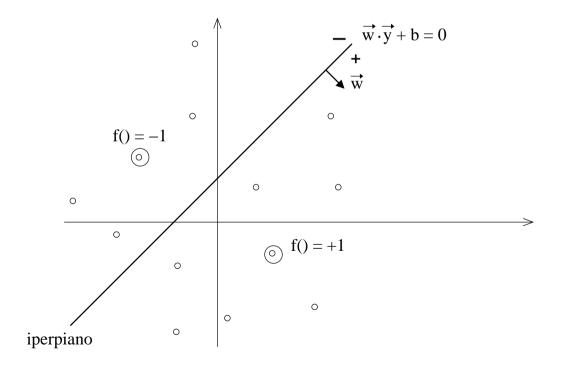
La VC-dimension di uno spazio delle ipotesi $\mathcal H$ defi nito su uno spazio delle istanze X è data dalla cardinalità del sottoinsieme pi`u grande di X cheè frammentato da $\mathcal H$:

$$VC(\mathcal{H}) = \max_{S \subseteq X} |S| : \mathcal{H}$$
 frammenta S

 $VC(\mathcal{H})=\infty$ se S non è limitato

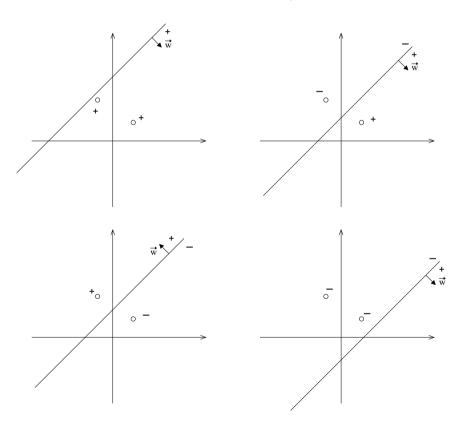
Quale è la VC-dimension di \mathcal{H}_1 ?

$$\mathcal{H}_1 = \{ f_{(\vec{w},b)}(\vec{y}) | f_{(\vec{w},b)}(\vec{y}) = sign(\vec{w} \cdot \vec{y} + b), \vec{w} \in \mathbb{R}^2, b \in \mathbb{R} \}$$



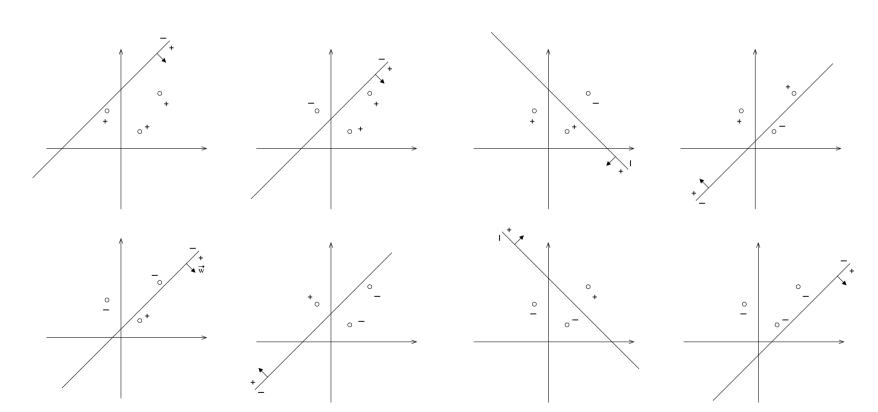
Quale è la VC-dimension di \mathcal{H}_1 ?

 $VC(\mathcal{H}) \geq 1$ banale. Vediamo cosa succede con 2 punti:



Quale è la VC-dimension di \mathcal{H}_1 ?

Quindi $VC(\mathcal{H}) \geq 2$. Vediamo cosa succede con 3 punti:



Quale è la VC-dimension di \mathcal{H}_1 ?

Quindi $VC(\mathcal{H}) \geq 3$. Cosa succede con 4 punti ?

VC-dimension: Esempio

Quale è la VC-dimension di \mathcal{H}_1 ?

