Fondamenti dell'Informatica

Docente: Alessandro Sperduti

e-mail: sperduti@math.unipd.it

Tutor: Mirco Gelain

e-mail: mgelain@math.unipd.it

Libro di testo: J. E. Hopcroft, R. Motwani, and J. D. Ullman Automi, linguaggi e calcolabilità, Addison-Wesley, 2003.

• Sito del corso: www.math.unipd.it/~sperduti/ssis.html

Contenuti del corso

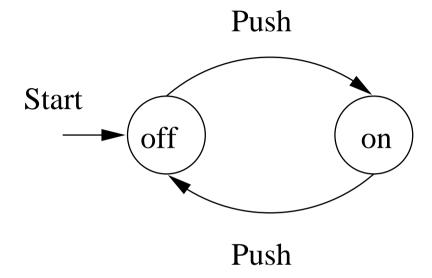
- Automa = dispositivo astratto per eseguire delle computazioni
- Turing ha studiato e definito le "macchine di Turing" (= computer astratti) prima che esistessero veri calcolatori
- Studieremo anche dispositivi più semplici delle macchine di Turing (automi a stati finiti, automi a pila, ...), e modi di definire linguaggi, come grammatiche ed espressioni regolari.
- Non tutti i problemi possono essere risolti da un calcolatore = problemi indecidibili
- Problemi (decidibili) nella classe NP = che non possono essere risolti efficientemente

Automi a stati finiti (cap. 1 e 2)

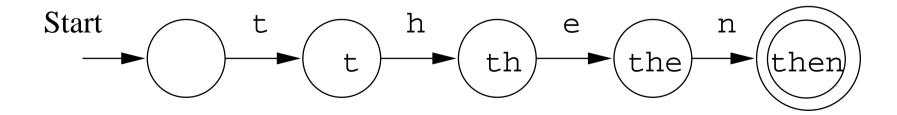
Gli automi a stati finiti sono usati come modello per

- Software per la progettazione di circuiti digitali.
- Analizzatori lessicali di un compilatore.
- Ricerca di parole chiave in un file o sul web.
- Software per verificare sistemi a stati finiti, come protocolli di comunicazione.

• Esempio: automa a stati finiti per un interruttore on/off



• Esempio: automa a stati finiti che riconosce la stringa then



Rappresentazioni strutturali

Notazioni alternative molto importanti per lo studio e le applicazioni degli automi

Grammatiche: Una regola come $E \Rightarrow E + E$ specifica un'espressione aritmetica

• $Coda \Rightarrow Persona.Coda$

dice che una coda è costituita da una persona seguita da una coda.

Espressioni regolari: Denotano la struttura dei dati, per esempio:

'[A-Z][a-z]*[][A-Z][A-Z]'

è compatibile con (matches) Ithaca NY

non è compatibile con Palo Alto CA

Domanda: Quale espressione è compatibile con Palo Alto CA

Concetti di base

Alfabeto: Insieme finito e non vuoto di simboli

Esempio: $\Sigma = \{0, 1\}$ alfabeto binario

Esempio: $\Sigma = \{a, b, c, \dots, z\}$ insieme di tutte le lettere minuscole

Esempio: Insieme di tutti i caratteri ASCII

Stringa: Sequenza finita di simboli da un alfabeto Σ , e.g. 0011001

Stringa vuota: La stringa con zero occorrenze di simboli da Σ

ullet La stringa vuota è denotata con ϵ

Lunghezza di una stringa: Numero di posizioni per i simboli nella stringa.

|w| denota la lunghezza della stringa w

$$|0110| = 4, |\epsilon| = 0$$

Potenze di un alfabeto: Σ^k = insieme delle stringhe di lunghezza k con simboli da Σ

Esempio: $\Sigma = \{0, 1\}$

$$\Sigma^1 = \{0, 1\}$$

$$\Sigma^2 = \{00, 01, 10, 11\}$$

$$\Sigma^0 = \{\epsilon\}$$

Domanda: Quante stringhe ci sono in Σ^3 ?

L'insieme di tutte le stringhe su Σ è denotato da Σ^*

$$\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \cdots$$

Anche:

$$\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \cdots$$

$$\Sigma^* = \Sigma^+ \cup \{\epsilon\}$$

Concatenazione: Se x e y sono stringhe, allora xy è la stringa ottenuta ponendo una copia di y immediatamente dopo una copia di x.

