Informatica e Bioinformatica anno 2013/2014 Architettura degli Elaboratori

Alessandro Sperduti

5 Marzo 2014

Informatica: una Prima Definizione

Informatica = Informazione automatica

Informatica è la scienza della rappresentazione e dell'elaborazione dell'informazione.

- In inglese si utilizza il termine Computer Science (scienza dei calcolatori): tutto ciò che è relativo a studio, progettazione, fabbricazione e impiego degli elaboratori.
- Un dato è un' informazione codificata in forma adatta per essere trattata da un elaboratore
 - Dato + Interpretazione = Informazione

Algoritmo

Algoritmo

Una procedura per risolvere, in un numero finito di passi, un problema.

Programma

Traduzione di un algoritmo in una serie di istruzioni eseguibili da un computer.

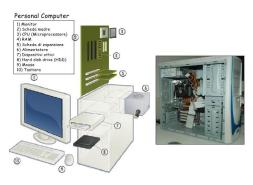
Linguaggio di programmazione

Linguaggio rigoroso che permette la formalizzazione di un algoritmo in un programma.

Calcolatore

• Calcolatore: macchina digitale, elettronica ed automatica capace di effettuare trasformazioni sui dati.

Calcolatore


• Calcolatore: macchina digitale, elettronica ed automatica capace di effettuare trasformazioni sui dati.

Calcolatore

 Calcolatore: macchina digitale, elettronica ed automatica capace di effettuare trasformazioni sui dati.

 L'elaboratore è una macchina universale: cambiando il programma residente in memoria, è in grado di risolvere problemi di natura diversa

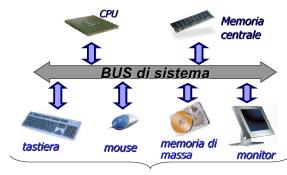
Informazione Digitale

- Gli elaboratori sono costruiti assemblando componenti elettronici elementari per memorizzare dati ed eseguire programmi
- Informazioni inserite tramite sequenze di cifre 0, 1:
 - 0: assenza di tensione elettrica
 - 1: presenza di tensione elettrica
- un bit (binary digit), che può valere 0 o 1, è la più piccola quantità di informazione che può essere riferita.
- un byte è una sequenza di 8 bit (es. 11001010)

Unità di Misura

- Il bit è la più piccola unità di misura per i dati
- Un'altra misura di cui parleremo è la frequenza, in termini di numero di eventi al secondo: 1 evento al secondo corrisponde ad un hertz (Hz).
- Ad entrambe le misure possono essere applicati i prefissi della tabella.

Prefisso	Simbolo	Valore	
tera	Т	10^{12}	
giga	G	10^{9}	
mega	М	10^{6}	
kilo	k	10^{3}	
milli	m	10^{-3}	
micro	μ	10^{-6}	
nano	n	10^{-9}	


Architettura dell'Elaboratore

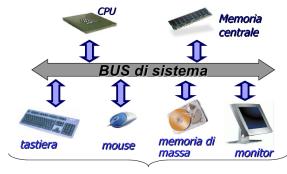
- La capacità dell'elaboratore di eseguire successioni di operazioni in modo automatico è determinata dalla presenza di un dispositivo di memoria contenente
 - i dati
 - le operazioni da eseguire su di essi (i programmi)
- Il programma viene interpretato da una unità di elaborazione centrale

Architettura dell'Elaboratore-2

L'architettura di base del calcolatore è rimasta fondamentalmente la stessa: si tratta della cosiddetta architettura di Von Neumann. La sua caratteristica fondamentale è che dati e programmi risiedono nella stessa area di memoria

- Bus
- CPU
- Memoria
- Periferiche di input/output

Periferiche

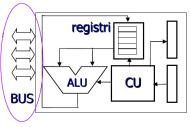

- L'architettura più consolidata per il calcolatore prevede che la CPU, la memoria e le periferiche siano collegate attraverso un unico canale di comunicazione, il bus.
- Il bus è fisicamente realizzato mediante un insieme di connettori elettrici.
- Una delle caratteristiche del Bus è il numero di bit che riesce a trasportare contemporamente.
- In ogni transazione sul bus:
 - Un dispositivo prende il controllo del bus

