1. Affine varieties Recall: want to study the solution sets of systems of polynomial equations. We work over a fixed alg. closed field & ground field k=/R, Hg finite $k = C, \overline{H_q}, \dots$ Why alg. closed? E.g. one variable, one equation $\psi(x) = 0$ - over k=k: d solutions $deg f = d \ge 1$ counted with multiplicity over k = k : Recall: Affine n-space over k: $\mathbb{A}^{n}(k) = \mathbb{A}^{n} = \left\{ (a_{j_{1}}, \dots, a_{j_{n}}) \in \mathbb{R}^{n} \right\}$

indeterminates • A polynomial with coefficients in k in $x_{1,...,x_n}$ is an expression of the form $f(x_1, ..., x_n) = \sum_{i_1, ..., i_n} c_{I} \in k$ $I = (i_1, ..., i_n) \in \mathbb{N}^n \qquad c_{I} = 0 \text{ for all but}$ finitely many I • k[x1,...,xn] := { polyn. in x1,...,xn with k- coeff. } polynomial ring Def. S = k[xy,...,xn] The zero set (or: vanishing locus) of S is $\mathbb{V}(S) = \mathbb{Z}(S) := \{ p \in \mathbb{A}^n : f(p) = 0 \text{ for all } f \in S \} \subset \mathbb{A}^n \}$ Subsets of Aⁿ of the form V(S) are called (affine) algebraic sets. Notation: for $f_{1,...,f_{m}} \in k[x_{1,...,x_{n}}]$ we write $V(f_{1,...,f_{m}}) := V(\{f_{1,...,f_{m}}\}) =$ $= \left\{ p \in \mathcal{A}^{n} \middle| f_{1}(p) = \cdots = f_{m}(p) = 0 \right\}.$

Examples: (1) $1 \in k[x_1, ..., x_n] \quad \forall (1) = \phi$ the empty set and the whole space $O \in k[x_1, \dots, x_n] \quad \forall (0) = A^n$ oure algebraic sets $(2) \frac{A^n}{x_{n=a_n}}$ $a = (a_1, \dots, a_h)$ $- \left\{\alpha\right\} = \forall \left(x_1 - \alpha_1, x_2 - \alpha_2, \dots, x_n - \alpha_n\right)$ x,=a, points are algobraic subsets (3) All affine subspaces in Aⁿare algebraic sets. (4) Curves in the affine plane \mathbb{A}^2 . f(x,y) & k[x,y] non-constant polynomial $V(q) = \{q = 0\}$ is an algebraic curve E.g. $f(x,y) = x^2 + y^2 - 1$ $\forall (f)$ unit circle • $f(x,y) = x(x-1)(x-2)\cdots(x-n) - y^2$ h(x) x=0 V(f) chark #2 (%,%) yo= h(xo) (0,0)(1/0) (2/0) (n,0)

(5) If $X \subset A^m$ and $Y \subset A^n$ are alg.subsets, then $X \times Y \subset A^m \times A^n \cong A^{m+n}$ is an alg. subset. EXERCISE.

Remark: The set S defining the alg. subset X= V(S) is not unique. For instance: • if f and g vanish on X, then f+g vanishes on X • if f vanishes on X, then hf vanishes on X for all h & [X1,...,Xn]. In particular, we have

(S): ideal gen'd by S V(S) = V((S))

 $(S) = \{h_{y} f_{y} + \dots + h_{r} f_{r} | r \in \mathbb{N}, f_{y}, \dots, f_{r} \in S, h_{y}, \dots, h_{r} \in \mathbb{R}[x_{y}, \dots, x_{n}]\}$

Recall: R ring. (i.e. commutative ring with unity) • an ideal I is a subst ICR closed under addition and satisfying R·ICR

i.e. aBEJ for all aER and BEJ

• (S) is the smallest ideal containing S • ideals of the form (f) for some ferare called principal ideals.