Esempio: $x = a_1 a_2 \dots a_i, y = b_1 b_2 \dots b_j \Rightarrow xy = a_1 a_2 \dots a_i b_1 b_2 \dots b_j$

Esempio: $x = 01101, y = 110 \Rightarrow xy = 01101110$

Nota: Per ogni stringa x

$$x\epsilon = \epsilon x = x$$

Linguaggi:

Se Σ è un alfabeto, e $L \subseteq \Sigma^*$, allora L è un linguaggio Esempi di linguaggi:

- L'insieme delle parole italiane legali
- L'insieme dei programmi C legali
- ullet L'insieme delle stringhe che consistono di n zeri seguiti da n uni

 $\{\epsilon, 01, 0011, 000111, \ldots\}$

• L'insieme delle stringhe con un numero uguale di zeri e di uni

$$\{\epsilon, 01, 10, 0011, 0101, 1001, \ldots\}$$

• L_P = insieme dei numeri binari il cui valore è primo

$$\{10, 11, 101, 111, 1011, \ldots\}$$

- Il linguaggio vuoto ∅
- Il linguaggio $\{\epsilon\}$ consiste della stringa vuota

Nota: $\emptyset \neq \{\epsilon\}$

Nota: L'alfabeto Σ è sempre finito

Problema: La stringa w è un elemento di un linguaggio L?

Esempio: Dato un numero binario, è primo = è un elemento di L_P ?

È 11101 $\in L_P$? Che risorse computazionali sono necessarie per rispondere a questa domanda?

Di solito non pensiamo ai problemi come delle decisioni si/no, ma come qualcosa che trasforma un input in un output.

Esempio: Fare il parsing di un programma C = controllare se il programma è corretto, e se lo è, produrre un albero di parsing.

Dimostrazioni deduttive

- Sequenza di enunciati la cui verità porta da un enunciato iniziale (l'ipotesi) ad un enunciato finale (la conclusione)
- Forma del teorema: Se H, allora C
- H= ipotesi, C= conclusione
- Esempio: se $x \ge 4$, allora $2^x \ge x^2$
- x parametro quantificato universalmente (vale per tutti gli x)
- Modus ponens: regola logica che fa passare da un enuciato al successivo
 - Se H è vera, e sappiamo che "se H è vera, allora C è vera", allora possiamo concludere che anche C è vera
- Teoremi della forma "C1 se e solo se C2": due direzioni di prova
- Dimostrazione per assurdo: H e non C implica il falso

Quantificatori

- Per ogni x ($\forall x$): vale per tutti i valori della variabile
- Esiste x ($\exists x$): vale per almeno un valore della variabile
- Esempio: un insieme s è infinito se e solo se, per ogni intero n, esiste almeno un sottoinsieme T di S con n elementi
- ullet Dobbiamo considerare un n arbitrario e poi trovare un insieme con quel numero n di elementi
- ∀ precede ∃
- ullet Enunciato simile ma di significato diverso, e scorretto: Esiste un sottoinsieme T dell'insieme S tale che, per ogni n, T ha n elementi

Dimostrazioni per induzione

- Utili quando ci sono concetti definiti ricorsivamente
- Esempio: 0 è un intero, e se n è un intero allora n+1 è un intero
- \bullet Induzione sugli interi: dobbiamo dimostrare un enunciato S(n) su un intero n
 - Base: dimostriamo S(i) per un intero particolare (0 o 1 di solito)
 - Passo induttivo: per $n \geq i$, dimostriamo che se vale S(n) allora vale anche S(n+1)
- Possiamo concludere che S(n) è vero per ogni $n \geq i$

Esempio

- Se $x \ge 4$, allora $2^x \ge x^2$
- Base: $x = 4 \Rightarrow 2^x = 2^4 = 16$ e $x^2 = 4^2 = 16$
- Induzione: Supponiamo che $2^x \ge x^2$ per $x \ge 4$
- Dobbiamo dimostrare che $2^{x+1} \ge (x+1)^2$
- Abbiamo:
 - $-2^{x+1} = 2^x \times 2 \ge x^2 \times 2$ (dalla base induttiva)
 - Dimostriamo adesso che $2x^2 \ge (x+1)^2$
 - Poiché $(x+1)^2 = x^2 + 2x + 1$ si ha $2x^2 \ge x^2 + 2x + 1$
 - Semplificando: $x \ge 2 + 1/x$
 - $\text{ Se } x \ge 4, 1/x \le 1/4 \Rightarrow 2 + 1/x \le 2.25$

