
Loss of Structural Info in Tree Kernels

Almost all tree kernels retain only structural properties of the
substructures

Two identical substructures match
independently of their location
in the tree.
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a

Routes ⇡ between pairs of nodes are considered. ⇡(v1, v2) is
defined by the labels and the sequence of positions (with
respect to the father) of the nodes comprising the path
between v1 and v2.
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Route Kernel [19]: Example of Features

klabel : keep the label of the last node in the path.
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Route Kernel [19]: Example of Features

kprod : keep the production associated with the last node in the
path.
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Route Kernel: Definition

For each node, the routes between itself and all its ancestors
up to the root are considered, thus a tree with m nodes is
represented, at most, by avgdepth(vi ) · m features.

An e�cient algorithm for computing the route kernel is given:
its computational complexity is O(avgdepth(vi ) ·m+m logm).

Let Kroute(T1,T2) be the standard Route Kernel, an extended
version matching also groups of routes can be easily defined as

Kext(T1,T2) = (Kroute(T1,T2))
d .

For example if d = 2 then also pairs of routes are considered
as features.
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Relationships Among Feature Spaces
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Tai Kernel [20]

Based on Tree Edit Distance
Associate a cost �() to �(v ! •) (delete vertex), �(v1 ! v2)
(substitute vertex) and �(•! v) (create vertex) operations
A script � is a sequence of edit operations
Tai distance between T1 and T2 is the minimum over the costs
of all scripts converting T1 into T2.
An example: convert the tree on the left to the one on the
right
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c

g
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Tai Kernel [20]

Based on Tree Edit Distance
Associate a cost �() to �(v ! •) (delete vertex), �(v1 ! v2)
(substitute vertex) and �(•! v) (create vertex) operations
A script � is a sequence of edit operations
Tai distance between T1 and T2 is the minimum over the costs
of all scripts converting T1 into T2.
An example: convert the tree on the left to the one on the
right
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(delete node e)

e ! •

(create node f)

•!
f

(subst. node b)
b

!
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Tai Kernel [20]

K (T1,T2) =
X

�:T1!T2

e���(�) =
Y

v12T1

e��(v1!•) Y

v22T2

e��(•!v2)·

·
X

(x̂1,x̂2)2MTai
T1,T2

|T1|Y

i=1

e��(v i
1!v i

2)

e��(v i
1!•)e��(•!v i

2)

The complexity of the kernel is O(|T |4).
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Mapping Kernel Framework

The Convolution Kernel Framework

K (x1, x2) =
X

x̂12�̂x1

X

x̂22�̂x2

k(x̂1, x̂2) =
X

(x̂1,x̂2)2�̂
T1

⇥�̂
T2

k(x̂1, x̂2)

has been generalized by the Mapping Kernel Framework [21] [22]

K (x1, x2) =
X

(x̂1,x̂2)2Mx1,x2

k(�x1(x̂1), �x2(x̂2))
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Mapping Kernel Framework

K (x1, x2) =
X

(x̂1,x̂2)2Mx1,x2

k(�x1(x̂1), �x2(x̂2))

The Mapping Kernel Framework extends the Convolution Kernel
Framework in two aspects:

1 the pairs of substructures on which the local kernel has to be
computed is restricted according to M ✓ �̂

T1
⇥ �̂

T2

2 the functions �x() allow �̂ and the input space of the local
kernel, k(), to not be identical.

Shin and Kuboyama [21] proved that, given a positive semidefinite
kernel k(), K () is positive semidefinite if and only if M is

symmetric: (x̂1, x̂2) 2Mx1,x2 , (x̂2, x̂1) 2Mx2,x1

transitive: (x̂1, x̂2) 2Mx1,x2 ^ ) (x̂1, x̂3) 2Mx1,x3

(x̂2, x̂3) 2Mx2,x3
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Mapping Kernels: an Example

Compute SST C () function for all the subtrees at the same
depth with respect to the root of the tree

�̂
T
is the set of proper subtrees of T

(x̂1, x̂2) 2Mx1,x2 , depth(x̂1) = depth(x̂2)
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x̂13
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(x̂11, x̂21) 2Mx1,x2(x̂11, x̂22) /2Mx1,x2(x̂11, x̂23) /2Mx1,x2(x̂12, x̂21) /2Mx1,x2(x̂12, x̂22) 2Mx1,x2(x̂12, x̂23) /2Mx1,x2(x̂13, x̂21) /2Mx1,x2(x̂13, x̂22) /2Mx1,x2(x̂13, x̂23) 2Mx1,x2(x̂14, x̂21) /2Mx1,x2(x̂14, x̂22) 2Mx1,x2(x̂14, x̂23) /2Mx1,x2
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Mapping Kernels: an Example

Compute SST C () function for all the subtrees at the same
depth with respect to the root of the tree
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Compute SST C () function for all the subtrees at the same
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Mapping Kernels: an Example

Compute SST C () function for all the subtrees at the same
depth with respect to the root of the tree
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is the set of proper subtrees of T

(x̂1, x̂2) 2Mx1,x2 , depth(x̂1) = depth(x̂2)

a

b

c c

c

T1

b

b

c c

T2

�!

