Ada Core

TECHNOLOGIES.INC

umentation License

Pre-Defined and User -Defined
Types

Some types can be pre-defined by the language
« E.g. Booleans, integers, characters, strings, etc

Pre-defined types come with pre-defined operations
« E.g. for integers: additions, subtractions, etc.

Languages typically allow user-defined types and operations

« User-defined operations are provided in the form of procedures and
functions

ACT Europ under the GNU Free Documentation License 3

L hnE:Illihrs.act-euroEe.lr

Example

An object with name w
The object is a variable memory

- int is a pre-defined integer type in C whose values range
INT_MIN to INT_MAX

< Some of the predefined operations that can be applied to int are:
+ Addition, subtraction, multiplication, division, remainder, etc.

© ACT Europe under he GNU Free Documentaton Liense 5

L hllE:IlIiDls.ad—BumEB.'l

What is a Type?

A type is characterized by:
< The set of values an expression of that type can take

< The operations that can be applied to those values

(©ACT Europe under the GNU Free Documentation L cense 2

|httpJ/Aibre.act-europe.fr

Objects, Variables and
Constants

An object of a given type is a run-time entity (usually a piece
of memory) containing values of the type

A variable is an object whose value can change

A constant is an object whose value cannot change after it
has been initialized

©ACT Europe under e GNU Fres Documentation L conse. 4

|httpJAibre.act-europe.fr

Type Checking

Type checking is the process that checks that programs
conform to the typing rules of the language

Type checking can be performed
« Statically at compile-time
« Dynamically at executior-time

< Alanguage is strongly-typed if it prohibits

+ The application of an operation to an object that is not intendel to support
the operation (assignment is considered an operation)

¢ Alanguage is weakly-typed if it is not strongly typed

©ACT Eutcpe under he GNU Fiee Documentaton L cense 6

Lhttp:/Nibre.act-europe.fr

Strong Typing is Good

« It prevents many kinds of crashing bugs

« It tells the programmer when she has mixed "apples” with
"oranges"

(©ACT Europe un der the GNU Free Documentation License. 7

|Lhttp: Mlibre.act-europe.fr

Typing Problems in C/C++/Java

typedef in C/C++ is a shorthand it does not define a new type

No user-defined types
« Scalars (characters, integers, reals)
« Pointers (e.g. there can only be a single pointer to anint type)
« Arrays (e.g. there can only be a single array ofint type)

< Implicit conversions from integers toreals
< Weak overflow semantics rules for signed integers

< Missing types
+ Enumerations in Java (not full types in C/C++)
Character types in C/C++
Fixed points
Unsigned integers in Java
Pointers to functions in Java

ACT Europ under the GNU Free Documentation License 9

L hnE:Illihrs.act-euroEe.lr

ACT

C/C++ Example

typedefint Time;
typedef int Distance;
typedef int Speed;

const Speed SAFETY_SPEED = 120; * This code compiles fine

void increase_speed (Speed s); < But there is something wrong with it

void check_speed (Time t, Distance d) . What?
Speed s =dlt;
it (s<SAFETY_SPEED)

increase_speed (t);

void perform_safety_checks () {
Time t=get_time ();
Distance d = get_distance ();

;:.r.\eckispeed d v);

©ACT Europe under the GNU Free Documentaion License 11

L hllE:IlIiDls.ad—BumEB.'l

Some Examples

Strongly (mainly statically) typed languages:
v+ Ada, Eiffel, Java
+ In Ada you can work around strong typing if you really want to

« Strongly dynamically typed languages
« Lisp, Smalltalk

« Weakly typed languages
¢ C,C++

« Completely untyped languages
« assembly languages, shell scripts

©ACT Europe under e GNU Fres Documentation L conse

|httpJ/Aibre.act-europe.fr

Ada Core

TECHNOLOGIES.INC

What's Wrong with C/C++

typedef int Time;

typedef it Distance; < Program compiles fine but has
typedef int Speed; 2 serious flaws that go undetected
const Speed SAFETY_SPEED = .