Induzione strutturale

- Molte strutture possono essere definite ricorsivamente
- Esempio (espressioni aritmetiche):
 - caso base: qualunque numero o lettera è un'espressione
 - caso induttivo: se E e F sono espressioni, allora lo sono anche E+F, $E\times F$, e (E)
 - Esempi: $3 + (4 \times 2), (2 \times (5 + 7)) \times 4$
- ullet Per dimostrare teoremi su un'espressione: si dimostra l'enunciato sul caso base, e poi si dimostra l'enunciato sulla struttura X a partire dalla validità dell'enunciato sulle strutture di cui X è composta secondo la definizione ricorsiva

Esempio

- Teorema: ogni espressione ha un numero uguale di parentesi aperte e chiuse
- Caso base: zero parentesi ⇒ vero
- Induzione: Tre modi per costruire un'espressione induttivamente: E + F, $E \times F$, e (E)
- Per E+F e $E\times F$: se vale per E e F, supponiamo che E abbia n parentesi aperte e chiuse e F ne abbia $m\Rightarrow E+F$ ne ha n+m
- Per (E): se vale per E, supponiamo che E abbia n parentesi aperte e chiuse $\Rightarrow (E)$ ne ha n+1

Automi a stati finiti deterministici

Un DFA è una quintupla

$$A = (Q, \Sigma, \delta, q_0, F)$$

- ullet Q è un insieme finito di stati
- Σ è un alfabeto finito (= simboli in input)
- δ è una funzione di transizione $(q, a) \mapsto p$
- $q_0 \in Q$ è lo stato iniziale
- $F \subseteq Q$ è un insieme di stati finali

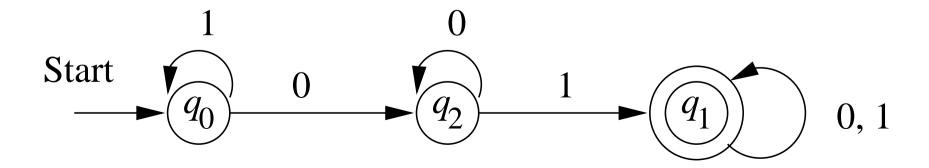
Esempio: Un automa A che accetta

$$L = \{x01y : x, y \in \{0, 1\}^*\}$$

L'automa $A = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_1\})$ come una tabella di transizione:

$$\begin{array}{c|ccccc} & 0 & 1 \\ \hline \rightarrow q_0 & q_2 & q_0 \\ \star q_1 & q_1 & q_1 \\ q_2 & q_2 & q_1 \\ \hline \end{array}$$

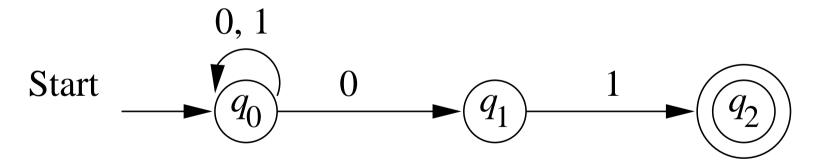
L'automa come un diagramma di transizione:



Un automa a stati finiti (FA) accetta una stringa $w = a_1 a_2 \cdots a_n$ se esiste un cammino nel diagramma di transizione che

- 1. Inizia nello stato iniziale
- 2. Finisce in uno stato finale (di accettazione)
- 3. Ha una sequenza di etichette $a_1 a_2 \cdots a_n$

Esempio: L'automa a stati finiti



accetta ad esempio la stringa 01101

• La funzione di transizione δ può essere estesa a $\hat{\delta}$ che opera su stati e stringhe (invece che su stati e simboli)

Base:
$$\hat{\delta}(q,\epsilon) = q$$

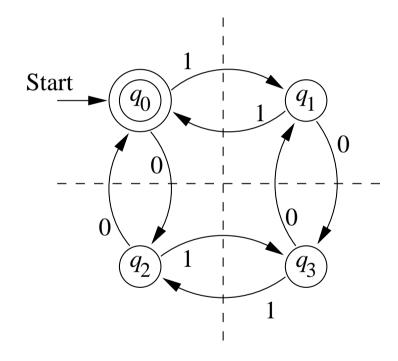
Induzione:
$$\hat{\delta}(q,xa) = \delta(\hat{\delta}(q,x),a)$$