 �
a

b

c c

c

b

c c

cc

c

�̂
T1

b

b

c c

b

c c

c c

�̂
T2

a

b

c c

c

b

c c

c c

c

x̂11

x̂12

x̂13

x̂14

b

b

c c

b

c c

c c

x̂21

x̂22

x̂23

(x̂11, x̂21) 2Mx1,x2(x̂11, x̂22) /2Mx1,x2(x̂11, x̂23) /2Mx1,x2(x̂12, x̂21) /2Mx1,x2(x̂12, x̂22) 2Mx1,x2(x̂12, x̂23) /2Mx1,x2(x̂13, x̂21) /2Mx1,x2(x̂13, x̂22) /2Mx1,x2(x̂13, x̂23) 2Mx1,x2(x̂14, x̂21) /2Mx1,x2

(x̂14, x̂22) 2Mx1,x2

(x̂14, x̂23) /2Mx1,x2
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Mapping Kernels: an Example

Compute SST C () function for all the subtrees at the same
depth with respect to the root of the tree

�̂
T
is the set of proper subtrees of T

(x̂1, x̂2) 2Mx1,x2 , depth(x̂1) = depth(x̂2)

a

b

c c

c

T1

b

b

c c

T2

�!

 �
a

b

c c

c

b

c c

cc
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�̂
T1

b

b

c c

b

c c

c c

�̂
T2

a

b

c c

c

b

c c

c c

c

x̂11

x̂12

x̂13

x̂14

b

b

c c

b

c c

c c

x̂21

x̂22

x̂23

(x̂11, x̂21) 2Mx1,x2(x̂11, x̂22) /2Mx1,x2(x̂11, x̂23) /2Mx1,x2(x̂12, x̂21) /2Mx1,x2(x̂12, x̂22) 2Mx1,x2(x̂12, x̂23) /2Mx1,x2(x̂13, x̂21) /2Mx1,x2(x̂13, x̂22) /2Mx1,x2(x̂13, x̂23) 2Mx1,x2(x̂14, x̂21) /2Mx1,x2(x̂14, x̂22) 2Mx1,x2

(x̂14, x̂23) /2Mx1,x2
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Mapping Kernels: an Example

Compute SST C () function for all the subtrees at the same
depth with respect to the root of the tree

�̂
T
is the set of proper subtrees of T

(x̂1, x̂2) 2Mx1,x2 , depth(x̂1) = depth(x̂2)
�T (x̂) = x̂ (identity functions)

K (T1,T2) =
X

x̂1 2 T1, x̂2 2 T2

depth(x̂1) = depth(x̂2)

C (x̂1, x̂2) =

= CSST (x̂11, x̂21) + CSST (x̂21, x̂22) + 2 ⇤ CSST (x̂13, x̂23)+

+ CSST (x̂14, x̂22)

M is transitive and thus K (T1,T2) is positive semidefinite
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Mapping Kernels: Discussion

It is possible to define a new kernel by adding constraints to
M such that symmetry and transitivity are preserved

The positive semidefinitess of a kernel can be proved easily if
it can be represented inside the Mapping Kernel Framework;
indeed it reduces to prove symmetry and transitivity of M.

The framework is fairly general: Shin and Kuboyama [21]
showed that 18 out of 19 kernels in literature can be
represented inside the framework
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Non Adaptive Feature Spaces: Discussion

For all kernels presented so far the type of features was fixed in
advance and then their frequency in the input structures is
measured

interpretability of the results (in terms of features)

if the type of features relevant for the problem at hand are not
known the kernel is ine↵ective.

Non adaptive kernels deal with this problem by defining very
large feature spaces or allowing some sort of soft matching.
In both cases, the resulting kernel may be sparse.
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Expressive and Non Sparse Kernels

Defining very large feature spaces may have the drawback
that the associated kernel may be sparse

For example SST is sparse when node labels are chosen from a
real valued domain.

Solution: map the data into a vectorial space and define a
kernel on it. If the mapping preserves all interesting properties
of the data, the kernel can be both e�cient and expressive.

Examples of mappings: PCA, SOM
The Tree Fisher Kernel [23]: it assumes that the data is
generated from a parametric probability distribution dependent
from a set of parameters of the model. The kernel captures
the di↵erences in the generative process of a pairs of objects.
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SOMSD

The SOMSD is composed by a, usually two dimensional,
lattice of points.

Each point has associated a prototype vector which represent
the enconding for a tree substructure.

During learning the prototypes change in order to represent
the distribution of the data.

After learning, a tree structure can be represented by the
coordinates of the most similar prototype.

SOMSD has the property that similar structures tend to be
represented nearby in the map.

Tree nodes that originally wouldn’t match may be represented
similarly by the SOMSD and thus match at some degree.
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Activation Mask Kernel [24]: an Example

0.236

0.87 0.12
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Activation Mask Kernel [24]: an Example
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Activation Mask Kernel (AM)

Given two matrices M1 and M2 with as many elements as the
SOMSD map, and for which M(i , j) has the same value as the
activation mask for a tree T at position (i , j), the AM kernel
is given by:

K✏(T1,T2) =
X

i ,j

M1(i , j) · M2(i , j)

K✏ is positive semidefinite.
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Compositional GTM for Trees (GTM-SD)

Bacciu et al. [25] introduced GTM-SD, a probabilistic version of
SOM-SD

A compositional approach based on BHTMM
A tree tn is not an atomic i.i.d entity
It is a collection of constrained observations

Constraints are
Determined by structural children-to-parent relationships
Modeled by L-order Markovian dependencies

Input tree

Latent space

Bottom−Up HTMM

Node emission space

S

�(x2)

�(x3)

y3

y2

y1

�(x1)

x3

x2

x1
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Compositional GTM for Trees (GTM-SD)

Bacciu et al. [25] introduced GTM-SD, a probabilistic version of
SOM-SD

A compositional approach based on BHTMM
A tree tn is not an atomic i.i.d entity
It is a collection of constrained observations

Constraints are
Determined by structural children-to-parent relationships
Modeled by L-order Markovian dependencies

Input tree

Latent space
Node emission space

Bottom−Up HTMM

x3

x2

�(x4)

