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Abstract. The paper introduces a novel approach for de�ning e�cient
generative kernels for structured-data based on the concept of multisets
and Jaccard similarity. The multiset feature-space allows to enhance the
adaptive kernel with syntactic information on structure matching. The
proposed approach is validated using an input-driven hidden Markov
model for trees as generative model, but it is enough general to be
straightforwardly applicable to any probabilistic latent variable model.
The experimental evaluation shows that the proposed Jaccard kernel has
a superior classi�cation performance with respect to the Fisher Kernel,
while consistently reducing the computational requirements.

1 Introduction

Generative kernels exploit the knowledge captured by a probabilistic model to
de�ne a similarity metrics for complex data, including structured information
such as sequences, trees and graphs. The probabilistic model is, �rst, trained
to learn the generating (parametric) distribution of input data. Then, the ker-
nel determines the similarity of two samples by comparing how well they are
generated (explained) by the probabilistic model. In practice, these approaches
typically represent the input information in a feature space generated by the
parameters (or by the distribution) of the generative model. This makes the
generative kernel approach quite general, as it can be applied to any problem
for which a suitable probabilistic model can be devised and �tted. However, the
parameter space of a probabilistic model quickly grows with the complexity of
the problem, e.g. the number of vertices in a graph or the categories in a clas-
si�cation task, making kernel computation potentially cumbersome. This is the
case, for instance, of the Fisher kernel [1], whose representation founds on the
derivative of the likelihood of input data with respect to the model parameters.
Additionally, these approaches tend to rely only on the discriminative power of
the underlying generative model while, when dealing with structured-data, it
might be necessary to provide the kernel with some insight on how structures
should be compared, i.e. which structural agreements are more relevant. Syn-
tactical kernels [2] focus on this latter aspect, exploiting apriori knowledge to



determine how structure similarity should be measured. Generative kernels, on
the other hand, learn the similarity metric adaptively by observing the data.

In this paper, we propose a novel hybrid approach that adaptively learns
the kernel from an input-driven generative model for trees [3], while allowing
to inject syntactical information into the induced feature space. The approach
founds on a novel feature space representation where inputs are transformed into
multisets, i.e. vectors of counts, and are compared through Jaccard similarity [4].
The multiset provides information on the latent variables of the probabilistic
model that are responsible for generating the input data. For instance, given
an input sequence, the corresponding multiset would represent the counts of
hidden states activated in the generating Hidden Markov Model (HMM). The
proposed model is quite general, as it can be applied to any probabilistic model
based on categorical latent variables. Further, by virtue of the compact multiset
representation, it can consistently reduce the computational complexity of kernel
calculation with respect to the Fisher kernel.

2 Generative Kernels for Tree-Structured Data

In Section 2.1, we summarize the key aspects of the Fisher Kernal approach,
i.e. the reference generative kernel for tree-structured data. In Section 2.2 we
propose a novel class of e�cient generative kernels for categorical latent variable
model, that exploits the Jaccard multiset similarity.

2.1 The Fisher Kernel for Trees

The term Fisher kernel [1] denotes a general class of kernels that can be derived
out of any parametric generative model. The underlying idea of the approach is
to represent an input sample x in a feature space de�ned by the derivative of the
log-likelihood logP (x|θ) of the generative model, with respect to its parameters
θ. Such a derivative, known as the Fisher score vector Ux = ∇θ logP (x|θ), can
be used to de�ne the Fisher kernel k(x1, x2) = UTx1

I−1Ux2 , where I = Ex[UTx Ux]
is the Fisher Information matrix and Ex is the expectation over x. In prac-
tice, the Fisher kernel is often approximated by the practical kernel k(x1, x2) =
〈Ux1

, Ux2
〉, given the minor signi�cance of the information matrix contribution.

An element of the Fisher score vector represents the contribution of the cor-
responding model parameter to the generation of the input sample: hence, the
Fisher kernel measures the similarity of two input samples in terms of their
distance in the feature space generated by the model parameters.

The Fisher kernel has been introduced in [1] with application to sequential
data classi�cation, using the HMM as generative model for the sequences. This
has later been extended to deal with tree-structured data [5], in particular in
phylogenetic trees [6], using the Hidden Tree Markov Model (HTMM) [7] as a
generative model for the structured samples. The Fisher score of a (multinomial)
HTMM is computed by di�erentiating its log-likelihood with respect to the state
transition matrix Aij ∈ RC×C , the prior probability πi ∈ RC and the emission



matrix bi(o) ∈ RC×M , where C is the number of hidden Markov states and M
is the size of the �nite node labels o (results can be generalized to continuous
node labels with a Gaussian emission). This is calculated, in practice, using the
su�cient statistics obtained by the upwards-downwards algorithm [7], that is
a dynamic programming algorithm that e�ciently computes the E-step of the
HTMM learning algorithm, by exploiting message passing over the structure of
the observed tree.

