ITES2001 Fourth Italian-Spanish conference on General Topology and its applications

Bressanone, 27-30 June 2001

On a game in a topological group

Dikran Dikranjan Dipartimento di Matematica e Informatica Università di Udine, Italy

Let G be a topological group. The game $\mathfrak{G}(G)$ has two players P1 and P2. Player P1 chooses an element $x \in G$ and player P2 tries to guess what element x has been chosen by P1 by asking questions of the following form. For a sequences $\underline{m} = \{m_n\}$ of integers the question $Q_{\underline{m}}$ is: does x^{m_n} converge to 1 in G when $n \to \infty$? The aim of the player P2 is to accumulate as much information about x as possible knowing the answers of all \mathfrak{c} many questions $Q_{\underline{m}}$, i.e., the set S(x) = $\{\{m_n\} \in \mathbb{Z}^{\omega} : \lim x^{m_n} = 1\}$. Since $S(x) = S(x^{-1})$, P2 can guess at most the doubleton $\{x, x^{-1}\}$, in case x is non-torsion, or the set gen(x) of all generators of the cyclic group $\langle x \rangle$. In such a case we say that P2 wins (in other words, P2 wins if S(x) = S(y) always implies $\langle x \rangle = \langle y \rangle$ in G). We prove that:

- (a) P2 wins the game $\mathfrak{G}(G)$ for a non-discrete locally compact group G iff G is isomorphic to the circle group;
- (b) P2 wins the game $\mathfrak{G}(G)$ for a discrete group G iff G is isomorphic to a subgroup of the discrete group \mathbb{Q}/\mathbb{Z} .

We also discuss the groups G where the game $\mathfrak{G}(G)$ is most optimal for player P1, namely those with minimum information for P2 (i.e., S(x) = S(y) whenever x, y are non-trivial elements of G, e.g., the reals \mathbb{R} , the group of p-adic numbers, etc.). We give a complete characterization of these groups G in the class of locally compact abelian groups. The proofs are based on the structure theory of locally compact groups and properties of topologically torsion elements (cf. [1]).

References

 D. Dikranjan, Answer to a question of Armacost on topologically torsion elements, Second Honolulu Conference on Abelian Groups and Modules, July 25 – August 1, 2001, Hawaii, Preprint.