�(x5)
y5

y4

x4

x5

S

x1
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Compositional GTM for Trees (GTM-SD)

Bacciu et al. [25] introduced GTM-SD, a probabilistic version of
SOM-SD

A compositional approach based on BHTMM
A tree tn is not an atomic i.i.d entity
It is a collection of constrained observations

Constraints are
Determined by structural children-to-parent relationships
Modeled by L-order Markovian dependencies

Bottom−Up HTMM

Node emission space
Latent space

Input tree

x4

y6

�(x6)

x6

S

x5
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Bottom-up Hidden Tree Markov Model

Q3 y3

y4

Q1

Q2

Q4 Q5

Q6

y1

y6

y5

y2

u ! node index
Qu ! hidden state R.V.
yu ! observation (label)
chl(u)! l-th child of u

Label emission governed by P(yu|Qu)
Parent-children relationships are
modeled by children-to-parent state
transitions

P(Qu|Qch1(u), . . . ,QchL(u))

Compositional ! simpler structures
are processed first

Combinatorial Problem

State transition distribution is O(CL+1) for
a C -dimensional hidden state space
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Switching Parents BHTMM

Key Idea

Approximate the joint state transition distribution as a mixture of
pairwise transition matrices

Introduce a child selector variable for
each parent u

Switching Parent Su 2 {1, . . . , L}
P(Su = l) measures the influence of the
l-th child on the state transition to Qu

... ...

Qu

Qchl�1 Qchl+1

Su

ych1 ychl�1 ychl
ychl+1 ychL

Qch1 Qchl QchL

yu

P(Qu|Qch1(u), . . . ,QchL(u)) =
LX

l=1

P(Su = l)P(Qu|Qchl (u))
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Switching Parents BHTMM

Key Idea

Approximate the joint state transition distribution as a mixture of
pairwise transition matrices

Introduce a child selector variable for
each parent u

Switching Parent Su 2 {1, . . . , L}
P(Su = l) measures the influence of the
l-th child on the state transition to Qu

... ...

Qu

Qchl�1 Qchl+1

Su

ych1 ychl�1 ychl
ychl+1 ychL

Qch1 Qchl QchL

yu

Parameters space reduces to O(LC 2 + L)
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Tree Projection in GTM-SD

Visualization of a tree t is based on projecting its root onto
the lattice by using its hidden state assignment Q1

Mean projection �! Xmean(t) =
PC

i=1 P(Q1 = xi |t)xi
Mode projection �! Xmode(t) = argmaxxi P(Q1 = xi |t)

Distribution P(Q1 = xi |t) is obtained as a by-product of EM
Alternatively, reversed Viterbi inference can be used

Examples of tree projections
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AM Kernel based on GTM-SD

Given

T✏(xu, xu0) =

(
✏� d(xu, xu0), if d(xu, xu0)  ✏

0, otherwise

where

xu and xu0 are the posterior mode projections of subtrees t1u
and t

2
u0 from trees t1 and t

2, respectively

d(xu, xu0) is the Euclidean distance

✏ determines a neighborhood for the points on the map

The µGTM-SD Activation Mask kernel is defined as

K (t1, t2) =
X

u2U1

X

u02U2

T✏(xu, xu0)
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Experiments on INEX 2005

INEX 2005: XML data, 11-class problem, training set 4824
documents, test set 4811 documents.

Kernel Type Valid Error % Test Error %

ST 13.15 11.27
SST 12.79 11.21

Polynomial SST 12.09 10.67
Partial Tree 2.96 2.96

Route, klabel 3.10 3.06
Route, kprod 3.31 3.52
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Experiments on INEX 2006

INEX 2006: XML data, 18-class problem, training set 6053
documents, test set 6054 documents.

Kernel Type Valid Error % Test Error %

ST 68.32 67.98
SST 56.55 59.56

Polynomial SST 55.55 59.88
Partial Tree 57.83 58.87
Route, klabel 58.72 59.94
Route, kprod 55.55 58.09
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Experiments on PROPBANK

PROPBANK: annotated texts from Penn Tree Bank corpus, 2-class
problem, training set 75314 examples, test set 40495 examples.

Kernel Type Valid Error % Test Error %

ST 5.43 5.71
SST 4.65 4.62

Polynomial SST 4.65 4.62
Partial Tree 4.71 4.55

Route, klabel 5.07 4.90
Route, kprod 4.92 4.76
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Experiments on LOGML

LOGML: logs of web user sessions, 2-class problem, 3 sets of data
of 8074, 7409 and 7628 examples.

Kernel Type Cross Validation Error %

ST 16.72
SST 16.84

Polynomial SST 16.82
Partial Tree 16.40
Route, klabel 16.20

Route, kprod 16.79
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Kernels for Trees: Discussion

Non adaptive feature spaces
interpretability of the results,
if the features are not appropriate for the task, a novel kernel
has to be defined

Adaptive feature spaces
kernels tend to be more expressive since features are built
adaptively for the given dataset
may not be easy to analyse the results in terms of the most
relevant features.
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KERNEL FUNCTIONS FOR
GRAPHS
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Kernels for Graphs

WARNING!

The term graph kernel is used with multiple meanings:

Kernel between nodes of a graph: e.g. Di↵usion Kernel [27]

Kernels between pairs of graphs (we focus on this case)
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Graphs

undirected graph directed graph undirected labeled graph

graph with multiple edges graph with self-loop
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Comparison between Graphs

The basic idea underpinning graph kernels is to quantify graph
similarity

How much similar (or dissimilar) are these two graphs ?