The size of the Fisher feature space depends on the number of hidden Markov
states C, as well as on the stationarity assumption that are taken. A reasonable
assumption is to consider positional models, i.e. where the state transition matrix
Aij(l) is dependent on the position l of a node among its siblings. Given an input
tree xn with a variable number of nodes Nn, this is transformed to a Fisher score
vector Φ(yn) of �xed length C2 ·L+C+M ·C, where L is the maximum number
of non-empty children in the tree dataset. In a multi-class classi�cation task, it
is needed to train a separate HTMM for each of the V classes, resulting in a
total size of the Fisher feature space of (C2 · L + C +M · C) · V . In order to
compute the Fisher score representation Φ(xn) of the tree, we need to run the
upwards-downwards algorithm on yn for each of the V HTMMs, with a cost
that is O(2Un · C · L · V ), where Un is the number of nodes that varies from
tree to tree. The cost for computing the practical Fisher kernel k(x1,x2) from V
trained HTMMs is, then, O

(
(C2 · L+ C +M · C) · V

)
for each couple of trees.

The Fisher kernel for trees [5] is not the sole generative kernel for structured
data that exploits the HTMM parameter space to de�ne a suitable kernel em-
bedding: [6] discusses an alternative feature space obtained by concatenating the
su�cient upwards-downwards statistics of an HTMM, as well as a tree kernel
based on the probability product approach by Jebara et al [8]. A comparative
analysis [6] shows that the Fisher Kernel has the best performance among the
three in tree classi�cation tasks. Therefore, in the following, we use the Fisher
kernel as a reference model for assessing the experimental performance of the
newly-proposed Jaccard-based approach.

2.2 A General Jaccard Kernel for Hidden State Multisets

The Fisher approach yields to discriminative kernel matrices but requires a high-
dimensional embedding that can become computationally impractical for large
datasets and high-dimensional trees. In the following, we describe an e�cient
generative kernel for trees that de�nes a small, yet discriminative, feature space
founding on the concept of multiset similarity.

The building block of the kernel is again a generative hidden Markov model
for tree-structured data. In particular, we build on the Input-Output Bottom-up

Hidden Tree Markov Model (IO-BHTMM) [3], a recently proposed input-driven
generative model for tree-structured data. This choice is motivated by the need
of de�ning a truly adaptive kernel, whose metric, induced by the underlying
probabilistic model, explicitly takes into account the discriminative information
of the target classes. We expect that, by using a more sophisticated probabilistic



model, we can reduce the kernel complexity while maintaining, or even increasing
its discriminative performance.

The homogenous generative approach, used for instance by HTMM, requires
training a separate probabilistic model for each class and then categorizing a test
sample based on the model that has the highest likelihood. During training, each
probabilistic model sees only positive examples from its target class, hence it can-
not easily determine which piece of input information is truly discriminative, i.e.
it di�erentiates the samples in the target class from those in other categories. As
a result, they may be confused by non-discriminative substructures that recur
in di�erent classes. Conversely, the input-driven approach of IO-BHTMM allows
training a unique generative model that learns a transduction from the input
tree to a target structure which, in the simplest case, represents the sample tar-
get class. Homogenous approaches learn the unconditional model P (xn|θ), where
the input trees xn are the outcome of the generative process parameterized by θ.
The input-driven approach, on the other hand, learns the input-conditional dis-
tribution P (yn|xn, θ), where the input trees xn condition the generative process
of an output structure yn that, e.g., represents the target information. Hence,
in a classi�cation setting, the IO-BHTMM is capable of learning to correlate the
structural input information xn with the target classes, identifying discrimina-
tive portions of the input structures and providing the generative kernel with a
truly adaptive metric.

As in standard HMMs, IO-BHTMM learns the conditional generative model
P (yn|xn, θ) by exploiting multinomial hidden state variables Qu following the
same indexing as the observed nodes u, with values over the �nite set [1, . . . , C].
The introduction of the hidden state Qu allows to simplify the conditional prob-
abilistic model, but can also be exploited to de�ne a generative kernel for trees
based on the notion of multisets. Given a trained IO-BTHMM, we can trans-
form an input tree xn into a bag-of-states, that is a vector of hidden state counts,
similarly to how textual documents are represented as vectors of word counts.
By using the Viterbi Algorithm (see [3] for details), it is possible to determine
the most likely hidden state assignment Q∗n,u for each node u in an input tree
xn. Using the Viterbi states it is possible to de�ne several bag-of-states encod-
ings, depending on the amount of syntactical, i.e. structural, information that
we want to introduce in the kernel feature-space representation.

