Cognome	Nome	Matricola

Università degli Studi di Padova – Facoltà di Ingegneria Laurea in Ingegneria Civile e Ingegneria per l'Ambiente e il Territorio, – prof. A. Tonolo

Prova scritta di MATEMATICA 2 (appello)

Padova, 27 novembre 2002

TEMA 4

A1	A2	A3	A4	В

Tempo a disposizione: 180'. Gli esercizi vanno svolti con le dovute giustificazioni sul foglio di bella. Il testo (il presente foglio) va consegnato insieme al foglio di bella. Non si possono usare calcolatrici, appunti, libri, telefoni.

Parte A

- (A1) (a) Determinare la decomposizione LU della matrice $A = \begin{bmatrix} 2 & -2 & 0 & 4 \\ 1 & 0 & -1 & -3 \\ 1 & -2 & 3 & -3 \end{bmatrix}$.
 - (b) Per quali colonne B il sistema AX = B è risolubile?
 - (c) Determinare la decomposizione QR non normalizzata e la decomposizione QR normalizzata della matrice A. Determinare quindi le soluzioni approssimate del sistema lineare

$$AX = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T.$$

(A2) Si dica se la matrice $A = \begin{bmatrix} 1 & -2 & 0 \\ 1 & -2 & 0 \\ -3 & 3 & -1 \end{bmatrix}$ è diagonalizzabile. Se lo è se ne calcoli la forma diagonale D e la matrice P tale che $P^{-1}AP = D$; altrimenti se ne calcoli la forma di Jordan J.

(A3) Si considerino le seguenti trasformazioni $\mathbb{R}^3 \to \mathbb{R}^2$:

$$f: \begin{bmatrix} x \\ y \\ z \end{bmatrix} \mapsto \begin{bmatrix} 2z+y \\ x-z \end{bmatrix} \quad \mathrm{e} \quad g: \begin{bmatrix} x \\ y \\ z \end{bmatrix} \mapsto \begin{bmatrix} x-z \\ 0 \end{bmatrix}.$$

Si fissi la base standard \mathcal{E} nel dominio \mathbb{R}^3 e la base $\mathcal{G} = \{ \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \}$ nel codominio \mathbb{R}^2 .

- (a) Se f è lineare, si determini la \mathcal{E} - \mathcal{G} -matrice di f.
- (b) Se q è lineare, si determini la \mathcal{E} - \mathcal{G} -matrice di q.
- (A4) (a) Calcolare la distanza del punto P(1,0,1) dalla retta

$$r: \left\{ \begin{array}{c} x - y + z + 1 = 0 \\ x - z = 0 \end{array} \right..$$

- (b) Scrivere le equazioni cartesiane della retta s per P e per Q(2, -1, 2).
- (c) P è il punto di minima distanza di s da r?

Parte B

- (B1) Siano λ_1 e λ_2 due autovalori distinti di una matrice A reale simmetrica, e X_1 ed X_2 due autovettori associati rispettivamente a λ_1 e λ_2 . Dimostrare che X_1 ed X_2 sono tra loro ortogonali. [Suggerimento: $\lambda_1 X_1 \bullet X_2 = ...$]
- (B2) Siano S e T due isometrie di \mathbb{R}^n . Dimostrare che la loro composizione $S \circ T$, definita da $(S \circ T)(X) = S(T(X))$ per ogni $X \in \mathbb{R}^n$, è ancora una isometria di \mathbb{R}^n .