Nomi, domini, indirizzi – 1

- Per il livello applicazione non è pratico identificare entità e locazioni di rete tramite indirizzi IP
 - Principi cardine di incapsulazione ed astrazione dell'informazione
 - Il livello superiore ha una visione più astratta dell'informazione trattata al livello inferiore
 - Il livello inferiore non divulga dettagli interni
- Nomi simbolici codificati come stringhe di caratteri in formato ASCII

Livello delle annlicazion

Architettura degli Elaboratori 2 - T. Vardanega

Pavina 460

Nomi, domini, indirizzi – 2

- Al tempo di ARPAnet la rete contava poche centinaia di nodi
 - Un singolo file conteneva <u>tutte</u> le corrispondenze tra il nome simbolico dei nodi (stringa ASCII) e l'indirizzo IP corrispondente
 - HOSTS.TXT
- Uno specifico nodo di rete manteneva la versione ufficiale del *file*
 - Gli amministratori degli altri nodi lo copiavano periodicamente
 - Riflettendogli anche ogni loro aggiornamento locale

Livello delle applicazion

Architettura degli Elaboratori 2 - T. Vardanega

Nomi, domini, indirizzi – 3

- Al crescere delle dimensioni della rete questa strategia aveva sempre maggiori difficoltà ad assicurare che
 - Nodi distinti non assumessero nomi uguali
 Name collision
 - Le corrispondenze specificate nel file fossero sempre corrette e consistenti
- Strategia chiaramente inadatta a Internet
- Occorreva un nuovo meccanismo di gestione che consentisse corrispondenze
 - Amministrate su **base locale**
 - Disponibili su scala globale

Livello delle applicazioni

Architettura degli Elaboratori 2 - T. Vardanega

agina 462

Nomi, domini, indirizzi – 4

- Domain Name System (DNS)
 - Schema di denominazione gerarchico basato sulla nozione di dominio
 - Base dati **distribuita** con parti controllate in ambito locale e rese globalmente disponibili con modalità cliente-servente tramite uso di UDP (!)
 - Il Resolver di lato Cliente interroga 1 o più Name server per ottenere l'indirizzo IP corrispondente al nome dell'entità desiderata
 - L'interrogazione viene emessa con un segmento UDP verso il Servente più vicino
 - La rapidità di risposta del Servente viene assicurata mediante *caching* delle corrispondenze
 - La <u>permanenza dei dati</u> viene garantita tramite replicazione

Livello delle applicazion

Architettura degli Elaboratori 2 - T. Vardanega

Pagina 463

Nomi, domini, indirizzi – 5

- Vi è stretta analogia tra la struttura della base dati DNS e il FS di UNIX
 - Ogni nodo, tranne la radice, ha un'etichetta testuale e può essere foglia terminale (= file) o radice di sottoalbero (= directory)
- Il DNS chiama dominio la directory
 - La posizione nell'albero viene espressa come cammino assoluto verso la radice

Livello delle applicazioni

Architettura degli Elaboratori 2 - T. Vardanega

Pagina 464

Nomi, domini, indirizzi – 7

- Nome di dominio assoluto termina con "." (dot)
 - Altrimenti è <u>relativo</u>
 - I nomi relativi hanno un contesto di interpretazione
- Stringhe dei nomi *case-insensitive* (it = IT) e di lunghezza ≤ 63 caratteri
- Nomi assoluti di lunghezza max ≤ 255 caratteri
- Albero dei nomi di profondità max ≤ 127 livelli
- La struttura gerarchica dell'albero dei nomi risolve il problema della collisione senza limitare la libertà degli amministratori locali

Architettura degli Elaboratori 2 - T. Vardanega

Nomi, domini, indirizzi – 8 • Il nome di un dominio è quello del nodo alla radice del sottoalbero corrispondente D Nodo D.A (nome relativo) Dominio D.A (nome relativo) Architettura degli Elaboratori 2 - T. Vardanega

Nomi, domini, indirizzi – 9

- · I nomi di dominio sono gli indici nella base dati DNS
 - Ad essi viene associata informazione che descrive i nodi che appartengono al dominio
 - Il dominio è descritto in termini di un insieme di descrittori di risorsa (resource record)
- Il dominio è un raggruppamento logico di nodi
 - Definito secondo criteri geografici o organizzativi
 - I cui nodi **non** sono necessariamente legati da uno stesso indirizzo di rete