The simplest form of multiset is the unigram, where an input tree xn is trans-
formed to a C-dimensional feature-vector Φ(xn) such that its i-th component
is

Φi(xn) =
∑
u∈Un

δ(Q∗n,u, i) and i = 1, . . . , C

where Un is the set of nodes in the n-th tree and δ(·, ·) is the Kronecker function.
Such a feature-space representation captures information on the prevalent topics
in the tree, but does not convey any structural information, besides that cap-
tured by the generative model and conveyed by the hidden state assignment. To
introduce some form of syntactical knowledge, we de�ne a bigram representation,
such that an input tree xn is transformed to a (C2)-dimensional feature-vector



Φ(xn) such that its ij element is

Φij (xn) =
∑
u∈Un

∑
l∈ch(u)

δ(Q∗n,u, i)δ(Q
∗
n,l, j) and j = 1, . . . , C, ij = 1, . . . , C

where ch(u) is the set of children of node u. The bigram representation allows
to represent the co-occurrence of hidden states patterns between a parent node
and each of its children taken independently, thus providing the kernel with
some form of structural information. The proposed approach is general and can
be taken further by introducing increasing amounts of syntax in the feature space
(e.g. by considering the (L + 1)-gram of a node jointly with its L children), at
the cost of an increase in the feature space size. For the purpose of this paper,
we limit our analysis to the unigram and the bigram representation, and to a
combination of the two obtained by concatenating the unigram with the bigram
into a (C + C2)-dimensional feature space (unibigram in the following).

Once chosen a multiset representation for the trees, we need to de�ne an
appropriate kernel for such a feature space. We propose the Jaccard similarity

[4], that is a well known metric for comparing multisets and that, in its most
general form, writes as

J(Z1, Z2) =
f(Z1 ∩ Z2)

f(Z1 ∪ Z2)
(1)

where f is a suitable function (e.g. cardinality). For the purpose of this paper,
we de�ne the Jaccard kernel for trees as the multiset Jaccard similarity

k(x1,x2) =

∑D
i=1 min(Φi(x1), Φi(x2))∑D
i=1 max(Φi(x1), Φi(x2))

(2)

where Φ()̇ is one of the multiset encodings described above and D its the cor-
responding size of the feature space. For instance, the Jaccard kernel for IOB-
HTMM unibigram can be computed in O(D) = O(C2+C), that is computation-
ally more e�cient than the corresponding Fisher kernel, especially when dealing
with tasks with a non-trivial number of classes V and a large input vocabulary
M . In this paper, we focus on evaluating the e�cacy and e�ciency of a simple
Jaccard kernel exploiting the adaptive information of an input-conditional IO-
BHTMM. Nevertheless, the proposed Jaccard approach is general and can be
seamlessly applied to di�erent generative models and data-types.

3 Experimental Evaluation

Experiments on two data sets from the 2005 and 2006 INEX Competition [9]
have been performed to benchmark the proposed Jaccard kernel against the
Fisher kernel for trees on a classi�cation task. INEX 2005 comprises 9, 361 trees,
11 classes, with 366 possible node labels. INEX 2006 comprises 12, 107 trees,
18 classes, and 65 possible labels. Standard training and test sets are available
for both datasets [9], with a 50%-50% split. IO-BHTMM has been trained to



Table 1. Jaccard Kernel results on the INEX05 and INEX06 datasets: mean test set
error is shown (standard deviation is in brackets). For each kernel type, D is the size
of the feature space.

INEX 2005 INEX 2006
Unigram Bigram Unibigram Bigram Unibigram

D Error D Error D Error Error Error
C = 8 8 6.61 (0.48) 64 5.11 (0.47) 72 4.88 (0.17) 71.25 (0.78) 72.87 (1.5)
C = 10 10 6.26 (0.58) 100 4.97 (0.15) 110 4.75 (0.26) 72.09 (0.74) 72.25 (0.37)
C = 16 16 6.75 (0.55) 256 5.70 (0.49) 272 5.20 (0.17) 72.02 ( 0.71) 72.87 (1.13)

transform an input INEX tree into an isomorphic output tree having the cor-
responding class label on each of its nodes. The large number of classes in the
datasets makes them challenging benchmarks, such that the random classi�er
baseline for INEX 2005 and INEX 2006 is 9% and 5.5%, respectively. The com-
putation of both the Fisher and the Jaccard kernel requires, �rst, to train the
underlying generative models, that are HTMM and IO-BHTMM, respectively.
The emission distribution of the generative models has been set to a multinomial
for both datasets. Both generative models have been trained on the standard
training sets, with di�erent con�gurations (i.e. number of hidden states) and
varying initial conditions. A di�erent HTMM has been trained for each class,
while varying the number of hidden states in {6, 8, 10} for each trial. Conversely,
for each trial, a single IO-BHTMM has been trained to transform the input
INEX trees into isomorphic output trees having the corresponding class label on
each of the nodes. Again, several IO-BHTMM con�gurations have been tested
by varying the number of hidden states in {8, 10, 16}. To account for the �uc-
tuations in performance due to di�erent initial conditions, we have generated 5
model repetitions for each con�guration. In both approaches, the hidden state
assignment for the test trees has been obtained through Viterbi maximization
[7, 3]. The Gram matrices generated by the Fisher kernel could not be used
straightforwardly, since the small posterior probabilities in the denominator of
the kernel equations [1] tend to produce dense kernel matrices, whose elements
have arti�cially high values even for dissimilar samples. As noted by [1], a suit-
able solution (also adopted in this paper) is to normalize the Fisher kernel. This
requires an additional O(N2) computation, where N is the dataset size.