- L'architettura più consolidata per il calcolatore prevede che la CPU, la memoria e le periferiche siano collegate attraverso un unico canale di comunicazione, il bus.
- Il bus è fisicamente realizzato mediante un insieme di connettori elettrici.
- Una delle caratteristiche del Bus è il numero di bit che riesce a trasportare contemporamente.
- In ogni transazione sul bus:
 - Un dispositivo prende il controllo del bus
 - Invia una richiesta ad un secondo dispositivo

- L'architettura più consolidata per il calcolatore prevede che la CPU, la memoria e le periferiche siano collegate attraverso un unico canale di comunicazione, il bus.
- Il bus è fisicamente realizzato mediante un insieme di connettori elettrici.
- Una delle caratteristiche del Bus è il numero di bit che riesce a trasportare contemporamente.
- In ogni transazione sul bus:
 - Un dispositivo prende il controllo del bus
 - Invia una richiesta ad un secondo dispositivo
 - Svolta la richiesta, il bus viene liberato per un'altra comunicazione.

Architettura dell'Elaboratore

- Bus
- CPU
- Memoria
- Periferiche di input/output



Periferiche

CPU

La CPU (Central Processing Unit) è in grado di eseguire dei programmi, cioè sequenze di istruzioni elementari È costituita da:

- Un'unità aritmetico-logica (ALU) per l'elaborazione dati.
- Registri: piccole celle di memoria temporanea, servono per memorizzare gli operandi per le istruzioni di calcolo dell'ALU. Si suddividono in
 - Generici: utilizzati per gli operandi di un'operazione logica/aritmetica, e il risultato
 - Speciali: per operazioni particolari (mantenere l'istruzione corrente da eseguire ecc..)
- Unità di controllo (CU): coordina le attività

ALU

- L'ALU è l'unità aritmetico-logica che esegue le istruzioni e gestisce i registri della CPU
- È un circuito in grado di eseguire operazioni aritmetiche e logiche su 2 o più operandi, rappresentati su *n* bit (es. 32/64 bit); oltre al risultato dell'operazione può produrre informazioni ulteriori (il risultato è zero, si è verificato un overflow, etc.)
- Il tipo di operazione selezionata, in un dato istante, dipende dallo stato della CU.
- Alcune delle operazioni possibili: aritmetiche, logiche, di confronto, lettura/scrittura della memoria

Registri

- I registri sono dispositivi di memorizzazione che consentono un accesso molto veloce ai dati che contengono; hanno dimensioni prefissate (es. 32/64 bit). Nella maggior parte delle architetture, le operazioni della ALU si possono effettuare solo fra dati presenti nei registri.
- I registri generici hanno lo scopo di memorizzare gli operandi per le istruzioni della ALU ed il risultato
- Alcuni registri hanno funzioni specifiche:
 - Instruction Register (IR): contiene l'istruzione da eseguire
 - Program Counter (PC): contiene l'indirizzo in memoria della prossima istruzione da eseguire

Unità di Controllo

- Preleva dalla memoria l'istruzione da eseguire (tale istruzione è determinata dal registro PC) e la salva nel registro IR.
- Legge l'istruzione e capisce cosa deve essere fatto: che tipo di circuito della ALU deve essere attivato, dove reperire gli eventuali operandi ecc..
- Attiva la ALU e gestisce il risultato.

Ciclo FDE

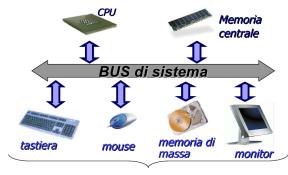
- Il processore esegue le istruzioni di un programma una alla volta in sequenza: estrae le istruzioni dalla memoria, le interpreta e le esegue una dopo l'altra
- Il processore esegue ogni istruzione mediante una sequenza ben definita di operazioni detta ciclo di accesso, decodifica, esecuzione (Fetch, Decode Execute, FDE)
- Fetch:
 - Lettura del contenuto della cella di memoria il cui indirizzo è il valore del registro PC
 - Copia di tale contenuto nel registro IR.
 - Incremento del valore di PC in modo che punti all'istruzione successiva
- Decode:
 - Analizza il codice dell'istruzione: seleziona il corrispondente circuito della ALU, trova gli eventuali operandi dell'istruzione.
 - se l'istruzione è di salto, modifica il valore del registro PC
- Execute:
 - Attiva i circuiti della ALU.