Architettura degli Elaboratori 2 - T. Vardanega

Pagina 470

Nomi, domini, indirizzi – 9

- Lo spazio dei nomi di dominio di Internet era stato inizialmente suddiviso in 7 domini generici di I livello
 - com, edu, gov, mil, org, int, net
- Successivamente sono stati aggiunti diversi altri domini di I livello tra cui quelli riferiti ad aree geografiche nazionali
 - Riservandovi le abbreviazioni a 2 lettere stabilite da ISO 3166
 - Poi ammettendo anche altri nomi come tv, biz, etc.
- Ciascuna autorità di dominio decide in modo autonomo la propria suddivisione interna
 - Usando suddivisione generica oppure geografica

Resource record - 1

- Ogni descrittore di risorsa (RR) associato ad un dominio prevede 5 campi espressi in ASCII e codificati in binario
 - Nome di dominio
 - 2. Prossimo aggiornamento (time to live)
 - 3. Classe 4. Tipo

 - Valore

Livello delle applicazioni

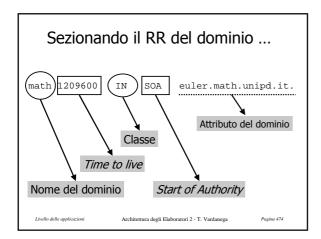
Architettura degli Elaboratori 2 - T. Vardanega

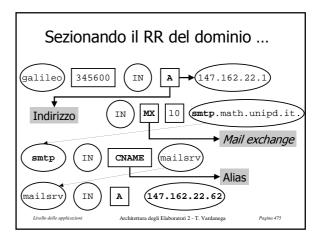
Resource record – 2

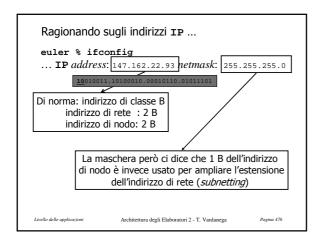
- Nome di dominio: il dominio del descrittore
 - Uno stesso dominio può avere associati più RR
 - Indice primario di ricerca nella base dati DNS
 - A una richiesta dal Resolver riferita a un nome di dominio vengono forniti **tutti** i descrittori per quel dominio presenti nella base dati del **Name Server** interrogato
- Prossimo aggiornamento: grado di stabilità dell'informazione nel descrittore
 - Indica la frequenza minima di variazione
 - Valore espresso in secondi
 - · Valore basso indica bassa stabilità

Architettura degli Elaboratori 2 - T. Vardanega

Pagina 471

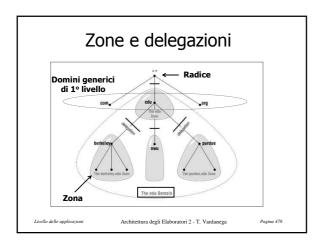

Resource record - 3


- Classe: può assumere diversi valori
 - Il valore in denota un dominio in ambito internet
- Tipo: tipo di informazione nel descrittore
 - soa ($\it Start\ Of\ Authority$): parametri di definizione del dominio
 - A (*Address*): indirizzo IP del nodo
 - мх (*Mail eXchange*): priorità relativa e nome del dominio disposto a ricevere posta per il dominio del descrittore


 - NS: Name Server per il dominio
 CNAME (Canonical NAME): alias per il nome del dominio
 - HINFO (Hardware Information): sigla ASCII del nome della CPU e del S/O del nodo
 - PTR (*Pointer*) alias per indirizzo IP
 - TXT (Text) testo libero

Architettura degli Elaboratori 2 - T. Vardanega

г						
	Frammento di base dati DNs del dominio math.unipd.it					
					_	
	math	1209600	IN	SOA	euler.math.unipd.it.	
		1209600	IN	NS	euler.math.unipd.it.	
	mailsrv		IN	A	147.162.22.62 ←	
	smtp		IN	CNAME	mailsrv	
	imapssl		IN	CNAME	mailsrv	
	WWW		IN	CNAME	numerouno	
Ш	math.unipd.it.		IN	A	147.162.22.62	
	galileo	345600	¬IN	A	147.162.22.1	
	validità: 4 giorni		IN	HINFO	PCx86 FreeBSD3.4	
Ш			IN	MX	10 smtp.math.unipd.it.↓	
Ш	euler		IN	A	147.162.22.93	
Ш			IN	HINFO	SparcClassic UNIX-SUNOS4.1	
Ш			IN	MX	10 smtp.math.unipd.it.	
IL.	numerouno		IN	A	147.162.114.22	
			IN	HINFO	PCx86 OpenBSD	
ı	ftp		IN	CNAME	numerouno	
l						
	Livello delle appl	Architettura degli Elaboratori 2 - T. Vardanega Pagina 473				