Quindi $VC(\mathcal{H}) \geq 3$. Cosa succede con 4 punti ? Non si riesce a frammentare 4 punti!!

Infatti esisteranno sempre due coppie di punti che se unite con un segmento provocano una intersezione fra i due segmenti e quindi, ponendo ogni coppia di punti in classi diverse, per separarli non basta una retta, ma occorre una curva. Quindi $VC(\mathcal{H})=3$



Bound sull'Erorre Ideale per Classifi cazione Binaria

Consideriamo un problema di classifi cazione binario (i.e., apprendimento di concetti). Dati

- Training Set $Tr = \{(\boldsymbol{x}^{(1)}, f(\boldsymbol{x}^{(1)})), \dots, (\boldsymbol{x}^{(N_{tr})}, f(\boldsymbol{x}^{(N_{tr})}))\}$
- Spazio delle Ipotesi $\mathcal{H} = \{h_{oldsymbol{w}}(oldsymbol{x}) | oldsymbol{w} \in I\!\!R^k \}$
- Algoritmo di Apprendimento L che restituisce l'ipotesi $h_{\boldsymbol{w}^*}(\boldsymbol{x})$, dove \boldsymbol{w}^* minimizza l'errore empirico $error_{Tr}(h_{\boldsymbol{w}}(\boldsymbol{x}))$

è possibile derivare dei bound sull'errore ideale (detto anche errore di generalizzazione), validi con probabilità $1-\delta$, che hanno una forma del tipo

$$error_{\mathcal{D}}(h_{\boldsymbol{w}^*}(\boldsymbol{x})) \leq error_{Tr}(h_{\boldsymbol{w}^*}(\boldsymbol{x})) + \epsilon(N_{tr}, VC(\mathcal{H}), \delta)$$

$$\underbrace{error_{\mathcal{D}}(h_{\boldsymbol{w}^*}(\boldsymbol{x}))}_{A} \leq \underbrace{error_{Tr}(h_{\boldsymbol{w}^*}(\boldsymbol{x}))}_{A} + \underbrace{\sqrt{\frac{VC(\mathcal{H})}{N_{tr}}}(\log(\frac{2N_{tr}}{VC(\mathcal{H})}) + 1) - \frac{1}{N_{tr}}\log(\delta)}_{A}$$

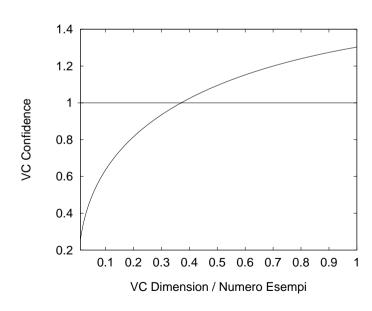
B

Bound sull'Erorre Ideale per Classifi cazione Binaria

Si noti che

- il termine A DIPENDE SOLO dalla ipotesi restituita dall'algoritmo di apprendimento L;
- il termine B è INDIPENDENTE dalla ipotesi restituita dall'algoritmo di apprendimento L; in particolare dipende dal rapporto fra VC-dimension dello spazio delle ipotesi \mathcal{H} e il numero di esempi di apprendimento (N_{tr}) , oltre ovviamente che dalla confi denza $(1-\delta)$ con cui il bound è valido.

Il termine B è usualmente chiamato VC-confi dence e risulta essere monotono rispetto al rapporto $\frac{VC(\mathcal{H})}{N_{tr}}$; fi ssato N_{tr} aumenta all'aumentare di $VC(\mathcal{H})$.



Structural Risk Minimization

Problema: all'aumentare della VC-dimension diminuisce l'errore empirico (termine A), ma aumenta la VC confi dence (termine B)!