Ciclo FDE: un Esempio

Supponiamo di dover eseguire la seguente istruzione: "somma il contenuto dei registri R1 e R3 e metti il risultato nel registro R4". Inizialmente supponiamo di avere nel registro PC l'indirizzo dell'istruzione descritta sopra (x)

- Fase di reperimento dell'istruzione (fetch):
 - ullet Lettura del contenuto della cella di memoria numero x
 - Copia di tale contenuto nel registro IR.
 - Incremento del valore di PC: PC=x + n (n è la dimensione dell'istruzione)
- Fase di decodifica (Decode):
 - Selezionare il circuito della somma della ALU; selezionare i registri R1 e R3 come input ed il registro R4 come output
- Fase di Esecuzione (Execute):
 - Attivare il circuito somma della ALU;

Clock


- L'orologio di sistema (Clock) invia impulsi ad intervalli regolari predefiniti alle altre componenti del sistema.
- La CPU utilizza gli impulsi del clock per sincronizzare le sue attività.
- La velocità del clock, ovvero il numero di impulsi al secondo inviati dal clock, si misura in Hz.

Clock

- L'orologio di sistema (Clock) invia impulsi ad intervalli regolari predefiniti alle altre componenti del sistema.
- La CPU utilizza gli impulsi del clock per sincronizzare le sue attività.
- La velocità del clock, ovvero il numero di impulsi al secondo inviati dal clock, si misura in Hz.
- Maggiore è la velocità di clock, maggiore è la velocità della CPU (Attenzione però che non è l'unico fattore per determinare la velocità di tutto il calcolatore)
- Attualmente, il clock di una CPU di un PC è sull'ordine dei gigahertz (GHz), miliardi di cicli al secondo.

Architettura dell'Elaboratore

- Bus
- CPU
- Memoria
- Periferiche di input/output

Periferiche

Memoria

- Nelle memorie, come in ogni altra componente di un computer, le informazioni sono sempre rappresentate digitalmente tramite sequenze di 0 e di 1.
- Una memoria quindi memorizza numeri binari:
 - un bit può contenere o 0 o 1
 - un byte è una sequenza di 8 bit (es. 11001010)
 - una parola è una sequenza di 4/8 byte = 32/64 bit (generalmente è la dimensione dei registri nella CPU)

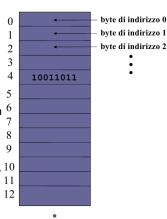
Tipi di Memorie

- Le memorie sono dispositivi per l'immagazzinamento delle informazioni
- Ogni memoria è costituita da celle, a cui si accede tramite un indirizzo. L'indirizzo massimo di memoria a cui si può accedere è indicato dalla dimensione della parola.
- Generalmente in un elaboratore vi sono tre tipi di memorie:
 - Registri: contengono informazioni necessarie alla elaborazione della singola istruzione
 - Memoria centrale: contiene dati e istruzioni attualmente elaborati dal processore
 - Memorie di massa: contengono dati e programmi che non sono oggetto di elaborazione immediata

Caratteristiche di una Memoria

I parametri fondamentali che definiscono una memoria sono:

- Dimensione della parola (locazione di memoria)
- Modalità di accesso (sequenziale, diretto, casuale, associativo)
- Permanenza o volatilità dei dati
- Capacità (numero di locazioni disponibili), espressa in KB, MB, GB, etc.
- Tempo di accesso, necessario per accedere ad una locazione di memoria per un'operazione di lettura o scrittura, espresso in nanosec, millisec, sec


RAM

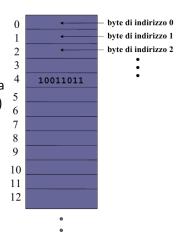
La memoria centrale o memoria principale, detta anche RAM (Random Access Memory, ovvero memoria ad accesso casuale, perchè qualsiasi cella può essere letta/scritta in un tempo, mediamente, costante), è la memoria in linea con il processore, che contiene i dati e i programmi che sono attualmente utilizzati/in esecuzione