Zone e *name server* – 1

- I programmi che memorizzano informazione sui nomi di dominio sono detti Name Server
- La loro informazione è in genere limitata a una sola **frazione** dei nomi presenti nel dominio
 - Tale frazione è detta **zona**
- Lo spazio dei nomi del DNS è suddiviso in zone distinte e senza sovrapposizioni
- I domini di ciascun livello delegano alle zone il controllo sul loro insieme di nomi
 - Delegare permette di <u>decentralizzare</u> la gestione delle corrispondenze

Livello delle applicazioni Architettura degli Elaboratori 2 - T. Vardanega

Pagina 477

Zone e *name server* – 2

- Ogni zona ospita diversi Name Server
 - Primary master
 - Possiedono la versione originale del *file* delle corrispondenze per la zona di competenza
 - Secondary master (0 slave)
 - Acquisiscono informazione interrogando altri name
 server
- Entrambi hanno <u>autorità</u> sulle corrispondenze presenti nella loro zona e possono così fornire risposte <u>autorevoli</u> alle richieste dei Resolver
 - Risposta autorevole = informazione di zona

Livello delle applicazioni

Architettura degli Elaboratori 2 - T. Vardanega

Zone e *name server* – 3

- Quando la richiesta dei Resolver riguarda corrispondenze sulle quali il Name Server non abbia dati autorevoli esso innesca un'attività chiamata name resolution
 - Sono considerate <u>non autorevoli</u> tutte le corrispondenze mantenute in *cache* a seguito di precedenti interrogazioni
- La memorizzazione in *cache* sveltisce la risoluzione
 - Al costo di fornire informazione non autorevole
 - Informazione non completamente affidabile

Livello delle applicazioni

Architettura degli Elaboratori 2 - T. Vardanega

Pagina 480

Zone e *name server* – 4

- Per effettuare risoluzioni non locali un Name server di zona deve conoscere nome e indirizzo IP di un Name Server posto più in alto nella gerarchia di dominio
 - Maggior vicinanza alla radice → maggiore visibilità sull'albero
- I Name server più alti in gerarchia sono quelli associati alla radice del DNS
 - La rete Internet ne prevede 13 (2 dei quali localizzati in Europa)
 - A fini di ripartizione del lavoro e di persistenza dell'informazione anche in presenza di guasti
- Alcuni Name server di radice ricevono migliaia di richieste di risoluzione al secondo!

Livello delle applicazion

Architettura degli Elaboratori 2 - T. Vardanega

Danima 191

Zone e name server – 5

- Resolver e Name Server possono attivare 2 tipi di richieste di risoluzione
 - Risoluzioni **ricorsive**
 - Il Name Server interrogato <u>deve</u> fornire la <u>risposta finale</u>, ossia la corrispondenza richiesta
 - Il Name Server interrogato si fa in questo caso carico dell'intera risoluzione
 - Risoluzioni **iterative**
 - Il Name Server interrogato risponde solo sulla base della propria informazione locale, altrimenti restituendo il nome di un Name Server più alto in gerarchia
 - L'interrogante deve gestire in proprio la sequenza di interrogazioni necessarie fino alla completa risoluzione

Livello delle applicazioni

Architettura degli Elaboratori 2 - T. Vardanega

Pagina 482

Risoluzioni ricorsive ed iterative Name Server radice Risoluzione iterativa Riferimento al ns di zona it Name Server Name Server di zona locale zona it Richiesta Riferimento al **ns** di zona unipd.it ricorsiva Risoluzione Name Server (IN, A) ricorsiva (3) ZONG unipd.it Riferimento al ns di zona math.unipd.it Resolver **Name Server** ZONG math.unipd.it www.math.unipd.it Risposta: 147.162.114.22 Livello delle applicazioni Architettura degli Elaboratori 2 - T. Vardanega Pagina 483