Example: Algebraic subsets in A¹

V(1) V(0) Alg. subsets in 12 are: Ø, finite sets of points, 1/A1 $\frac{A}{P_1} = k \left\{ p_1, \dots, p_e \right\} = \bigvee \left((x_1 - p_1) \cdot (x_2 - p_2) \cdots \right) \\ p_1 \quad p_2 \quad \cdots \quad p_e \quad \cdots \quad (x_e - p_e) \right)$ All alg. subsets are of the form V(T) with T = k[x]an ideal. CA: & [x] is a principal ideal domain all ideals are principal. Hence if $X \subset A^{1}$ is an alg. subst, we have X = V((f)) = V(f) with $f \in k[x]$ Then deg $f = 0 \implies X = \emptyset$ or A^1 dig f=d>1 => × consists of d points However, $k[x_1,...,x_n]$ is not a PID if $n \ge 2$. Hence in general we will need more than just one polynomial to define an alg. subset $X \subset A^n$. Is it enough to work with finitely many polynomials? Answer from commutative algebra: Lemma The following conditions are equivalent for a commutative ring R: (*) every ideal in R is finitely generated (ACC) ascending chain condition: every ascending chain of ideals in R is stationang, i.e.,

for all chains $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots \subseteq I_n \subseteq I_n \subseteq \cdots$ with $I_1 \subseteq R$ ideal there is an N s.th. $I_m \equiv I_N$ for all $m \ge N$. Def. If R satisfies (ACC), then R is called Northenian. Thm (Hilbert basis theorem) If R is Noetherian, then R[x] is Noetherian. Cor. k [x1,..., xn] is Noetherian. In particular, every alg. at in A can be defined by the vanishing of finitely many polynomials. Set theoretical properties of alg. sets Lemma If S_1 , S_2 are sets of polynomials, then $V(S_1) \cup V(S_2) = V(S_1 \cdot S_2)$ with $S_1 \cdot S_2 = \{ \neq g \mid \neq \in S_1, g \in S_2 \}.$ Furthermore, for all families $\{S_i\}_{i \in I}$ with $S_i = k[x_1, ..., x_n]$ we have: $(\bigcup_{i\in I} \mathbb{V}(S_i) = \mathbb{V}(\bigcup_{i\in I} S_i).$

Cor. Finite unions of alg. sets and arbitrary inter-sections of alg. sets are again algebraic.

 $Pf of lemma: S_1, S_2 \subset k[x_1, ..., x_n]$ $\mathcal{C}_{2}^{(n)} p \in \mathbb{V}(S_{1}) \cup \mathbb{V}(S_{2}), let h \in S_{1}S_{2}.$ Then h = fg with $f \in S_{1}, g \in S_{2}$ and we have $h(p) = f(p)g(p) = \begin{cases} 0 \cdot g(p) = 0 \\ f(p) \cdot 0 = 0 \end{cases}$ if p∈ V(SA) if pε V(S₂) Hence pEV(S,S,).

">" Let us assume $p \notin \mathbb{V}(S_1) \circ \mathbb{V}(S_2)$. Then there exist for some $g \in S_2$ sith. $f(p) \neq 0$, $g(p) \neq 0$. Hence $(fg)(p) = f(p) \cdot g(p) \neq 0$, which implies $p \notin \mathbb{V}(S_1S_2)$

Def. Algebraic subsets satisfy the axioms for the closed subsets of a topology on Aⁿ. We call this topology the Zanski topology.

Rem. The Zaniski topology is not Hausdorff. Take the case of A^1 . Let us take distinct points $p, q \in A^1$

-2

Every open subset containing p is of the form $U_p = A^1 \setminus \{P_1, \dots, P_r\} \qquad P_1, \dots, P_r \neq P$ and all open subsets containing q are of the form $U_q = A^1, \{q_1, ..., q_s\} = q_1, ..., q_s \neq q$ Hence $U_p \cap U_q = A \setminus \{P_1, \dots, P_r, q_1, \dots, q_s\} \neq \emptyset$ infinite set $\leq r+s$ points