- Un programma, quando non è oggetto di elaborazione, è memorizzato su memoria di massa (dischi)
- Quando deve essere eseguito, viene caricato tutto o in parte, in memoria centrale

RAM-2

- La RAM può essere considerata come una sequenza di celle
 - ciascuna cella ha la dimensione di un byte (8 bit)
 - Ogni bit è presente come stato (alto o basso) di tensione e viene rappresentato con le cifre binarie 0/1
- Ciascun byte nella memoria è individuato da 9 un indirizzo che lo distingue da tutti gli altri, 10 costituito da un numero variabile da 0 a 11 12 12 10 10 dove N è la dimensione in bit della parola (ovvero dei registri del processore).

RAM-3


Le operazioni che si effettuano sulla memoria sono operazioni di lettura e scrittura

- Entrambe presuppongono l'utilizzo di un indirizzo che identifica univocamente la cella interessata all'operazione
- L'operazione di scrittura è distruttiva, cioè cancella l'informazione precedentemente contenuta nella cella.
- L'operazione di lettura preserva il contenuto della cella indirizzata: all'esterno della memoria centrale viene trasferita copia dell'informazione

RAM: Caratteristiche

Le caratteristiche fondamentali della memoria centrale sono:

- accesso diretto (casuale) ad ogni cella (indipendentemente dal suo indirizzo)
- velocità elevata (circa 10⁻⁷ secondi per un accesso)
- volatilità: quando il computer viene spento, i dati e i programmi presenti nella RAM vengono cancellati

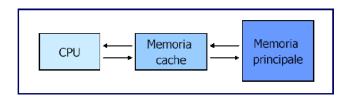
Unità di Misura della Memoria

Le unità di misura utilizzate per una memoria sono le seguenti:

- Kilobyte (KB) = 2^{10} byte = 1024 byte
- Megabyte (MB) = 2^{20} byte = 1024 KB, circa 1.000.000 byte
- Gigabyte (MB) = 2^{30} byte = 1024 MB, circa 1.000.000.000 byte
- Terabyte (MB) = 2^{40} byte = 1024 GB, circa 1.000.000.000.000 byte

Un moderno personal computer ha in genere da 1 a 8 Gigabyte di memoria RAM.

Cache


La connessione tra memoria e processore rappresenta un limite dell'architettura di Von Neumann

- Limite architetturale: il bus permette l'accesso ad una sola informazione per volta ("collo di bottiglia")
 - Allargamento del bus dati, in modo da poter estrarre più istruzioni e/o dati per volta
- Limite tecnologico: la velocità con cui il processore ottiene le informazioni dalla memoria centrale (velocità di accesso della RAM) è inferiore alla velocità con cui è in grado di elaborarle.
 - Superamento del limite tecnologico mediante introduzione di una memoria intermedia tra memoria centrale e processore che approssimi la velocità del processore: Cache

Cache

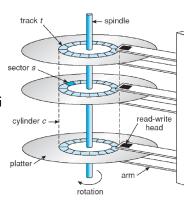
Piccola RAM molto veloce, interposta tra CPU e memoria principale, per migliorare le prestazioni del sistema

 Quando viene indirizzata una parola, quella parola e alcune di quelle vicine vengono trasferite dalla RAM nella più piccola e veloce memoria cache, in modo che la parola richiesta di seguito sia sperabilmente accessibile più velocemente

ROM

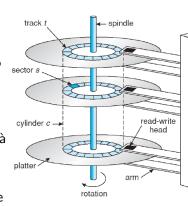
Una parte della memoria centrale è la ROM (Read Only Memory), una memoria a sola lettura, destinata a contenere informazioni non variabili

- Caratteristiche delle memorie ROM:
 - accesso casuale alle informazioni
 - velocità elevata (ma inferiore alle RAM)
- La ROM viene scritta in modo permanente in fase costruttiva: le celle della ROM non possono essere riscritte
- La ROM contiene il software e i dati necessari a far funzionare i dispositivi periferici e ad inizializzare il computer
 - All'avvio del computer, effettuano un rapido controllo di affidabilità, per accertare che tutte le componenti hardware siano perfettamente funzionanti
 - Caricano il sistema operativo dal disco
- All'accensione del computer, il registro PC contiene l'indirizzo della prima istruzione del programma della ROM


