AdaCore

Tha GNAT Pra Company

www.adacore.com

Software Technologies

chaos

side 3

SP

chaos

oopP

OOP = object-oriented programming

side 5

Safety & Security

Side 2

Software Technologies

SP
SP = structured programming

chaos

Side 4

Safety & Security Standards

= DO-178B / ED-12B (Airborne SW)

< DO-278 / ED-109 (Air Traffic Management)

< IEC 61508:1999 (Trains, control machinery, ...)
< ISO/IEC 15408:2005 (Common Criteria)

= DEF-STAN 00-56

Have not much to say about OOP vs. SP

Side 6

Up to Now

Most “safe & secure” software has used SP ...

* ... with some trying OOP

Things are changing rapidly
= Companies want to explore the of use OOP

= OOTIA (Handbook published October 26, 2004)
— Object-oriented Technology in Aviation
— http://www.faa.gov/aircraft/air_cert/design_approvals/air_softwa
re/oot/

= DO-178C due 3 years from now (or so)

side 7

DO-248 In a Nutshell

« Feel free to use OOP
= But be careful at what OOP features you use

= And at how you use them

side 9

That is a reasonable approach

= Use static OOP in safety/security-critical SW

= See SPARK (http://sparkada.com)

Prais High Integrity Systems

side 11

DO-248: SP vs. OOP

DO-248 (2001 - clarification of DO-178B) — 3.32:

» Avoidance of non-determinism: Non-determinism may be reduced through one or
more of the following practices:
1. Choose a language with a well-defined standard

Do mot permit self-modifving code.

Mimnuze memory paging and swapping.

Avond use of dynamic binding| memory allocation. and memory deallocation

Do ot assume initial values for variables that are not explicitly imnalized

th da B

* Avodanee of complexity: Complexity may be reduced through the following
"

iz¢ cohesion, mininize coupling
2, [Make cautions use of overloading of operators and variable names|
3. Tse a single point of entry and exil [of sUBprograms.

4 Minimize use of mtermupt-driven processing.

5. Mininuze use of multi-tasking ‘multi-processing m the architecture
6. Beware of side effects in the use of built-in funcnons and compiled Iibraries
7. |Control the class library depih (in tree depth).

Side 8

DO-248 In a Nutshell

= Feel free to use OOP
= But be careful at what OOP features you use

= And at how you use them

Feel free to eat the pie as long as there is no intake of fat

side 10

DO-248: SP vs. OOP

DO-248 (2001 - clarification of DO-178B) — 3.32:

* Avordance of nen-determinism: Non-determinism may be reduced through one or
more of the following practices:
1. Choose a language with a well-defined standard
Do mot permit self-modifving code.
Mimnuze memory paging and swapping.
Avoud use of dynamie binding, memory allocation, and memory deallocation
Do ot assume initial values for variables that are not explicitly imnalized

thoda b

* Avodanee of complexity: Complexity may be reduced through the following
s

faximize colesion, minimize coupling ‘
Make cautions use of overloading of operators and vanable names.

pra
1
2
3. Use asingle point of entry and exit for subprograms
4
5
[
b4

Miminmze use of mterrupt-driven processing

Minimize use of multi-tasking multi-processing in the architecture

Beware of side effects in the use of built-in funcions and compiled Iibraries.
Control the class library depih (inheritance tree depth).

sido 12

Coupling

« Control coupling
— The manner or degree by which one software component
influences the execution of another software component

= Data coupling
— The dependence of a software component on data not exclusively
under the control of that software component

side 18

SP: A centralized view of SW

[I
’W’—‘ Operations
Types :
op1() ii op2Q) i|: op3() i|: op4() i|iop5() i op6()
A X X X
B X X X X
© X X X X
D X X X

Sido 15

Ada __
SP vs. OOP
Operations
Types
opl() | op2() | op3() | op4() | op5() | op6()
A X X X
B X X X X
(o} X X X X
D X X X
Ada j
OOP: A distributed view of SW
Operations
Types
Aclass | op10 | op2() | op3() | op4() | op5() | 0op6(
A
B
8
D

side 16

OOP: A distributed view of SW

Does this chopping

increase coupling?
Operations
Types
opl() | op2() | op3() | op4() | op5(0) | op6()
A
B
[}
D

Sido 17

An example of what can go wrong

A

key:int

use_key ()

side 18

An example of what can go wrong

A A
key:int key:int
B B

s key:int

DO-248: SP vs. OOP

DO-248 (2001 - clarification of DO-178B) — 3.32:

» Avoidance of non-determinism: Non-determinism may be reduced through one or
more of the following practices:
1. Choose a language with a well-defined standard
Do mot permit self-modifving code.
Mimnuze memory paging and swapping.
Avoid use of dynamie binding. memory allocation, and memory deallocation
Do ot assume initial values for variables that are not explicitly imnalized

th da B

* Avopdance of complexity: Complexity may be reduced through the following
pragtices:
1. | Maximize cohesion, minimize couplina |
2. [Make cautious use of everloading of operators and va
3. Use a single pont of entry and exit for subprograms
4 Minimize use of mtermupt-driven processing.
5
6
7

ible mames|

Mininuze use of multi-tasking multi-processing in the architecture
Beware of side effects in the use of built-in funcions and compiled Iibraries.
Control the class library depih (inheritance tree depth).

side 20

© ©
use_key ()] use_key()
Sioo 19
Overloading

= Overloading is a fundamental part of OOP

= When you mix inheritance and overloading

* You get a powerful and explosive mix

= Which can lead to serious hazards in a safety &

security context

side 21

An example of what can go wrong

A A
finalize() finalize()

B B
finalize() finalise()

A
B.finalize()
overrides
A finalize()
S0 22

A Possible Solution

Ada 2005

= No hiding of field names along a derivation chain

« Developer can state whether a method
— does override

— does not override

— the corresponding method in the ancestor

sido 23

DO-248: SP vs. OOP

DO-248 (2001 - clarification of DO-178B) — 3.32:

* Avordance of nen-determinism: Non-determinism may be reduced through one or
more of the following practices:
1. Choose a language with a well-defined standard

Do mot permit self-modifving code.

i swapping.

* Avodanee of complexity: Complexity may be reduced through the following
s

pra
1 ize cohesion, minimize coupling ‘

2 e cautious use of overloading of operators and varable names.
3. Use asingle point of entry and exit for subprograms
4

5

[

b

Miminmze use of mterrupt-driven processing

Minimize use of multi-tasking multi-processing in the architecture

Beware of side effects in the use of built-in funcions and compiled Iibraries.
Control the class library depih (inheritance tree depth).

sido 24

The Challenges of Dynamic Binding
= Control coupling (e.g. re-dispatching)
« Implementation issues: safety & security

= Code coverage and testing

Side 25

A Possible Solution

In r fety-critical con

= The compiler could implement dynamic binding

= With (visible) case statements

= This can only be done at bind time

= When the entire hierarchy is available

sido 27

Who is looking at these issues
« DO-178C (http://ultra.pr.erau.edu/SCAS/)

— SC-205/ WG-71: SG5: Object-Oriented Technology

= ISO/IEC Project 22.24772: Guidance for Avoiding
Vulnerabilities through Language Selection and
Use (http://www.aitcnet.org/isai/)
- sc22

sido 29

Implementation of Dynamic Binding

lass specifid
Hispatch tablg

pa—

jynamically bound
perations of object’
lass

p—

= Correct initialization?
— Dispatch tables
— vtable pointers

= No unintentional/malicious modification?
— Dispatch tables
— vtable pointers

= Source-based tools?
— Implementation invisible at source level

side 26

Testing under Dynamic binding

= M : number of virtual methods in the program

= D : number of dispatching calls

Two extremes

Code coverage Test coverage

O (M+D) O (Dx M)

Case statement Case statement
per virtual method signature per dispatching call

sido 28