How to measure similarity between graphs ?
For example, by counting how many subgraphs they share . . .
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Basic Definitions on Graphs

Definition: Subgraph

A subgraph G2 = (V2,E2) of G1 = (V1,E1) is a graph for which
V2 ✓ V1, E2 = E1 \ (V2 ⇥ V2).
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Basic Definitions on Graphs

Definition: Isomorphism

A graph G1 = (V1,E1) is isomorphic to G2 = (V2,E2) if there
exists a mapping f : V1 ⇥ V2 such that
8(v1, v 0

1) 2 E1 , (f (v1), f (v 0
1)) 2 E2

G1 and G3 are isomorphic: f (i) = a, f (u) = b, f (v) = c, f (w) = d
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Graph Comparison and Isomorphism

Two problems

Same graph can be represented in di↵erent ways . . .
(any graph comparison algorithm has to consider that!)

How to recognize that a given graph G2 is a subgraph of G1 ?

It is not known whether Graph Isomorphism is NP-Complete
(no polynomial-time algorithm is known, neither is it known
to be NP-Complete)

Subgraph Isomorphism is NP-Complete !!
. . . runtime may grow exponentially with the number of nodes
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Kernels for Graphs

Definition

A graph kernel between two graphs G1 and G2 is defined as

K (G1,G2) = �(G1)
>�(G2),

where � : X 7! H, X is the graph domain, and H is a Hilbert
space
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Kernels for Graphs: A Theoretical Result

Definition: Complete Kernel

A kernel is complete if it separates non-isomorphic graphs, i.e.
�(G1) 6= �(G2) if G1 and G2 are not isomorphic

Theorem

Computing any complete graph kernel is at least as hard as
deciding whether two graphs are isomorphic [26]

Defining kernels for graphs is a more challenging task than for
trees: application of the convolution framework may be
infeasible given the fact that graph isomorphism has to be
checked for every substructure
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Some negative results

Graph enumeration

Let enum(G ) 7! N be a function that enumerates all G 2 X , such
that enum(G ) = enum(G 0) i↵ G is isomorphic to G 0

Subgraph Kernel

Given G̃ 2 X , let consider a � such that

�i (G̃ ) = |{G̃sg is a subgraph of G̃ s.t. enum(G̃sg ) = i}|.

Given �i � 0, the subgraph kernel is defined as

Ksubgraph(G1,G2) =
X

i

�i�i (G1)�i (G2)
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Some negative results

Theorem

Computing the subgraph kernel is NP-Hard [27]

Hummm. . . this is not good!
Let’s try to consider only linear subgraphs (i.e. paths)
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Some negative results

Path Kernel

Given G̃ 2 X , let consider a �path such that

�path
i (G̃ ) = |{G̃sg is a linear subgraph of G̃ s.t. enum(G̃sg ) = i}|.

Given �i � 0, the path kernel is defined as

Kpath(G1,G2) =
X

i

�i�
path
i (G1)�

path
i (G2)

Theorem

Computing the path kernel is NP-Hard [27]

Still not good! Let’s try with something di↵erent. . . random walks!
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Random walk kernels

What is a random walk?

from a vertex i randomly
jump to a vertex in the
neighborhood with a
certain probability

or stop the walk with a
fixed probabilityRandom walk kernel:

feature space: all possible walks

active features: all walks that can be generated from the
graph
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Random walk kernels

Walks can be computed as exponentiation of adjacency matrix:
entries of A2 are all the walks of length 2.
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Random walk kernels

Direct product graph:

Computing random walks
on this graph, corresponds
to calculate the number of
common walks

decaying factor for
practical computability

V⇥ = {(x , y) : x 2 V (G1) ^ y 2 V (G2) ^ LG1(x) = LG2(y)}
E⇥ = {((x , y), (x 0, y 0)) 2 V⇥ ⇥ V⇥ :

(x , y) 2 E (G1) ^ (y , y 0) 2 E (G2) ^ {LG1(x , y) = LG2(y , y 0)}
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Random walk kernels - Drawbacks

K⇥(G1,G2) =

|V⇥|X

x ,y=0

" 1X

k=0

�kA
k
⇥

#

x ,y

The computational complexity of K⇥ is O(|G |6),
very high, in [28] it is reduced to O(|G |3) via Sylvester
equations
Mahe et al. [29] proposed to reduce the size of the product
graph by adding local information to vertex labels

Halting problem: the series in the formula above may require
a very small value of � to converge, i.e only nodes or, at least
single edges, are considered, graph structure is discarded
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Marginalized Random Walk Kernel

Kashima et al. [30] introduced a probabilistic version for random
walk kernels for graphs with labels on vertices and edges

Based on counting labeled paths (random variables) obtained
by random walks

Example: (A, e,A, d ,D, a,B, c,D)

The kernel is defined as the inner product of the count vectors
averaged over all possible label paths, which is regarded as a
special case of marginalized kernels [31]
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Marginalized Random Walk Kernel

Generation of a random walk

1 select the starting vertex v1 2 G according to ps(v1) defined
over all vertices

2 at the i-th step, the vertex vi is extracted according to the
transition probability pt(vi |vi�1) to go in the vertex vi starting
from vi�1, or the random walk stops with a probability
pq(vi�1)

The probability of a walk w to be generated (leading to labeled
path hw ) is:

p(w |G ) = ps(v1)

 
lY

i=2

pt(vi |vi�1)

!
pq(vl)
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Marginalized Random Walk Kernel

The probability for the labeled path h to be generated is the sum
over all the probabilities of the walks w that generates the same
labeled path hw = h:

p(h|G ) =
X

w

�(h, hw )

(
ps(v1)

lY

i=2

pt(vi |vi�1)pq(vl)