 \bullet Formalmente, il linguaggio accettato da A è

$$L(A) = \{ w : \hat{\delta}(q_0, w) \in F \}$$

• I linguaggi accettati da automi a stati finiti sono detti linguaggi regolari

Esempio: DFA che accetta tutte e sole le stringhe con un numero pari di zeri e un numero pari di uni



Rappresentazione tabulare dell'automa

	0	1
$\star \to q_0$	q_2	q_1
q_1	q_3	q_0
q_2	q_0	q_3
q_3	$ q_1 $	q_2

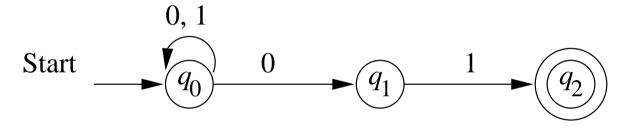
Esercizi

- Dare i DFA per i seguenti linguaggi sull'alfabeto $\{0,1\}$:
 - Insieme di tutte le stringhe che finiscono con 00
 - Insieme di tutte le stringhe con tre zeri consecutivi
 - Insieme delle stringhe con 011 come sottostringa
 - Insieme delle stringhe che cominciano e/o finiscono con 01

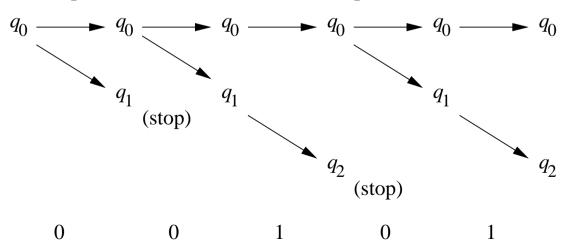
Automi a stati finiti non deterministici (NFA)

Un NFA può essere in vari stati nello stesso momento, oppure, visto in un altro modo, può "scommettere" su quale sarà il prossimo stato

Esempio: un automa che accetta tutte e solo le stringhe che finiscono in 01.



Ecco cosa succede quando l'automa elabora l'input 00101



Formalmente, un NFA è una quintupla

$$A = (Q, \Sigma, \delta, q_0, F)$$

- $\bullet \;\; Q$ è un insieme finito di stati
- \bullet Σ è un alfabeto finito
- $\bullet \ \delta$ è una funzione di transizione da $Q \times \Sigma$ all'insieme dei sottoinsiemi di Q
- $q_0 \in Q$ è lo stato iniziale
- $F \subseteq Q$ è un insieme di stati finali

Esempio: L' NFA di due pagine fa è

$$(\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$$

dove δ è la funzione di transizione

	0	1
$\rightarrow q_0$	$\{q_0,q_1\}$	$\{q_0\}$
q_1	Ø	$\{q_2\}$
$\star q_2$	Ø	Ø

Funzione di transizione estesa $\hat{\delta}$.

Base:

$$\hat{\delta}(q,\epsilon) = \{q\}$$

Induzione:

$$\hat{\delta}(q, xa) = \bigcup_{p \in \hat{\delta}(q, x)} \delta(p, a)$$

Esempio: Calcoliamo $\hat{\delta}(q_0, 00101)$ sulla lavagna

• Formalmente, il linguaggio accettato da A è

$$L(A) = \{ w : \hat{\delta}(q_0, w) \cap F \neq \emptyset \}$$

Equivalenza di DFA e NFA

- Gli NFA sono di solito più facili da "programmare".
- \bullet Sorprendentemente, per ogni NFA Nc'è un DFA D, tale che L(D)=L(N),e viceversa.
- ullet Questo comporta una construzione a sottoinsiemi, un esempio importante di come un automa B può essere costruito da un altro automa A.
- Dato un NFA

$$N = (Q_N, \Sigma, \delta_N, q_0, F_N)$$

costruiremo un DFA

$$D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$$

tali che

$$L(D) = L(N)$$

I dettagli della costruzione a sottoinsiemi:

$$\bullet \ Q_D = \{S : S \subseteq Q_N\}.$$

Nota: $|Q_D| = 2^{|Q_N|}$, anche se la maggior parte degli stati in Q_D sono "garbage", cioè non raggiungibili dallo stato iniziale.

