Esame del Sistema Operativo Windows Parte 1 - Indice

- 1. Genesi
- 2. Interfaccia di programmazione
- 3. Architettura di sistema
- 4. Gestione dei processi
- 5. Ordinamento dei processi
- 6. Inizializzazione

Esame del Sistema Operativo Windows Architettura degli elaboratori 2 - T. Vardanega

D -- /- - 107

Esame del Sistema Operativo Windows Genesi - 1

MS-DOS

- Mono-utente, modalità command line, inizialmente basato sul modello CP/M
 - 1981 : 1.0 (8 kB) → PC IBM 8088 (16 bit)
 - 1986 :3.0: (36 kB) \rightarrow PC IBM/AT (i286 @ 8 MHz, \leq 16 MB)

• Windows 1a generazione

- Modalità GUI, ma solo come rivestimento di MS-DOS
- Interfaccia copia del modello Lisa di Apple
 - 1990 1993 : 3.0; 3.1, 3.11 → i386 (32 bit)

Esame del Sistema Operativo Windows Architettura degli elaboratori 2 - T. Vardanega

n -- -- 100

Esame del Sistema Operativo Windows Genesi - 2

- Windows 2a generazione
 - Vero e proprio S/O multiprogrammato, ma sempre mono-utente, FS su modello FAT
 - 1995 : Windows 95 (MS-DOS 7.0)
 - 1998 : Windows 98 (MS-DOS 7.1)
 - Nucleo a procedure <u>non rientranti</u> (incapaci di consentire più esecuzioni simultanee) → accesso a nucleo protetto da semaforo a mutua esclusione → scarsissimi benefici di multiprogrammazione
 - ¼ dello spazio di indirizzamento di processo (4 GB totali) condiviso R/W con gli altri processi; ¼ condiviso R/W con il nucleo → scarsissima integrità dei dati critici
 - 2000 : Windows Me (ancora MS-DOS)

Esame del Sistema Operativo Windows Architettura degli elaboratori 2 - T. Vardanega

Pagina 189

Esame del Sistema Operativo Windows Genesi - 3

- Windows 3^a generazione
 - Progetto NT: abbandono della base MS-DOS (con architettura a 16 bit); enfasi su sicurezza ed affidabilità; nuova generazione di FS (ntfs)
 - \bullet 1993 : Windows NT 3.1 \rightarrow fiasco commerciale per la mancanza di programmi di utilità
 - \bullet 1996 : Windows NT 4.0 \rightarrow reintroduzione di interfaccia e programmi Windows 95
 - Scritto in C e C++ per massima portabilità, ma di grande complessità (16 M linee di codice!)
 - Molto superiore a Windows 95, ma privo di supporto per "plug-and-play", gestione batterie e emulatore MS-DOS

Esame del Sistema Operativo Windows Architettura degli elaboratori 2 - T. Vardanega

Paeina 190

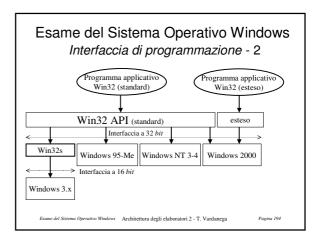
Esame del Sistema Operativo Windows Genesi - 4

- Windows 3^a generazione (segue)
 - Architettura di NT 3.1 a microkernel e modello client-server: la maggior parte dei servizi incapsulata in processi di sistema eseguiti in modo utente ed offerti ai processi applicativi in modalità a scambio messaggi
 - Elevata portabilità (dipendenze localizzate nel nucleo) ma scarsa velocità (poca esecuzione in modo privilegiato)
 - Architettura di NT 4.0 a nucleo monolitico: servizi di sistema riposizionati entro il nucleo

Esame del Sistema Operativo Windows Architettura degli elaboratori 2 - T. Vardanega

Pagina 191

Esame del Sistema Operativo Windows Genesi - 5


- Windows 3a generazione (segue)
 - 1999: Windows 2000 (alias di NT 5.0)
 - Il S/O esegue in modo nucleo, separato da quello dei processi utente, il cui spazio di indirizzamento è però interamente privato
 - Include supporto per periferiche rimuovibili ("plugand-play"), per internazionalizzazione (unica versione configurabile per lingua nazionale) ed alcune migliore ad ntfs
 - MS-DOS completamente rimpiazzato da una *shell* di comandi che ne replica ed estende le funzionalità
 - Enorme complessità: oltre 29 M linee di codice C!