)

where � is Kronecker’s delta.
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Marginalized Random Walk Kernel

It’s now possible to define a kernel kz for labeled paths, using a
positive definite kernel for vertices kv and one for edges ke :

kz(h, h
0) = kv (h1, h

0
1)

lY

i=2

ke(h2i�2, h
0
2i�2)kv (h2i�1, h

0
2i�1)

Finally, the graph kernel is defined as the expected value of kz over
every possible labeled path pair h and h0 from two graphs G1 and
G2:

K (G1,G2) =
X

h

X

h0

kz(h, h
0)p(h|G1)p(h

0|G2)
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Marginalized Random Walk Kernel

Computational issues

Direct computation of the kernel is infeasible because labeled
paths may be infinite

It is possible to rearrange equations so to obtain a recursive
formulation

Final result of the kernel obtained by solving a linear equation
with a |G1||G2|⇥ |G1||G2| coe�cient matrix

Conditions for convergence (i.e., linear equations have a
solution) are given

164 of 208



Random walks - Drawbacks

not so expressive: easy to find identically mapped graphs

Tottering problem: Since, in a walk, a vertex can be visited
multiple times, small sets of connected vertices repeatedly
visited may have a too high influence on the final value of the
kernel.
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Tottering

Tottering can be partly avoided by modifying the graphs in
order to avoid visiting the same edge twice consecutively [29]

Borgwardt et al. [32] proposed graph kernels based on
shortest path between pairs of vertices
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Shortest-Path Kernel

Shortest-paths for pairs of nodes in G1 and G2:

Since the shortest path may not be unique, kernel focuses on
the length of the shortest paths, i.e. given d(vi , vj) the length
of the shortest path between vi and vj :

K (G1,G2) =
X

vi ,vj2G1

X

ui ,uj2G2

klength(d(vi , vj), d(ui , uj))

Compute all-pairs-shortest-paths for G1 and G2 via
Floyd-Warshall
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Kernels Comparing Complex Substructures

Menchetti et al. [33] proposed the Weighted Decomposition Kernel,
which extracts and compares all set of structures s (the selector) and
their context z from the graph:

K (G1,G2) =
X

(s,z)2R�1(G1)

X

(s0,z0)2R�1(G2)

�(s, s 0)(z , z 0)

For example a structure can be a vertex and the context its set of
neighbours:

G1 G2
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Kernels Comparing Complex Substructures

Mahe and Vert [34] proposed the Tree-pattern Graph Kernel
(revisitation of a proposal by Ramon and Gärtner), which compares
subtree-like substructures in two graphs

Subtrees are formed by selecting a subset of connected
vertices from a graph (the same vertex may be selected more
than once)
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Kernels Comparing Complex Substructures

Tree-pattern Graph Kernel

Like the walk kernel, amounts to compute the (weighted)
number of subtrees in the product graph

Recursion: if T (v , n) denotes the weighted number of
subtrees of depth n rooted at the vertex v , then:

T (v , n + 1) =
X

R⇢N (v)

Y

v 02R

�t(v , v 0)T (v 0, n)

where N (v) is the set of neighbors of v

The complexity of the kernel is O(|G1||G2|h⇢2⇢), where h is
the depth of the tree patterns
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Kernels Comparing Complex Substructures

Problem: Tree-pattern Tottering

under extension could return to a visited vertex just after leaving it. This behavior was called tottering in
Mahé et al. (2005), and following this terminology, we refer to a tree-pattern in which a vertex appears
simultaneously as the parent and a child of a second vertex as a tottering tree-pattern. Figure 7 illustrates
the tottering phenomenon.

C

C C
C

C C

C C

C

C

C C

C C

C

C C

C C

C C CC C C

Figure 7: Left: tottering (red) and no-tottering (blue) walks. Right: tottering (red) and no-tottering(blue)
tree-patterns.

In many cases these tree-patterns are likely to be uninformative features. In particular they are not
proper subgraphs of the initial graphs. Even worse, the ratio of the number of tottering tree-patterns
over the number of non-tottering tree-patterns quickly increases with the depth h of the trees, suggesting
that informative patterns corresponding to deep trees might be hidden by the profusion of tottering tree-
patterns. In order to tackle this issue we now adapt an idea of Mahé et al. (2005) to filter out these
spurious tottering tree-patterns in the kernels presented in Sections 3 and 4. Tottering can be prevented
by adding constraints in the tree-pattern counting function, according to the following definition.

Definition 9 (No-tottering tree-pattern counting function). From the tree-pattern counting function
of Definition 4, a no-tottering tree-pattern counting function can be defined for the tree t = (Vt, Et), with
Vt = (n1, . . . , n|t|), and the graph G = (VG, EG), with VG = (v1, . . . , v|VG|), as

 NT
t (G) =

���(↵1, . . . ,↵|t|) 2 [1, |VG|]|t| : (v�1 , . . . , v�|t|) = pattern(t)

^ (ni, nj), (nj , nk) 2 Et �) ↵i 6= ↵k

���.

Following Definition 5, a graph kernel based on no-tottering tree-patterns can be defined from this
no-tottering tree-pattern counting function.

Definition 10 (No-tottering tree-pattern kernel). A graph kernel KNT based on no-tottering tree-
patterns is given for the graphs G1 and G2 by

KNT (G1, G2) =
X

t2T
w(t) NT

t (G1) 
NT
t (G2), (7)

where T is a set of trees, w : T ! R is a tree weighting functional and  NT
t is the no-tottering

tree-pattern counting function of Definition 9.