- $F_D = \{S \subseteq Q_N : S \cap F_N \neq \emptyset\}$
- Per ogni $S \subseteq Q_N$ e $a \in \Sigma$,

$$\delta_D(S, a) = \bigcup_{p \in S} \delta_N(p, a)$$

Costruiamo δ_D dall' NFA già visto:

	0	1
Ø	Ø	Ø
$\rightarrow \{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$
$\{q_1\}$	Ø	$\{q_2\}$
$\star \{q_2\}$	Ø	Ø
$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0,q_2\}$
$\star \{q_0, q_2\}$	$\{q_0,q_1\}$	$\{q_0\}$
$\star \{q_1, q_2\}$	Ø	$\{q_2\}$
$\star \{q_0, q_1, q_2\}$	$ \{q_0, q_1\} $	$\{q_0,q_2\}$

Nota: Gli stati di D corrispondono a sottoinsiemi di stati di N, ma potevamo denotare gli stati di D in un altro modo, per esempio A-F.

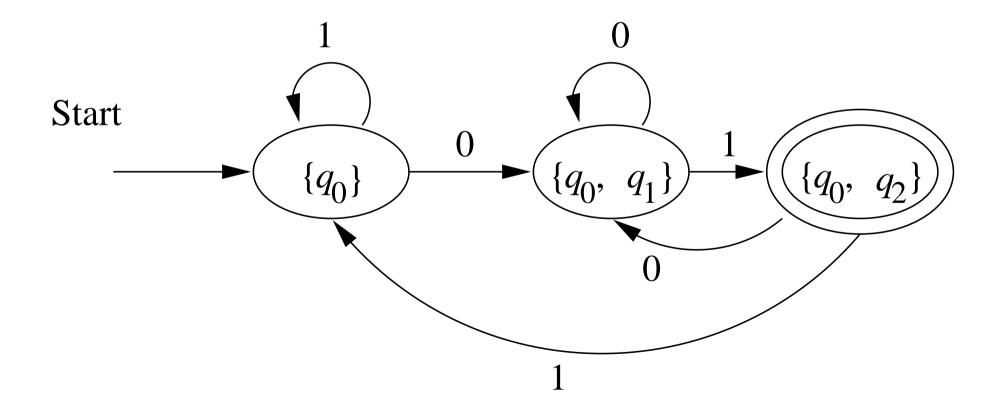
	0	1
A	A	A
$\rightarrow B$	$\mid E \mid$	B
C	A	D
$\star D$	A	A
E	$\mid E \mid$	F
$\star F$	$\mid E \mid$	B
$\star G$	A	D
$\star H$	$\mid E \mid$	F

Possiamo spesso evitare la crescita esponenziale degli stati costruendo la tabella di transizione per D solo per stati accessibili S come segue:

Base: $S = \{q_0\}$ è accessibile in D

Induzione: Se lo stato S è accessibile, lo sono anche gli stati in $\bigcup_{a\in\Sigma} \delta_D(S,a)$.

Esempio: Il "sottoinsieme" DFA con stati accessibili solamente.



Teorema 2.11: Sia D il DFA ottenuto da un NFA N con la costruzione a sottoinsiemi. Allora L(D) = L(N).

Prova: Prima mostriamo per induzione su |w| che

$$\hat{\delta}_D(\{q_0\}, w) = \hat{\delta}_N(q_0, w)$$

Base: $w = \epsilon$. L'enunciato segue dalla definizione.

Induzione:

$$\hat{\delta}_D(\{q_0\}, xa) \stackrel{\text{def}}{=} \delta_D(\hat{\delta}_D(\{q_0\}, x), a)
\stackrel{\text{ip.ind.}}{=} \delta_D(\hat{\delta}_N(q_0, x), a)
\stackrel{\text{costr.}}{=} \bigcup_{p \in \hat{\delta}_N(q_0, x)} \delta_N(p, a)
\stackrel{\text{def}}{=} \hat{\delta}_N(q_0, xa)$$

Ora segue che L(D) = L(N).

Teorema 2.12: Un linguaggio L è accettato da un DFA se e solo se L è accettato da un NFA.

Prova: La parte "se" è il Teorema 2.11.

