

 $\ensuremath{\mathrm{TES2007}}$  Sixth Italian-Spanish conference on General Topology and applications

Bressanone, 26-29 June 2007

On some cardinal invariants of compact and H-closed spaces

Anatoly Gryzlov Udmurtia State University ul.Lihvinceva, 68-a, 10, Izhevsk, 426034 Russia gryzlov@uni.udm.ru

1. It is well-known that for  $T_2$ -compact spaces the following is true:  $t(X) \leq \psi(X) = \chi(X)$ . Here t(X),  $\psi(X)$ ,  $\chi(X)$  denote tightness, pseudocharacter, character of a space X. For  $T_1$ -compact spaces we can only say:  $t(X) \leq \chi(X)$ ,  $\psi(X) \leq \chi(X)$ . It is not true in general for  $T_1$ -compact spaces that  $t(X) \leq \psi(X)$ . But we prove

**Theorem 1.**  $t(X) \leq \psi(X)$  for  $T_1$ -selfconjugative space X.

A space X is called selfconjugative if  $F \subset X$  is compact iff F is a closed set (A. Arhangelskii, [1]).

2. From now all spaces are  $T_2$ -spaces. In [4] the author proved the theorem:

(\*)  $|X| \leq 2^{\chi(X)}$  for *H*-closed *X* and  $\chi(X) \leq \omega$ .

Because of some difficulties we could not prove the theorem for every  $\chi(X)$ . Some later and by other method it was proved by A. Dow and J. Porter [3]. Now we prove

**Theorem 2.** Let  $\tau = \chi(X)$ , X is a minimal space. Then for every  $A \subset X$ ,  $|A| \leq 2^{\tau}$ , there is  $F \subset X$ ,  $|F| \leq 2^{\tau}$ ,  $A \subset F$  and F is H-set and  $\tau$ H-closed.

A set F is called a H-set if for every open cover  $\gamma = \{U\}$  of F there is a finite  $\gamma' \subset \gamma$  such, that  $F \subset \{[U] : U \in \gamma'\}$ .

A space X is called  $\tau H$ -closed if, for every open cover  $\gamma = U$ ,  $|\gamma| \leq \tau$  of X there is a finite  $\gamma' \subset \gamma$  such, that  $X = \{[U] : U \in \gamma'\}$ .

This theorem enables us to overcome difficulties, mentioned above, and to prove the inequality  $|X| \leq 2^{\chi(X)}$  for every  $\chi(X)$  by obvious modification of the proof of (\*).

## References

- A. V. Arhangel'skiĭ, Mapping and spaces, Uspekhi Mat. Nauk 21 (1966), no. 4, 133–184, English translation: Russian Math. Surveys 21/4 (1966), 115–162.
- [2] A. Dow and J. Porter, Cardinalities of h-closed spaces, Topology Proc. 7 (1982), 27–50.
- [3] \_\_\_\_\_, Cardinality of h-closed spaces, US Naval Topological Conf. Abstracts (1982), 26.
- [4] A. Gryzlov, Two theorems on the cardinality of topological spaces, Dokl. Acad. Nauk SSSR 251 (1980), no. 4, 780–783, English translation: Soviet Math. Dokl., 21/3 (1980), 506–509.