This latter definition therefore extends the tree-pattern kernel of Definition 5 to the no-tottering case.
However, due to the additional constraints on the set of acceptable patterns, the DP framework based on
neighborhood matching set described in Sections 4.2 and 5.1 does not hold any longer. In Mahé et al.
(2005), the following graph transformation was introduced in order to filter tottering walks.

12

The ratio of the number of tottering tree-patterns over the number
of non-tottering tree-patterns quickly increases with the depth h of
the trees
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Kernels Comparing Complex Substructures

Tree-pattern Graph Kernel

The non-tottering subtree kernel can be obtained by applying
a non-tottering graph transformation preprocessing:

(I) The original molecule
(II) The corresponding graph G
(III) The transformed graph
(IV) The labels on the trans-
formed graph

Di↵erent widths stand for
di↵erent edges labels, and gray
nodes are the nodes belonging to
G
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Kernels Comparing Complex Substructures

Horvath et al. [35] introduced the Cyclic Pattern Kernel

It compares simple cycles in two graphs

Needs to define a canonical string representation of each
simple cycle, referred to as a cyclic pattern

Problem: in the worst case the number of simple cycles is
exponential in the number n of vertices

so, the kernel is NP-Hard to compute on general graphs !

useful in scenarios where the number of simple cycles in a
graph dataset is bounded by a constant
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Kernels Comparing Complex Substructures

Borgwardt et al. [36] proposed the Graphlet Kernel, which counts
the number of isomorphic common graphlets, i.e. subgraphs of
limited size less or equal to k , in G1 and G2, e.g. graphlets with
k = 4:
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Kernels Comparing Complex Substructures

Graphlet Kernel

Problems: Pairwise test of isomorphism is expensive and the
number of graphlets scales as O(nk)

Possible solutions on unlabeled graphs: precompute
isomorphism, employ sampling schemes on graphlets or restrict
to graphlets with bounded out-degree to reduce the runtime

The algorithm proposed for bounded out-degree graphlets has
a complexity of O(|G |⇢k � 1).
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Kernels Comparing Complex Substructures

Shervashidze and Borgwardt [37] introduced the Weisfeiler-Lehman
subtree kernel, subsequently generalized in [38]

based on the Weisfeiler-Lehman test of isomorphism on graphs

exploits subtree patterns (tree walk visits)

A subtree pattern of height 2 rooted at node 1. Note the repetitions of nodes in the

unfolded subtree pattern on the right.
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Kernels Comparing Complex Substructures

Weisfeiler-Lehman subtree kernel performs the following three
steps h times for G1 and G2:

1 Sorting: represent each node v as a sorted label list Lv of its
neighbours

2 Compression: compress each list into a hash value hash(Lv )

3 Relabeling: relabel v with hash(Lv ) as its new node label

Subsequently, the kernel is computed by counting the number of
hard matching between the labels contained in the lists generated
for G1 and G2
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Weisfeiler-Lehman ST kernel - example
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Weisfeiler-Lehman ST kernel - example

Quite e�cient: O(hm) on 2 graphs, O(Nhm + N2hn) on N
graphs

Expressivity: better than walk kernels, but at most hn active
features for each graph
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Weisfeiler-Lehman ST kernel

Features

feature space: all subtree-patterns

active features: all subtree-patterns up to heigth h that
appear in a graph

Considerations:

only hard match between subtree-patterns

good performance on some chemical datasets

some more expressive extensions proposed, but with an higher
computational complexity
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A Weisfeiler-Lehman Kernel Extension

Costa and De Grave [39] proposed the Neighborhood Subgraph
Pairwise Distance Kernel

Key idea
The kernel counts the number of
identical pairs of neighboring
graphs of radius r at distance d
between two graphs

Each vertex is relabeled with a
string that encodes the vertex
distance from all other labeled
vertices (plus the distance from
the root vertex).
The graph encoding is obtained as
the sorted edge list, where each
edge is annotated with the
endpoints new labels.
Resorts to hashing function to
map the graph encoding string to
a 32-bit integer.
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Ordered Decompositional DAG Kernels

Da San Martino et al. [40] introduced a framework for graph
kernels based on Directed Acyclic Graphs (DAGs):

Decompose the graph in a multi set of DAGs: one tree-visit
for each vertex ) same representation for isomorphic graphs

s

b

e

d

s

e

d
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s b d

b

s e d

d
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s

e

Graph

DAGs

Edges between vertices at the same level of visit are removed
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ODD Kernels

The kernels for graphs are defined summing up the
contribution of a local kernel for DAGs, over all pairs of DAGs
in the multisets

Kernel for DAGs obtained extending tree kernels to ordered
DAGs

KKT
(G1,G2) =

X

D12ODD(G1)
D22ODD(G2)

KDAG (D1,D2)

Ordered DAGs (ODD) obtained through the recursive
definition of the following alphanumeric string S(v) for each
vertex v :

S(v) = L(v) · outdeg(v) ·
0

@
outdeg(v)Y

i=1

S(chi [v ])

1

A
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ODD Kernels

Kernels for DAGs

The basic idea is to use tree-visits to project subdags to a tree
space and then apply tree kernels on the visits

If we consider tree kernels such as ST, SST, and PT, we have

KDAG (D1,D2) =
X

v12VD1
v22VD2

C (root(T (v1)), root(T (v2))),

where C (·, ·) is any of the local kernels defined for ST, SST,
PT, and T (v) is the tree-visit starting from v
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ODD Kernels

The feature space of KDAG is equivalent to the feature space of
the used tree kernel, however the mapping (i.e., �) is not the
same, e.g. for the ST kernel:
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ODD Kernels

E�ciency improved by defining a compact lossless
representation for the multiset of DAGs (BigDAG) ) kernel
between BigDAGs
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1  frequency

BigDAGDAGs

KBigDAG (G1,G2) =
X

u12V (BigDAG(G1))
u22V (BigDAG(G2))

fu1fu2C (u1, u2),

where fu is the frequency of the ordered DAG rooted at u
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ODD Kernels

How many nodes for the BigDAG ?