Esame del Sistema Operativo Windows Architettura degli elaboratori 2 - T. Vardanega

Esame del Sistema Operativo Windows Interfaccia di programmazione - 1

- Basato su principio speculare a quello adottato da UNIX e Linux
 - Interfaccia di sistema non pubblica
 - Vasta libreria pubblica di procedure detta Win32 API (Application Programming Interface) ad uso del programmatore, ma controllata da Microsoft
 - Alcune procedure includono chiamate di sistema, altre svolgono servizi di utilità eseguiti interamente in modo utente
 - Nessun sforzo di evitare ridondanza o rigore gerarchico

Esame del Sistema Operativo Windows Architettura degli elaboratori 2 - T. Vardanega

Esame del Sistema Operativo Windows Informazioni di configurazione

- Tutte le informazioni vitali di configurazione del sistema sono raccolte in una specie di FS detto registry, salvato su disco in file speciali (hives)
 - Directory → key
 - *File* \rightarrow *entry* = {nome, tipo, dati}
- 6 directory principali con prefisso нкеу_
 - Per esempio: HKEY_LOCAL_MACHINE, con entry descrittive dell'hardware e delle sue periferiche (HARDWARE), dei programmi installati (SOFTWARE) e con informazioni utili per l'inizializzazione (SYSTEM)

e del Sistema Operativo Windows Architettura degli elaboratori 2 - T. Vardanega

Esame del Sistema Operativo Windows Architettura di sistema - 1

- Sistema strutturato su 2 livelli gerarchici
 - Nucleo a struttura monolitica, che esegue in modo privilegiato
 - Dipendenze dalla scheda madre dello specifico elaboratore (registri, indirizzi di periferiche, vettore delle interruzioni, orologi, accesso al BIOS) isolate in un livello detto HAL (hardware abstraction layer) \rightarrow insieme standard di servizi
 - Recentemente affiancato da un interfaccia di maggior potenza e velocità detto DirectX
 - Sottosistemi d'ambiente, implementati come processi che eseguono in modo normale

Esame del Sistema Operativo Windows Architettura di sistema - 2

- Su HAL poggia un livello detto kernel, che eleva il livello di astrazione dei servizi HAL
 - Gestione della concorrenza (ordinamento, prerilascio, salvataggio e ripristino dei contesti)
 - Gestione degli "oggetti di controllo", associati a tutte le entità attive del sistema (processi e servizi associati alle interruzioni)
 - Oggetto Deferred Procedure Call: racchiude la parte meno urgente di un servizio di interruzione ed esegue in modo nucleo

 Oggetto Asynchronous Procedure Call: come DPC, ma esegue
 - in modo normale
 - Gestione degli "oggetti di ordinamento", associati a tutte le entità passive (semafori, eventi, orologi) usate per la sincronizzazione delle entità attive

Esame del Sistema Operativo Windows Architettura degli elaboratori 2 - T. Vardanega

Esame del Sistema Operativo Windows Architettura di sistema - 3

• Il livello più alto del S/O vero e proprio è detto executive, il quale è suddiviso in 10 aggregati di procedure funzionalmente legate

Object manager: gestisce tutti gli oggetti creati dal S/O, allocando loro memoria virtuale

I/O manager: gestisce tutti i dispositivi, incluse le partizioni di disco

Process manager: gestisce tutte le entità concorrenti del sistema Memory manager: gestisce la memoria virtuale con modalità "page-on-demand'

Cache manager: gestisce in RAM una cache di blocchi di disco

Esame del Sistema Operativo Windows Architettura degli elaboratori 2 - T. Vardanega

Esame del Sistema Operativo Windows Architettura di sistema - 4

• Solo e sono componenti attive, ma tutte eseguono in modo nucleo

Plug-and-play manager: viene informato di tutte le periferiche connesse al sistema per associarvi il relativo gestore Power manager: cerca di contenere il consumo energetico del sistema

Configuration manager: gestisce la registry
Security manager: si occupa dell'esecuzione delle politiche di
sicurezza richiesti per applicazioni riservate
Local procedure call manager: fornisce meccanismi efficaci

per la comunicazione tra le componenti attive del sistema

Esame del Sistema Operativo Windows Architettura degli elaboratori 2 - T. Vardanega

Esame del Sistema Operativo Windows *Architettura di sistema - 5

- Del livello executive fa parte anche il GDI, inizialmente in spazio di utente in NT 3.x
 - Di gran lunga la sua componente più grande
 - Ricollocata in modo nucleo per aumentarne le prestazioni
- kernel ed executive sono raccolti in un unico eseguibile (ntoskrnl.exe)
- HAL fornito come libreria condivisa raccolta in un unico file (hal.dll)
- Gestori delle periferiche caricati dinamicamente e registrati in registry via Configuration manager

