FRAME 0.1. CONTENTS

1.	Analisi combinatoria	1
2.	Assiomi della probabilità	1
3.	Probabilità condizionata ed indipendenza	1
4.	Variabili aleatorie discrete	1
<i>5</i> .	Variabili aleatorie continue	1
6.	Leggi congiunte	1
6.1	. Introduzione	1

- 1. Analisi combinatoria
- 2. Assiomi della probabilità
- 3. Probabilità condizionata ed indipendenza
 - 4. Variabili aleatorie discrete
 - 5. Variabili aleatorie continue
 - 6. Leggi congiunte

6.1. Introduzione.

FRAME 6.1. Siano X ed Y due variabile aleatorie. Diciamo funzione di distribuzione congiunta di X ed Y la funzione in due variabili

$$F(a,b) = P\{X \le a, Y \le b\}, \quad -\infty \le a, b \le \infty.$$

Se X ed Y sono indipendenti, allora la loro distribuzione congiunta è

$$F(a,b) = F_X(a) \cdot F_Y(b), \quad -\infty \le a, b \le \infty.$$

FRAME 6.2. In generale, la funzione di distribuzione della X si può ricavare dalla F:

$$F_X(a) = P\{X \le a\}$$
= $P\{X \le a, Y < \infty\}$
= $P\{\bigcup_{b=1}^{\infty} \{X \le a, Y < b\}\}$
= $P\{\lim_{b\to\infty} \{\{X \le a, Y < b\}\}\}$
= $\lim_{b\to\infty} P\{X \le a, Y < b\}$
= $\lim_{b\to\infty} F(a, b)$
= $F(a, \infty)$.

FRAME 6.3. Analogamente

$$F_Y(b) = \lim_{a \to \infty} F(a, b) = F(\infty, b).$$

Le funzioni F_X e F_Y sono dette le funzioni di distribuzione marginali di X e Y.

$$\begin{split} P\{X>a,Y>b\} &= & 1-P\{(X>a,Y>b)^c\} \\ &= & 1-P\{(X>a)^c \cup (Y>b)^c\} \\ &= & 1-[P\{(X\leq a)\}+P\{(Y\leq b)\}-\\ & & -P\{X\leq a,Y\leq b\}] \\ &= & 1-F_X(a)-F_Y(b)+F(a,b). \end{split}$$

Più in generale $P\{a_1 < X \le a_2, b_1 < Y \le b_2\} =$ = $F(a_2, b_2) + F(a_1, b_1) - F(a_1, b_2) - F(a_2, b_1).$

FRAME 6.4. È utile definire la densità congiunta

$$p(a,b) = P\{X = a, Y = b\}.$$

Chiaramente si ha

$$\sum_{x} \sum_{y} p(x, y) = 1,$$

somme fatte sui valori assunti da X e da Y, rispettivamente. Se X ed Y sono variabili discrete indipendenti, allora

$$p(a,b) = p_X(a)p_Y(b).$$

In generale, la densità discreta di X può essere ottenuta da p:

$$p_X(a) = P\{X = a\} = \sum_{y:p(a,y)>0} p(a,y).$$

Analogamente

$$p_Y(b) = P\{Y = b\} = \sum_{x:p(x,b)>0} p(x,b).$$

FRAME 6.5. Esempio. Estraiamo a caso 3 palline da un'urna contenente 3 palline rosse, 4 bianche e 5 blu. Se X conta quante palline rosse abbiamo estratto e Y conta quante palline bianche abbiamo estratto, determinare la densità congiunta di X e Y. Dedurre dalla densità congiunta la densità marginale di X ed in particolare il suo valore in 2.

FRAME 6.6. Le variabili aleatorie X ed Y sono dette congiuntamente continue se esiste una funzione f(x,y) integrabile tale che "per ogni" sottoinsieme C di \mathbb{R}^2 si abbia

$$P\{(X,Y) \in C\} = \iint_C f(x,y) dx dy.$$

La funzione f è detta densità congiunta di X ed Y.