L'approccio Structural Risk Minimization tenta di trovare un compromesso tra i due termini:

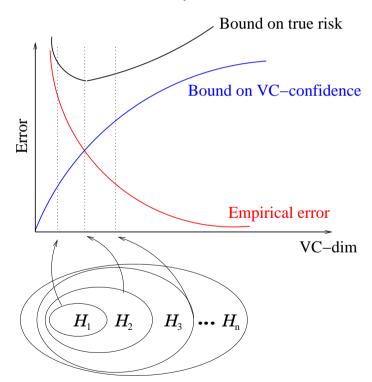
Si considerano \mathcal{H}_i tali che

-
$$\mathcal{H}_1 \subset \mathcal{H}_2 \subset \cdots \subset \mathcal{H}_n$$

-
$$VC(\mathcal{H}_1) \le \cdots \le VC(\mathcal{H}_n)$$

- si seleziona l'ipotesi che ha il bound sull'errore ideale pi`u basso

Esempio: Reti neurali con un numero crescente di neuroni nascosti



Apprendimento di concetti: alcune defi nizioni

Definizione: Un concetto in uno Spazio delle Istanze (Instance Space) X è defi nito come una funzione booleana su X.

Definizione: Un esempio di un concetto c su uno Spazio delle Istanze X è defi nito come una coppia (x,c(x)), dove $x\in X$ e c() è una funzione booleana.

Definizione: Poniamo h essere una funzione booleana defi nita sullo Spazio delle Istanze X. Diciamo che h soddisfa $x \in X$ se h(x) = 1 (true).

Definizione: Poniamo h essere una funzione booleana defi nita sullo Spazio delle Istanze X e (x,c(x)) un esempio di c(). Diciamo che h è consistente con l'esempio se h(x)=c(x). In pi`u diciamo che hè consistente con un insieme di esempi Tr se h è consistente con ogni esempio in Tr.

Spazio delle Ipotesi: ordine parziale

Definizione: Siano h_i e h_j funzioni booleane definite su uno Spazio delle Istanze X. Diciamo che h_i è più generale o equivalente di h_j ($h_i \ge_g h_j$) se e solo se

$$(\forall x \in X)[(h_j(x) = 1) \to (h_i(x) = 1)]$$

Esempi

- $l_1 \geq_g (l_1 \wedge l_2)$
- $l_2 \geq_q (l_1 \wedge l_2)$
- $l_1 \not\geq_g l_2$ e $l_2 \not\geq_g l_1$ (non comparabili)

Esercizio: apprendimento di congiunzioni di letterali

22

Algoritmo Find-S

/* trova l'ipotesi più specifica che è consistente con l'insieme di apprendimento */

- ullet input: insieme di apprendimento Tr
- inizializza h con ipotesi più specifica $h\equiv l_1\wedge \neg l_1\wedge l_2\wedge \neg l_2\wedge \cdots \wedge l_m\wedge \neg l_m$
- ullet per ogni istanza di apprendimento positiva $(x,true)\in Tr$
 - $oldsymbol{-}$ rimuovi da h ogni letterale che non sia soddisfatto da x
- restituisci h

Esempio di applicazione: m=5

Esempio (positivo)	ipotesi corrente
	$h_0 \equiv l_1 \wedge \neg l_1 \wedge l_2 \wedge \neg l_2 \wedge l_3 \wedge \neg l_3 \wedge l_4 \wedge \neg l_4 \wedge l_5 \wedge \neg l_5$
11010	$h_1 \equiv l_1 \wedge l_2 \wedge \neg l_3 \wedge l_4 \wedge \neg l_5$
10010	$h_2 \equiv l_1 \wedge \neg l_3 \wedge l_4 \wedge \neg l_5$
10110	$h_3 \equiv l_1 \wedge l_4 \wedge \neg l_5$
10100	$h_4 \equiv l_1 \wedge \neg l_5$
00100	$h_5 \equiv \lnot l_5$

Notare che $h_0 \leq_g h_1 \leq_g h_2 \leq_g h_3 \leq_g h_4 \leq_g h_5$

Inoltre, ad ogni passo l'ipotesi corrente h_i è sostituita dall'ipotesi h_{i+1} che costituisce una generalizzazione minima di h_i consistente con l'esempio corrente.

Pertanto **Find-S** restituisce l'ipotesi più specifica consistente con ${\cal T}r$