Esame del Sistema Operativo Windows Architettura degli elaboratori 2 - T. Vardanega

D------ 200

Esame del Sistema Operativo Windows Architettura di sistema - 6

- Durante l'esecuzione, il sistema crea, manipola e distrugge "oggetti" <u>interni</u>, nessuno dei quali permane tra due accensione successive
 - Un oggetto per ogni entità sia attiva che passiva
 - Tutti gli oggetti hanno alcuni metodi comuni
 - Gli oggetti sono descrittori (in RAM) delle relative entità
 - Alcuni possono essere <u>temporaneamente</u> posti su disco
- Il kernel mantiene una tabella degli oggetti
 - 29 bit per puntatore all'oggetto + 3 bit come flag
 - $-\,\,32\,bit$ per i diritti associati alle operazioni sull'oggetto
- L'object manager suddivide gli oggetti in categorie (directory) specifiche

Esame del Sistema Operativo Windows Architettura degli elaboratori 2 - T. Vardanega

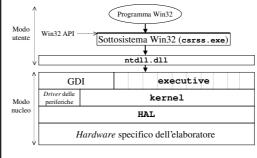
Pagina 201

Esame del Sistema Operativo Windows Architettura di sistema - 7

- In spazio di utente sono disponibili 3 ulteriori categorie di componenti di sistema
 - DLL (Dynamic Link Libraries), che raccolgono specifiche procedure di libreria in gruppi visibili ai e condivisi dai vari programmi
 - Ogni processo utente include chiamate parametriche a specifiche DLL, invece del codice delle procedure richieste
 - Sottosistemi d'ambiente (.exe), che forniscono ciascuno uno specifico interfaccia di programmazione, di cui il principale è il Win32 API (e gli altri 2 sono inutili!)
 - Processi di servizio

 ${\it Esame del Sistema~Operativo~Windows}~~ {\it Architettura~degli~elaboratori~2-T.~Vardanega}$

Pavina 202


Esame del Sistema Operativo Windows Architettura di sistema - 8

- In complesso, oltre 800 DLL, per più di 13000 procedure invocabili dai processi utente. Tra esse:
 - user32.dll: invocate in modo utente per i servizi GUI
 - gdi32.dll: invocate in modo utente per tutti i servizi grafici sottostanti al GUI
 - kernel32.dll: invocate in modo utente per tutti gli altri servizi
 - ntdll.dll: il vero interfaccia di sistema tra modo utente e modo nucleo (executive e kernel)
 - hal.dll: eseguite in modo privilegiato per accedere all'hardware specifico dell'elaboratore

Esame del Sistema Operativo Windows Architettura degli elaboratori 2 - T. Vardanega

Pagina 203

Esame del Sistema Operativo Windows Architettura di sistema - 9

 ${\it Esame \ del \ Sistema \ Operativo \ Windows} \quad \ \ Architettura \ degli \ elaboratori \ 2 - T. \ Vardanega$

Esame del Sistema Operativo Windows Gestione dei processi - 1

➤ Job = {processi gestiti come singola unità}

Processo = possessore di risorse, con una o più thread

ID unico, 4 GB di spazio di indirizzamento (2 in modo utente e 2 in modo nucleo), inizialmente con singola *thread*, molto simile al processo UNIX

>Thread = flusso di controllo ordinato dal nucleo

Esegue per conto e nell'ambiente del processo (che $\underline{\text{non}}$ ha stato di avanzamento), con ID localmente unico, 2 stack (1 per modo)

Fiber = suddivisione di thread, ignota al nucleo

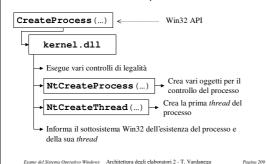
Esegue nell'ambiente della *thread*, gestita interamente a livello di sottosistema Win32

Esame del Sistema Operativo Windows Architettura degli elaboratori 2 - T. Vardanega

Esame del Sistema Operativo Windows Gestione dei processi - 2

- Le thread hanno vari modi per comunicare
 - Pipe: canali bidirezionali come in UNIX/Linux, a sequenza di byte senza struttura, oppure per messaggi (sequenze con struttura)
 - Mailslot: canali unidirezionali, anche su rete
 - Socket: come pipe ma per comunicazioni remote
 - RPC (chiamata di procedura remota): per invocare procedure nello spazio di altri processi e riceverne il risultato localmente
 - Condivisione di memoria : usando (porzioni di) file mappato in memoria