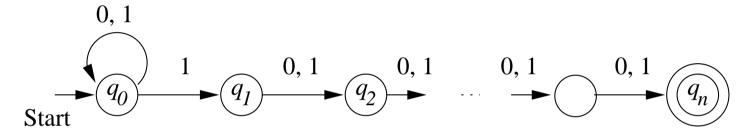
Per la parte "solo se" notiamo che un qualsiasi DFA può essere convertito in un NFA equivalente modificando la δ_D in δ_N secondo la regola seguente:

• Se $\delta_D(q, a) = p$, allora $\delta_N(q, a) = \{p\}$.

Per induzione su |w| si può mostrare che se $\hat{\delta}_D(q_0, w) = p$, allora $\hat{\delta}_N(q_0, w) = \{p\}$. L'enunciato del teorema segue.

Crescita esponenziale degli stati

Esiste un NFA N con n+1 stati che non ha nessun DFA equivalente con meno di 2^n stati



$$L(N) = \{x1c_2c_3\cdots c_n : x \in \{0,1\}^*, c_i \in \{0,1\}\}\$$

Supponiamo che esista un DFA equivalente con meno di 2^n stati.

D deve ricordare gli ultimi n simboli che ha letto.

Ci sono 2^n sequenze di n bit.

$$\exists q, a_1 a_2 \cdots a_n, b_1 b_2 \cdots b_n : q \in \hat{\delta}_N(q_0, a_1 a_2 \cdots a_n), \ q \in \hat{\delta}_N(q_0, b_1 b_2 \cdots b_n), \ a_1 a_2 \cdots a_n \neq b_1 b_2 \cdots b_n$$

Caso 1:

$$1a_2 \cdots a_n \\ 0b_2 \cdots b_n$$

Allora q deve essere sia uno stato di accettazione che uno stato di non accettazione.

Caso 2:

$$a_{1} \cdots a_{i-1} 1 a_{i+1} \cdots a_{n}$$

$$b_{1} \cdots b_{i-1} 0 b_{i+1} \cdots b_{n}$$
Ora $\hat{\delta}_{N}(q_{0}, a_{1} \cdots a_{i-1} 1 a_{i+1} \cdots a_{n} 0^{i-1}) =$

$$\hat{\delta}_{N}(q_{0}, b_{1} \cdots b_{i-1} 0 b_{i+1} \cdots b_{n} 0^{i-1})$$
e $\hat{\delta}_{N}(q_{0}, a_{1} \cdots a_{i-1} 1 a_{i+1} \cdots a_{n} 0^{i-1}) \in F_{D}$

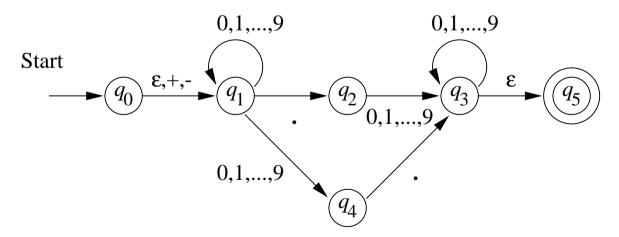
$$\hat{\delta}_{N}(q_{0}, b_{1} \cdots b_{i-1} 0 b_{i+1} \cdots b_{n} 0^{i-1}) \notin F_{D}$$

FA con transizioni epsilon

Un ϵ -NFA che accetta numeri decimali consiste di:

- 1. Un segno + o -, opzionale
- 2. Una stringa di cifre decimali
- 3. un punto decimale
- 4. un'altra stringa di cifre decimali

Una delle stringhe (2) e (4) sono opzionali



Un ϵ -NFA è una quintupla $(Q, \Sigma, \delta, q_0, F)$ dove δ è una funzione da $Q \times \Sigma \cup \{\epsilon\}$ all'insieme dei sottoinsiemi di Q.