FRAME 6.7. Distribuzione congiunta e densità congiunta sono legate, come ci aspettiamo:

$$F(a,b) = P\{X \le a, Y \le b\} = \int_{-\infty}^{b} \int_{-\infty}^{a} f(x,y) dx dy,$$

e quindi differenziando

$$f(a,b) = \frac{\partial^2}{\partial a \partial b} F(a,b).$$

FRAME 6.8. Se X ed Y sono congiuntamente continue, allora lo saranno anche individualmente:

$$F_X(x) = F(x, \infty) = \int_{-\infty}^{x} \int_{-\infty}^{\infty} f(x, y) dx dy$$

e quindi la densità marginale di X è

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy.$$

FRAME 6.9. Le variabili X ed Y sono indipendenti se e solo se

$$P\{X \le a, Y \le b\} = P\{X \le a\}P\{Y \le b\},\$$

ovvero se e solo se

$$F(a,b) = F_X(a)F_Y(b).$$

In termini della densità, X ed Y sono indipendenti se e solo se

- $p(x,y) = p_X(x)p_Y(y)$, nel caso discreto;
- $f(x,y) = f_X(x)f_Y(y)$, nel caso di variabili congiuntamente continue.

FRAME 6.10. Di più, si dimostra che due variabili aleatorie sono indipendenti se e solo se la loro densità congiunta è prodotto di due funzioni di una variabile.

Esempio Se la densità congiunta di X ed Y è

$$f(x,y) = 6e^{-2x}e^{-3y}$$
 $0 < x < \infty, \ 0 < y < \infty,$

ed è uguale a zero altrove, le variabili sono indipendenti? e se

$$f(x,y) = 24xy$$
 ogniqualvolta $0 < x < 1, \ 0 < y < 1, \ 0 < x + y < 1,$ e zero altrove, sono ancora indipendenti?

FRAME 6.11. Siano X ed Y variabili aleatorie indipendenti discrete con densità p_X e p_Y rispettivamente. Allora

$$P\{X + Y = a\} = \sum_{x+y=a} p_X(x)p_Y(y) = \sum_x p_X(x)p_Y(a-x).$$

In termini di distribuzioni

$$P{X + Y \le a} = F_{X+Y}(a) = \sum_{x+y \le a} p_X(x)p_Y(y) =$$

$$= \sum_{x} \sum_{y \le a-x} p_X(x) p_Y(y).$$

FRAME 6.12. Se invece X ed Y sono variabili aleatorie indipendenti continue con densità f_X e f_Y , si ha

$$P\{X+Y \le a\} = F_{X+Y}(a) = \iint_{x+y \le a} f_X(x) f_Y(y) dx dy =$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{a-x} f_X(x) f_Y(y) dy dx = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{a-x} f_Y(y) dy \right] f_X(x) dx =$$

$$= \int_{-\infty}^{\infty} F_Y(a-x) f_X(x) dx.$$

FRAME 6.13. La distribuzione F_{X+Y} è detta convoluzione delle distribuzioni F_X e F_Y . Differenziando otteniamo

$$f_{X+Y}(a) = \frac{d}{da} \int_{-\infty}^{\infty} F_Y(a-x) f_X(x) dx = \int_{-\infty}^{\infty} \frac{d}{da} F_Y(a-x) f_X(x) dx =$$
$$= \int_{-\infty}^{\infty} f_Y(a-x) f_X(x) dx.$$

FRAME 6.14. Abbiamo osservato che la somma di due variabili di Poisson indipendenti di parametri λ_1 e λ_2 è una variabile di Poisson di parametro $\lambda_1 + \lambda_2$.

Proposizione La somma di due variabili binomiali X ed Y di parametri (n,p) ed (m,p) è una binomiale di parametri (m+n,p).

FRAME 6.15. Proposizione Se X_1 , ..., X_n sono variabili normali indipendenti di parametri μ_i , σ_i^2 , i = 1, ..., n, allora

$$X_1 + ... + X_n$$

è una variabile normale di parametri $\sum_i \mu_i \ e \sum_i \sigma_i^2$.