Embed the graph G in a Polytree where
each node is a strongly connected
component of G

Bound on number of nodes:

|BigDAG(G)| 
qX

i=1

(p�i + n2�i
)

where vi 2 Polytree with degree pvi ,
containing n�i nodes of G
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ODD Kernels

Complexity:

O(|ODD(G1)||ODD(G2)| · Q(n)), where Q(n) is KT

complexity

if KT ⌘ KST ! O(n3 log n)

but limiting the depth of the DAGs:
KSTlimited

! O(n log n) (using hash tables to store BigDAGs)

Expressivity (ODD kernels can deal with self-loops by modifying node labels)

Graphs that cannot be discriminated
by Fast Subtree kernel

ODD kernel can!

Neither Fast Subtree kernel, nor
ODD kernel can discriminate

these two graphs!
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ODD Kernels

E�cient kernel matrix computation by using the BigDAG of the BigDAGs:

Actual time to compute the ODD-ST kernel matrix for dataset CAS (h = DAG depth)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  1  2  3  4  5  6  7  8

K
e
rn

e
l M

a
tr

ix
 C

o
m

p
u
ta

tio
n
 (

se
c)

h

ODD-ST kernel vs Fast Subtree kernel on CAS dataset

ODD-ST
FS

189 of 208



Some other Graph Kernels

Kernels for Chemoinformatics [41]
Three new kernels (Tanimoto, MinMax, Hybrid) based on the
idea of molecular fingerprints and counting labeled paths of
depth up to d using depth-first search from each possible
vertex

Graph Kernels between Point Clouds [42]
Extensions of graph kernels for point clouds, which allow one
to use kernel methods for such objects as shapes, line
drawings, or any three-dimensional point clouds
Kernels between covariance matrices and their factorizations
on probabilistic graphical models

The skew spectrum of graphs [43]
Based on mapping the adjacency matrix of any (weighted,
directed, unlabeled) graph to a function on the symmetric
group and computing bispectral invariants
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Graph Kernels Applied to Computer Vision

Image Classification with Segmentation
Graph Kernels [44]

Inexact graph matching based on kernels for object retrieval in
image databases [45]

Characterizing Structural Relationships in
Scenes Using Graph Kernels [46]
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Graph Kernels which are not
Definite Positive in General

Optimal Assignment Kernel [47]
based on the idea of computing an optimal assignment from
the atoms of one molecule to those of another one
includes information on neighborhood, membership to a certain
structural element and other characteristics for each atom

Edit-Distance Kernel [48]
Tries to combine the power of graph kernels and edit distances
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Some experimental results from [38]

Example of computation times for some chemical datasets
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Some experimental results from [38]

10-fold cross-validation accuracy (binary classification)

WL = Weisfeiler-Lehman kernels
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Other experimental results from [40]

Average accuracy results (when available) for Gaston, MOLFEA, Correlated Pattern
Mining,
Marginalized Graph Kernel, SVM with Frequent Mining, gBoost, the Fast Subtree and
the
ODD-ST kernels
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Data and Software Resources

Kernel for Trees

Datasets
the INEX 2005 and INEX 2006 datasets can be found here:
http://www.math.unipd.it/⇠dasan/tutorialwcci12.htm
LOGML: http://www.cs.rpi.edu/⇠zaki/software/logml

Software
Tree Kernels in SVMLight, the ST, SST, PT (and others):
http://disi.unitn.it/moschitti/Tree-Kernel.htm
Route Kernel:
http://www.math.unipd.it/⇠dasan/routekernel.htm
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Data and Software Resources

Kernel for Graphs

Datasets
NCI datasets (and more): http://pubchem.ncbi.nlm.nih.gov/
CAS: http://cheminformatics.org/datasets/bursi
MUTAG:
http://cdb.ics.uci.edu/cgibin/LearningDatasetsWeb.psp
AIDS: [49]

Software
Fast neighborhood subgraph pairwise distance kernel:
http://dtai.cs.kuleuven.be/ml/systems
Fast Subtree Kernel, Shortest Path Kernel (as well as some
datasets):
http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/WL
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Conclusions

Kernel Methods are a viable solution to the design of learning
algorithms for structured data

The design of kernel functions for structured data poses
specific challenges due to the high dimensionality of the data

Expressivity (sparsity) and computational complexity are the
critical factors that should be taken into account
The Mapping Kernel provide an easy way to demonstrate
positive semidefiniteness. Available kernels can be easily
extended to suit a current task
Most of the available kernels are not able to deal with sparse
domains.
The complexity is an issue not only during in learning phase
but also during classification of novel examples
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Future Directions: Tree kernels

Expressivity
The Mapping Kernel is able to express a great number of
kernels and allows to prove results valid for all its instances
Typically features are based on subtree like structures; Route
kernels showed that other types of information can be e↵ective!
Adaptive kernels may not be competitive on non-sparse
domains (both from accuracy and complexity point of view).
Approaches able to control how the data is represented would
be interesting

Complexity
More and more data is available in structured form; having to
deal with huge datasets means that even constant factors in
the complexity may be significant
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Future Directions: Graph kernels

More and more data is available in structured form; even
single graphs can be of high dimensionality

Thus graph kernels are moving towards the development of
fast algorithms for computing the kernel functions

Among these, many kernels are computed through the use of
hash functions (using an explicit feature space)
The use of explicit features spaces allow to apply existing
techniques and develop novel ones for feature selection

200 of 208



Bibliography

[1] A. Moschitti, J. Chu-carroll, S. Patwardhan, J. Fan, and G. Riccardi. “Using
syntactic and semantic structural kernels for classifying definition questions in
jeopardy!”. In Proceedings of the 2011 Conference on Empirical Methods in Natural
Language Processing, pages 712724, Edinburgh, Scotland, UK., July 2011.

