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The main result of this report is the following:

Theorem 1. Let 2 < m0, n0 < 4 real roots of the equation f(m0, n0) = 0, where
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and Mk = cot2(π/k).
Then there exists a 32-faced polyhedron in the 3-dimentional Euclidean space which
is the canonical fundamental set of the Euclidean cone-manifold W (m0, n0).

A.D. Mednykh (1999) established the Tangent and the Sine Rules relating the
complex lengthes of the singular geodesics and the cone angles of W (m,n) (Theo-
rems A and B).

In this report the Euclidean analogues of the Theorems A and B are obtained.

Theorem 2 (The Euclidean Tangent Rule). Let γm = lm + i ϕm be a complex
length of the singular geodesic of the hyperbolic cone-manifold W (m,n) with cone
angle 2π/m. If W (m,n) admits the Euclidean structure, then
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Theorem 3 (The Euclidean Sine Rule I). Let γm = lm + i ϕm be a complex
length of the singular geodesic of the hyperbolic cone-manifold W (m,n) with cone
angle 2π/m. If W (m,n) admits the Euclidean structure, then
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Moreover, in this report the following theorems are established.

Theorem 4 (The Euclidean Sine Rule II). Under condidions of Theorem 3 we
have
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Theorem 5. If W (m,n) admits the Euclidean structure, then
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where V ol W (m,n) is the volume, a is the shortest distance and θ is the acute
angle between the components of the singular set of W (m,n).

Theorem 6 (Isoperimetric Inequality). Under conditions of Theorem 5 we have

0 < V ol W (m,n) < 0, 29 lmlna.

This report is supported by RFBR (grant 99-01-00630).