Memoria Secondaria

- Esistono diversi dispositivi di memoria secondaria: dischi magnetici (hard disk), dischi ottici (CD, DVD), dispositivi USB, memorie flash
- Memoria non volatile ad alta capacità
- Il disco fisso è costituito da uno o più piatti metallici ricoperti di materiale magnetico su entrambe le facce
- Ciascuna superficie è associata ad una o più testine di lettura/scrittura che si muovono radialmente per leggere/scrivere l'informazione organizzata in tracce concentriche

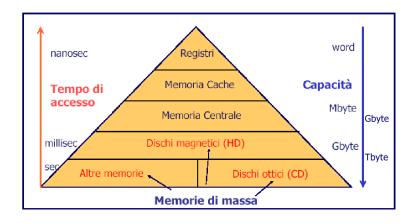
Memoria Secondaria


- L'informazione è disposta sul disco in tracce, ovvero in cerchi concentrici.
- Per leggere (o scrivere) sul disco, la testina si deve posizionare sulla traccia che contiene il dato ed attendere che il dato passi sotto di essa
- Le operazioni di lettura/scrittura si basano sulla proprietà del campo magnetico di indurre/essere indotto il/dal passaggio di corrente in una bobina

Memoria Secondaria

La memoria secondaria

- È permanente: contiene tutto quello che si vuole salvare anche dopo lo spegnimento
- È ad accesso sequenziale o diretto (il tempo di lettura/scrittura varia a seconda dell'accesso precedente in modo più o meno stretto)
- È adatta per leggere/scrivere grandi quantità di dati (in posizioni contigue)
- Essendo composta da parti meccaniche è sottoposta ad usura e quindi meno affidabile della RAM

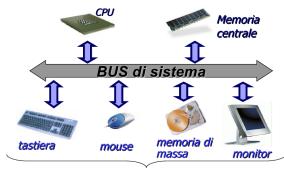


Caratteristiche di una Memoria

I parametri fondamentali che definiscono una memoria sono:

- Dimensione della parola (locazione di memoria)
- Modalità di accesso (sequenziale, diretto, casuale, associativo)
- Permanenza o volatilità dei dati
- Capacità (numero di locazioni disponibili), espressa in KB, MB, GB, etc.
- Tempo di accesso, necessario per accedere ad una locazione di memoria per unoperazione di lettura o scrittura, espresso in nanosec, millisec, sec
- In base agli ultimi due parametri, è possibile definire una gerarchia di memorie, che va da memorie più capaci ma più lente (memorie di massa) a memorie piccole e veloci (registri)

Gerarchia di Memorie


Dati e tipi di memoria

Classificazione delle memorie in base al tempo di utilizzo dei dati

- Registri: dati in utilizzo
- Cache e RAM: dati di utilizzo in un futuro immediato
- ROM: dati permanenti (programmi) utilizzati all'avvio del calcolatore
- Memoria Secondaria: dati di utilizzo non immediato

Architettura dell'Elaboratore

- Bus
- CPU
- Memoria
- Periferiche di input/output

Periferiche

Periferiche di Input/Output

Sono i dispositivi di comunicazione ed interazione tra utente e computer: consentono l'acquisizione di dati (input), la loro archiviazione (storage) e la loro presentazione verso il mondo esterno (output)

Si possono classificare in base a tre diverse caratteristiche

- Comportamento: Input (read once), output (write only), memoria (rilettura/riscrittura)
- Partner: uomo o macchina
- Velocità del flusso dei dati: quantità di dati trasferiti nell'unità di tempo da o verso la CPU o la memoria centrale

Periferiche di Input/Output

- Comportamento: Input (read once), output (write only), memoria (rilettura/riscrittura)
- Partner: uomo o macchina
- Velocità del flusso dei dati: quantità di dati trasferiti nell'unità di tempo da o verso la CPU o la memoria centrale

Esempi:

Periferica	Comportamento	Partner	Velocità
Tastiera	Input	Uomo	lenta
Mouse	Input	Uomo	lento
Video	Output	Macchina	veloce
Scheda di Rete	I/O	Macchina	veloce