Esempio: L' ϵ -NFA della pagina precedente è

$$E = (\{q_0, q_1, \dots, q_5\}, \{., +, -, 0, 1, \dots, 9\}, \delta, q_0, \{q_5\})$$

dove la tabella delle transizioni per δ è

	ϵ	+,-	•	$0,\ldots,9$
$\rightarrow q_0$	$\{q_1\}$	$\{q_1\}$	Ø	Ø
q_1	Ø	Ø	$\{q_2\}$	$\{q_1,q_4\}$
q_2	Ø	Ø	Ø	$\{q_3\}$
q_3	$\{q_5\}$	Ø	Ø	$\{q_3\}$
q_4	Ø	Ø	$\{q_3\}$	Ø
$\star q_5$	Ø	Ø	Ø	Ø

Epsilon-chiusura

Chiudiamo uno stato aggiungendo tutti gli stati raggiungibili da lui tramite una sequenza $\epsilon\epsilon\cdots\epsilon$

Definizione induttiva di ECLOSE(q)

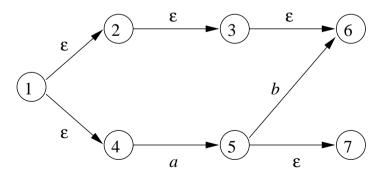
Base:

 $q \in ECLOSE(q)$

Induzione:

 $p \in \text{ECLOSE}(q) \text{ and } r \in \delta(p, \epsilon) \implies r \in \text{ECLOSE}(q)$

Esempio di ϵ -chiusura:



Per esempio, $ECLOSE(1) = \{1, 2, 3, 4, 6\}.$

• Definizione induttiva di $\hat{\delta}$ per automi ϵ -NFA

Base:

$$\hat{\delta}(q, \epsilon) = \text{ECLOSE}(q)$$

Induzione:

$$\hat{\delta}(q, xa) = \bigcup_{p \in \delta(\hat{\delta}(q, x), a)} \text{ECLOSE}(p)$$

Calcoliamo $\hat{\delta}(q_0, 5.6)$ per l'NFA del lucido 37.

Dato un ϵ -NFA

$$E = (Q_E, \Sigma, \delta_E, q_0, F_E)$$

costruiremo un DFA

$$D = (Q_D, \Sigma, \delta_D, q_D, F_D)$$

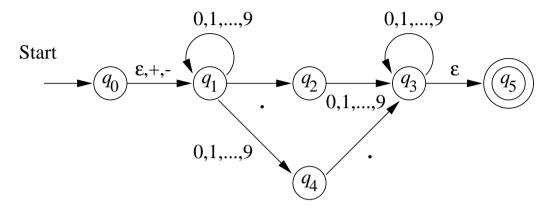
tale che

$$L(D) = L(E)$$

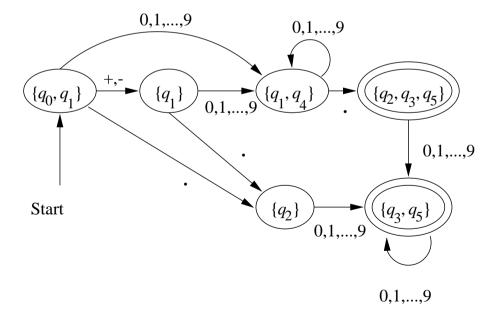
Dettagli della costruzione:

- $Q_D = \{S : S \subseteq Q_E \in S = ECLOSE(S)\}$
- $q_D = ECLOSE(q_0)$
- $F_D = \{S : S \in Q_D \in S \cap F_E \neq \emptyset\}$
- $\delta_D(S,a) =$ $\{ \text{ECLOSE}(p) : p \in \delta(t,a) \text{ per alcuni } t \in S \}$

Esempio: ϵ -NFA E



DFA D corrispondente ad E



Teorema 2.22: Un linguaggio L è accettato da un ϵ -NFA E se e solo se L è accettato da un DFA.

Prova: Usiamo D costruito come sopra e mostriamo per induzione che $\hat{\delta}_D(q_0, w) = \hat{\delta}_E(q_D, w)$

Base:
$$\hat{\delta}_E(q_0, \epsilon) = \text{ECLOSE}(q_0) = q_D = \hat{\delta}(q_D, \epsilon)$$

Induzione:

$$\hat{\delta}_{E}(q_{0}, xa) = \bigcup_{p \in \delta_{E}(\hat{\delta}_{E}(q_{0}, x), a)} \text{ECLOSE}(p)$$

$$= \bigcup_{p \in \delta_{D}(\hat{\delta}_{D}(q_{D}, x), a)} \text{ECLOSE}(p)$$

$$= \bigcup_{p \in \hat{\delta}_{D}(q_{D}, xa)} \text{ECLOSE}(p)$$

$$= \hat{\delta}_{D}(q_{D}, xa)$$