120; ° F'-“W‘- ‘

« tisaTime

void increase_speed (Speed s); « increase_speed() takes a

Speed parameter

+ Time and Speed are conceptually
different, they should not be mixed up

;/.éid check_speed (Time t,
Distance d) {

Speed s = dit;

if

; o FLAW 2:
} « Distance and Time parameters have
void perform_safety_checks () { been inverted

Time t = get_time ();
Distance d = get_distancg
0;

Gheck_speed (0.t 1

« Time and Distance are conceptually
different, they should not be mixed up

« C/C++ provide NO HELP to the
programmer in detecting these

©ACT Europe nder he GNU Free Documentaton L cense

Lhttp:/Nibre.act-europe.fr

Things are Even Worse in Java

« There are no typedef in Java

final int SAFETY_SPEED = 120;

° Everylhmg must be anint \X)\d check_speed (int t, int d)
{

int s=dft;
. i (s < SAFETY_SPEED)
< typedef are useful for documentation increase_speed (t);

purposes
void increase_speed (it s){

< typedef could be used to perform sanity
checks during code walkthroughs or ~ | void perform_safety checks () {
with simple tools it t = gettime0;
it d = get_distance ();

.c.r‘\eckispeed (dt)

< This problem is particularly severe in
Java given that many API calls have
several indistinguishableint

L P
+ AdjustmentEvent (Adjustable source, intid,
inttype, int value)

DACT Europe under the GNU Free Documentation License 13

|Lhttp: Mlibre.act-europe.fr

Overflow in C/C++/Java

#include <limits.h>

void compute () {
int k=INT_MAX;

k=k+1;

}

¢« In C/C++ signed integer overflow is undefined, anything can happ en
+ Al known implementations "wrap around"

« In Java wrap around semantics are part of the language

ACT Europ under the GNU Free Documentation License 15

L hnE:Illibre.ad-euroEe.lr

xample: Overflow in Action in
Ada

« In GNAT you have to use the
switch -gnato to ask for

mp>gnatmake ato -gnatl compute.adb &= integer overflow checking
—c = - T Compute . adb
AT 3.14al (20010503) Copyright 1992-2001
Compiling: compute.adb (source file time st|
1. procedure Compute is
2. K : ger i= Integer’lLast;
. begin
. 1= K o+ 13
S. end Compute;
: No errors
gnatbind -x compute.ali
gnat link compute.ali
\tmp>compute
raised CONSTRAINT_ERROR : compute.adb:4
I\tmp>
[http:/ibre.act-europe.fr ©ACT Europs under the GNU Free Dozumentaion Liense 17

Ada Core

TECHNOLOGIES.INC

Overflow in Ada

procedure Compute is

K': Integer := Integer'Last;
begin

Ki=K+1;
end Compute;

< EVERY time there is an integer overflow in Ada an exception is r aised

(©ACT Europe under the GNU Free Documentation L cense 16

|http=/Nibre.act-europe.fr

he Badness of Wrap -Around
Semantics: A Java Example

final int RADIO_PORT = ...;

void open (int port){...}
void send(int port, byte data){...}

o) Gl 00 | EDE = The program to the left compiles

fine, and runs ...
void send_bytes (byte first_byte,
byte last_byte) {
open (RADIO_PORT); . .
fopr ((byte b= firs)[byte; * ... But there is something wrong
b <= last_byte; b++) { with it. What ?
send (RADIO_PORT, b);

}
close (RADIO_PORT);

© ACT Europe inder the GNU Free Documentaton L cense 18

Lhttp:/Nibre.act-europe.fr

Infinite Loop when last_byte == 127

Two problems:

< Wrap around semantics of type byte
+ When last_byte = b = 127 we execute the loop, we do b++ and b waps to -128

< There is no real for loop instruction in C/C++/Java
for (x;y;2) {...}
+ Means
x; while (y) { ...z}

©ACT Europs under the GNU Fres Documentation Licsnse

|Lhttp: Mlibre.act-europe.fr

hecks and Overflows
Summary

In Ada

Every integer overflow raises an exception in Ada

Every division by zero raises an exception in Ada

« Every array index overflow raises an exception in Ada

¢ Etc.

« You can disable all the Ada checks for deployment if you wish

¢ InJava

« Java adopted most of the Ada checks except for integer overflowwhich
wraps around in Java

« Cannot disable checks in Java

¢ InC/C++
« No checks

©ACT Europs under e GNU Fres Documentation Licsnse

L hnE:Illibre.ad-euroEe.lr

The Ada Version is Safe

type Port is range 0 .. 255;
type Byte is range -128.. 127;

RADIO_PORT : constant Port =..,;
* The code on the left runs fine
procedure Open (P Port);
procedure Send (P : Port; B : Byte);
procedure Close (P : Port); . .
* Thereis a true for loop in Ada
procedure Send_Bytes (First: Byte; Last : Byte)is (unlike C/C++/Java)
begin

Open (RADIO_PORT);

for B in First.. Last loop

Send (RADIO_PORT, B);

end loop;

Close (RADIO_PORT);
end Send_Bytes;

©ACT Europe under e GNU Fres Documentation L conse

|httpJ/Aibre.act-europe.fr

20

