
public class C1
�

int counter = 0;
// a state modifying constructor
C1()

�

counter++; 5�

/* the author of this class assumes extensions but no overriding and therefore uses
* cross-invocations among class methods */

void A()
�

if (counter%2 != 0)
�

10
/* the danger lurks in this cross-call because in case of overriding “this”
* will redispatch to the context of the call!
*
* (the condition for the cross-call may obviously be much less obvious and deterministic!) */

this.B(); 15�
�

void B()
�

System.out.println("Counter evaluates to: " + counter + "\n");�
20�

public class C2 extends C1
�

// class state
int increment = 0;

C2(int step)
�

5
super();
increment = increment + step;�

/* the author of this class is unaware (perhaps guiltily) of the superclass design 10
* assumption that disallows overriding */

void B()
�

counter = counter + increment;
/* the public documentation on super.A() may (innocently) omit implementation details
* so that the author of C2 may like what (s)he reads about super.A() without getting to know 15
* about its dangerous cross-call */

this.A();�
�

class EP
�

public static void main(String[] args)
�

int i;
int step = 0; // default initialisation
try

�
5

step = args[0].length();�
catch (java.lang.ArrayIndexOutOfBoundsException e)

�

System.out.println("Usage: java EP input_string");�

C2 instance = new C2(step); 10
for (i = 1; i � = step ; i++)

�

instance.B();
System.out.println

("Iteration #" + i + " when counter evaluates to: " + instance.counter);�
15�

�

