
ITES2007 Sixth Italian-Spanish conference
on General Topology and applications

Bressanone, 26-29 June 2007

Commutative algebra for the rings of continuous functions

Batildo Requejo
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brequejo unex.es

One of the most usual functors on the category of topological spaces is the set C(X) of all
real-valued continuous functions on a topological space X. We can consider on C(X) different
algebraic structures (under the possible pointwise operations), vector space, lattice, ring,
. . . , and for each structure we have the classic problem of expressing topological properties
of X and of a continuous map X

f−→ Y in terms of algebraic properties of C(X) and of

the morphism C(Y )
◦f−→ C(X). The results obtained, so far, do not indicate that there

is a more “ natural ” structure than the others, but if we want to make a development of
General Topology parallel to the experimented by Algebraic Geometry (using the concepts
and methods of Commutative Algebra), then it seems clear that C(X) must be regarded as
a R-algebra.

Now, it is known that complete regularity of X is a necessary condition to recover X from
the R-algebra C(X), and that this condition is not sufficient. In this point it is important to
observe that C(X) endowed with the topology of compact convergence is a locally m-convex
algebra that allows us to recover the space X when it is completely regular. Moreover, the
topology of compact convergence is the unique locally m-convex topology on the algebras
of continuous functions so that: (i) when X is compact it coincides with the supremum
topology, (ii) for completely regular spaces X and Y , there is a one-to-one correspondence
between continuous maps X → Y and continuous morphisms of R-algebras C(Y ) → C(X).

What we are saying in this abstract justifies that we assume that all topological spaces
X are completely regular (and Hausdorff), and that the R-algebra C(X) is endowed with
the topology of compact convergence. It is possible to characterize when a locally m-convex
algebra is C(X) for some space X, and in this way it is obtained an equivalence between the
category of topological spaces and the category of a certain class of locally m-convex algebras.
The above mentioned development of General Topology will consist of using this equivalence
of categories in order to:

• translate topological properties and methods into the algebraic language; for exam-
ple, the topological operation of restricting to an open (closed) subset corresponds
with the algebraic operation of constructing a “ ring of fractions ” (quotient ring);

• apply algebraic methods to obtain new notions and results; for instance, in Algebraic
Geometry, the dimension of an affine algebraic variety V is defined to be the Krull
dimension of the ring A of all algebraic functions on V , i.e., dimV is the supremum
of the lengths of all chains of prime ideals in A; this definition, as it stands, is useless
for topological spaces (dimC(X) = ∞ with excessive frequency), but it may be
translated into topology in the following way: we will define the dimension of X
to be the minimum of the Krull dimensions of all dense subalgebras of C(X); this
“ algebraic ” notion of dimension has remarkable properties.