Esame del Sistema Operativo Windows Architettura degli elaboratori 2 - T. Vardanega


Esame del Sistema Operativo Windows Gestione dei processi - 3

- Le thread hanno vari modi per sincronizzarsi
 - <u>Semafori</u> binari (mutex) o contatori
 - <u>Sezioni critiche</u>, limitate allo spazio di indirizzamento della *thread* che la crea
 - Eventi di 2 tipi
 - A reset manuale, che rilascia più thread sino ad un esplicito reset che cancella l'evento
 - A *reset* automatico, che rilascia solo una *thread* e poi cancella l'evento

Esame del Sistema Operativo Windows Architettura degli elaboratori 2 - T. Vardanega

Panina 208

Esame del Sistema Operativo Windows Gestione dei processi - 4

Esame del Sistema Operativo Windows Ordinamento dei processi - 1

- Ordinamento con prerilascio a priorità, <u>non</u> gestito da una entità attiva di sistema, ma effettuato da azioni <u>esplicite</u> della *thread* in esecuzione
 - Nel sospendersi in attesa di una risorsa occupata o nell'inviare un segnale di sincronizzazione
 - L'esecuzione è già in modo nucleo
 - Al completamento del proprio quanto di tempo
 - L'esecuzione passa in modo nucleo
- Implicitamente attribuito alla thread corrente
 - Al verificarsi di eventi asincroni (interruzione, allarme)

Esame del Sistema Operativo Windows Architettura degli elaboratori 2 - T. Vardanega

Esame del Sistema Operativo Windows Ordinamento dei processi - 2

- 6 classi di priorità per processo
 - Realtime, high, above-normal, normal, below-normal, idle
- 7 classi di priorità per thread
 - Time-critical, highest, above-normal, normal, below-normal, lowest, idle
- 32 livelli di priorità (31..0), ciascuno associato ad una coda di *thread* pronte
 - Thread non distinte per processo di appartenenza
 - 31..16 priorità di sistema; 15..0 priorità ordinarie
- Ricerca per priorità decrescente, selezione dalla testa della coda ed attivazione del quanto

Esame del Sistema Operativo Windows Architettura degli elaboratori 2 - T. Vardanega

D -- /- - 277

Esame del Sistema Operativo Windows Ordinamento dei processi - 3

- Ciascuna *thread* ha una priorità base (iniziale) ed una corrente (che varia in esecuzione)
- La priorità corrente si eleva quando la thread
 - Completa un'operazione di I/O
 - Per maggior utilizzazione delle periferiche
 - Ottiene un semaforo o riceve un segnale d'evento
 - Per miglior risposta dei processi interattivi
- La priorità corrente decade ad ogni quanto consumato
- Usa una tecnica brutale per mitigare il problema di inversione di priorità
 - Una thread pronta non selezionata per una certa durata riceve incremento di priorità per 2 quanti

Esame del Sistema Operativo Windows Architettura degli elaboratori 2 - T. Vardanega

D -- 1-- 212

Esame del Sistema Operativo Windows Inizializzazione - 1

- Attivazione del programma di boot come in Linux
- Lettura della struttura di FS, localizzazione ed esecuzione del *file* nelar che carica Windows 2000
- II FS può avere struttura FAT-16, FAT-32, ntfs
 Lettura del file di configurazione воот.ini,
- caricamento di nal.dll, ntoskrnl.exe, bootvid.dll, lettura di registry e configurazione delle periferiche
- Attivazione di ntoskrn1.exe e creazione del gestore di sessione (processo utente nativo smss.exe)
 - Creazione del daemon di login (winlogon.exe)
 - Attivazione del gestore di autenticazione (1sass.exe)
 - Attivazione del capostipite di tutti i servizi (services.exe)

Esame del Sistema Operativo Windows Architettura degli elaboratori 2 - T. Vardanega

agina 213

Esame del Sistema Operativo Windows *Inizializzazione* - 2

- Il daemon (winlogon.exe) usa il programma msgina.dll per eseguire la sequenza di login desiderata
 - Ciò consente di configurarne più le modalità di esecuzione
- Poi preleva da registry il profilo dell'utente, da cui determina il programma di shell da eseguire
 - Generalmente si tratta di explorer.exe, configurabile tramite registry

Esame del Sistema Operativo Windows Architettura degli elaboratori 2 - T. Vardanega