SVM-based multiclass classi�cation has been produced by LIBSVM [10] (C-
SVM classi�er), using the gram-matrices obtained from the Jaccard and Fisher
kernels. For each kernel matrix, the cost parameter of the C-SVM was selected
on the validation set, using a 3-fold cross validation scheme, from the following
values: 0.001, 0.01, 0.1, 1, 10, 100, 1000. The �nal SVM, with the cost value
selected on the validation set, was trained on the union of the training and val-
idation sets and evaluated on the test set. Table 1 and 2 show the classi�cation
error on the test set of the Jaccard and Fisher kernels, respectively, averaged
over the 5 repetitions, as a function of the feature space size D. The results on
the INEX 2005 dataset show that the Jaccard kernel yields to a better classi�-



Table 2. Fisher Kernel results on the INEX05 and INEX06 datasets: mean test set
error is shown (standard deviation is in brackets); D is the size of the feature space.

INEX 2005 INEX 2006

D Error D Error
C = 6 36894 6.25 (0.71) 49896 72.57 (2.86)
C = 8 54824 5.73 (0.76) 85536 73.57 (0.25)
C = 10 75570 5.23 (0.52) 130680 74.61 (0.43)

cation performance with respect to the Fisher kernel while consistently reducing
the feature space size and, consequently, the computational cost of computing
the kernel. While the simplest unigram representation does not seem capable of
capturing enough discriminant information, already the bigram feature vector
obtains results comparable to the Fisher kernel with as little as the 0.1% of
the Fisher features. By enhancing the bigram vector with the unigram features
(unibigram), Jaccard obtains a signi�cant improvement with respect to Fisher,
with a minor computational complexity. Such a behavior shows the high poten-
tial of introducing syntactical information in the adaptive kernel produced by
the generative model, by means of the proposed multiset approach. On the same
standard test set, the syntactic Subset Tree (SST) kernel [2] yields to an 11.21%
classi�cation error, which shows the e�cacy of both generative kernels on the
INEX 2005 dataset. On the INEX 2006 data, the proposed Jaccard kernel yields
to a consistent reduction in the classi�cation error with respect to Fisher, which
pairs with a considerable reduction of the feature space size. However, the clas-
si�cation error remains above 70% for both models, while SST achieves 59.31%.
This, seems due to a discrepancy between the cross-validation performance and
the test-set. In the former, both models reach a validation error close to the
54%, which is not con�rmed on the test samples. Notice that INEX 2006 seems
particularly troublesome for the Fisher kernel. This often generates extremely
dense undiscriminative Gram matrices, stretching the convergence time of SVM
training (e.g. over 4 days for a single cross-validation trial) even for very small
values of the cost parameter (due to the excessive number of support vectors
selected). This has prevented obtaining a complete set of trials for the Fisher
kernel, which motivates the large standard deviation for C = 6 on the INEX
2006 dataset, where only 2 trials out of 5 have lead to a successful completion
of training, validation and test phases.

4 Conclusion

We have introduced a generative Jaccard kernel for the input conditional IO-
BTHMM, with application to tree-structured data classi�cation. Experimental
results show that the proposed approach yields to a signi�cant reduction in the
classi�cation error with respect to the Fisher Kernel, that pairs with a consid-
erable contraction of the induced feature space. The proposed kernel de�nes a
truly adaptive metric by virtue of the discriminative training of the IO-BHTMM



model, which is used to learn probabilistic transductions of the input trees into
their class representation. Nevertheless, the proposed approach is general under
many aspects and can be applied to a large variety of problems and models. For
instance, the multiset representation can be seamlessly employed with any prob-
abilistic model using categorical latent variables, which easily extends the classes
of data processable with the kernel. Further, the multiset representation allows
to intuitively control the amount of syntactical information that is injected into
the kernel, while controlling the tradeo� with computational complexity. Finally,
by exploiting the general form of the Jaccard similarity in (1), it is possible to de-
�ne more re�ned forms of structural matching, providing di�erentiated weights
for hidden state agreements encountered in di�erent positions of the structures,
e.g. depending on the node level.
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