[2] D.E. Goldberg. “Genetic Algorithms in Search, Optimization and Machine
Learning”. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1989.

[3] J. Kennedy, R. Eberhart. “Particle Swarm Optimization”. Proceedings of IEEE
International Conference on Neural Networks. IV. pp. 19421948, 1995.

[4] P. Frasconi, M. Gori, A. Sperduti. “A general framework for adaptive processing of
data structures”. IEEE Transactions on Neural Networks 9(5): 768-786, 1998

[5] B. Hammer, A. Micheli, M. Strickert, and A. Sperduti. “A general framework for
unsupervised processing of structured data”. Neurocomputing, 57(5):3335, 2004.

[6] D. Kimura, T. Kuboyama, T. Shibuya, H. Kashima. “A Subpath Kernel for Rooted
Unordered Trees”. Proceedings of the 15th Pacific-Asia conference on Advances in
knowledge discovery and data mining, pagg. 62-74, 2011.

[7] T. Kuboyama, K. Hirata, H. Kashima, e K.F. Aoki-Kinoshita, “A Spectrum Tree
Kernel,” Information and Media Technologies, vol. 2, 2007, pagg. 292-299.

[8] D. Haussler, “Convolution Kernels on Discrete
Structures”, 1999.

201 of 208



Bibliography

[9] S.V.N. Vishwanathan e A.J. Smola, “Fast kernels for string and tree matching”,
2003.

[10] M. Collins e N. Du↵y. “A New ranking algorithms for parsing and tagging:
kernels over discrete structures, and the voted perceptron”. Proceedings of the 40th
Annual Meeting on Association for Computational Linguistics, Philadelphia,
Pennsylvania: Association for Computational Linguistics, 2002, pagg. 263-270.

[11] A. Moschitti. “Making tree kernels practical for natural language learning”.
Proceedings of the Eleventh International Conference on European Association for
Computational Linguistics, Trento, 2006.

[12] J. Suzuki, H. Isozaki. “Sequence and tree kernels with statistical feature mining”.
Advances in Neural Information Processing Systems, Vancouver: MIT Press, 2006.

[13] K. Rieck, T. Krueger, U. Brefeld, K. Müller. “Approximate kernels for trees”.
Journal of Machine Learning Research, 11(Feb):555580, 2010.

[14] N. Cristianini, J. Kandola, A. Elissee↵, J. Shawe-Taylor. “On kernel-target
alignment”. In Advances in Neural Information Processing Systems 14, volume 14,
pages 367373, 2002.

[15] A. Moschitti. “E�cient Convolution Kernels for Dependency and Constituent
Syntactic Trees’.’ Machine Learning: ECML 2006, 2006, pagg. 318-329.

202 of 208



Bibliography

[16] H. Kashima e T. Koyanagi. ”Kernels for Semi-Structured Data“. Proceedings of
the Nineteenth International Conference on Machine Learning, Morgan Kaufmann
Publishers Inc., 2002, pagg. 291-298.

[17] M. Zhang, W. Che, A. Aw, C.L. Tan, G. Zhou, T. Liu, e S. Li. ”A
Grammar-driven Convolution Tree Kernel for Semantic Role Classification“.
Proceedings of the 45th Annual Meeting of the Association of Computational
Linguistics, Prague, Czech Republic: Association for Computational Linguistics, 2007,
pagg. 200-207.

[18] S. Bloehdorn e A. Moschitti. ”Structure and semantics for expressive text
kernels“. Proceedings of the sixteenth ACM conference on Conference on information
and knowledge management, Lisbon, Portugal: ACM, 2007, pagg. 861-864.

[19] F. Aiolli, G. Da San Martino, A. Sperduti. “Route kernels for trees”. Proceedings
of International Conference on Machine Learning, June, 14 - 18, 2009, Montreal,
Canada.

[20] T. Kuboyama, K. Shin, H. Kashima. “Flexible tree kernels based on counting the
number of tree mappings”. Proceedings of Machine Learning with Graphs, 2006

[21] K. Shin, T. Kuboyama. “A generalization of Hausslers convolution kernel -
Mapping kernel and its application to tree kernels”. Journal of Computer Science and
Technology 25(5): 10401054 Sept. 2010

203 of 208



Bibliography

[22] K. Shin. “Mapping kernels defined over countably infinite mapping systems and
their application”. Journal of Machine Learning Research 20, pagg. 367-382, 2011.

[23] L. Nicotra, A. Micheli, A. Starita, “Fisher kernel for tree structured data”. Neural
Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on, 2004,
pagg. 1917-1922 vol.3.

[24] F. Aiolli, G. Da San Martino, A. Sperduti, M. Hagenbuchner, ”Kernelized” Self
Organizing Maps for Structured Data” Proceedings of the 2007 ESANN Conference,
April 24 - 27, 2007, Bruges, Belgium.

[25] D. Bacciu, A. Micheli, A. Sperduti “Adaptive tree kernel by multinomial
generative topographic mapping”. The 2011 International Joint Conference on Neural
Networks (IJCNN), pagg. 1651 - 1658, 2011.

[26] R.I. Kondor, J. La↵erty. “Di↵usion kernels on graphs and other discrete
structures”. 2002.
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