
Seven
Principles of
Software Testing
Bertrand Meyer, ETH Zürich and Eiffel Software

W
h i le ever yone
knows the theoret-
ical limitations of
software testing, in
practice we devote

considerable effort to this task and
would consider it foolish or down-
right dangerous to skip it. Other
verification techniques such as static
analysis, model checking, and proofs
have great potential, but none is ripe
for overtaking tests as the dominant
verification technique. This makes it
imperative to understand the scope
and limitations of testing and per-
form it right.

The principles that follow emerged
from experience studying software
testing and developing automated
tools such as AutoTest (http://se.
inf.ethz.ch/research/autotest).

Defining testing
As a verification method, testing

is a paradox. Testing a program to
assess its quality is, in theory, akin to
sticking pins into a doll—very small
pins, very large doll. The way out of
the paradox is to set realistic expec-
tations.

Too often the software engineering
literature claims an overblown role

for testing, echoed in the Wikipedia
definition (http://en.wikipedia.org/
wiki/Software_testing): “Software
testing is the process used to assess
the quality of computer software.
Software testing is an empirical
technical investigation conducted to
provide stakeholders with informa-
tion about the quality of the product
or service under test, with respect to
the context in which it is intended to
operate.” In truth, testing a program
tells us little about its quality, since
10 or even 10 million test runs are a
drop in the ocean of possible cases.

There are connections between
tests and quality, but they are tenu-
ous: A successful test is only relevant
to quality assessment if it previously
failed; then it shows the removal of a
failure and usually of a fault. (I follow
the IEEE standard terminology: An
unsatisfactory program execution is a
“failure,” pointing to a “fault” in the
program, itself the result of a “mis-
take” in the programmer’s thinking.
The informal term “bug” can refer to
any of these phenomena.)

If a systematic process tracks fail-
ures and faults, the record might
give clues about how many remain.
If the last three weekly test runs

have evidenced 550, 540, and 530
faults, the trend is encouraging, but
the next run is unlikely to find no
faults, or 100. (Mathematical reli-
ability models allow more precise
estimates, credible in the presence
of a sound long-term data collec-
tion process.)

The only incontrovertible connec-
tion is negative, a falsification in the
Popperian sense: A failed test gives
us evidence of nonquality. In addi-
tion, if the test previously passed,
it indicates regression and points
to possible quality problems in the
program and the development pro-
cess. The most famous quote about
testing expressed this memorably:
“Program testing,” wrote Edsger
Dijkstra, “can be used to show the
presence of bugs, but never to show
their absence!”

Less widely understood (and
probably not intended by Dijkstra)
is what this means for testers: the
best possible self-advertisement.
Surely, any technique that uncov-
ers faults holds great interest for all
“stakeholders,” from managers to
developers and customers.

Rather than an indictment, we
should understand this maxim as
a definition of testing. While less
ambitious than providing “infor-
mation about quality,” it is more
realistic, and directly useful.

Principle 1: Definition
To test a program is to try to
make it fail.

This keeps the testing process
focused: Its single goal is to uncover
faults by triggering failures. Any
inference about quality is the
responsibility of quality assurance
but beyond the scope of testing.
The definition also reminds us that
testing, unlike debugging, does not
deal with correcting faults, only
finding them.

Tests and specifications
Test-driven development, given

prominence by agile methods, has
brought tests to the center stage, but

Testing is about producing failures.

		 August 2008	 99

S O F T W A R E T E C H N O L O G I E S

Authorized licensed use limited to: ELETTRONICA E INFORMATICA PADOVA. Downloaded on October 7, 2008 at 6:23 from IEEE Xplore. Restrictions apply.

	 100	 Computer

S O F T W A R E T E C H N O L O G I E S

sometimes with the seeming implica-
tion that tests can be a substitute for
specifications. They cannot. Tests,
even a million of them, are instances;
they miss the abstraction that only a
specification can provide.

Principle 2: Tests versus specs
Tests are no substitute for speci-
fications.

The danger of believing that a test
suite can serve as specification is
evidenced by several software disas-
ters that happened because no one
had thought of some extreme case.
Although specifications can miss
cases too, at least they imply an effort
at generalization. In particular, speci-
fications can serve to generate tests,
even automatically (as in model-
driven testing); the reverse is not pos-
sible without human intervention.

Regression testing
A characteristic of testing as prac-

ticed in software is the deplorable
propensity of previously corrected
faults to resuscitate. The hydra’s old
heads, thought to have been long cut
off, pop back up. This phenomenon
is known as regression and leads to
regression testing: Checking that
what has been corrected still works.
A consequence is that once you have
uncovered a fault it must remain part
of your life forever.

Principle 3: Regression testing
Any failed execution must yield a
test case, to remain a permanent
part of the project’s test suite.

This principle covers all failures
occurring during development and
testing. It suggests tools for turning a
failed execution into a reproducible
test case, as have recently emerged:
Contract-Driven Development
(CDD), ReCrash, JCrasher.

Oracles
A test run is only useful if you can

unambiguously determine whether
it passed. The criterion is called a
test oracle. If you have a few dozen

or perhaps a few hundred tests, you
might afford to examine the results
individually, but this does not scale
up. The task cries for automation.

Principle 4: Applying oracles
Determining success or failure of
tests must be an automatic pro-
cess.

This statement of the principle
leaves open the form of oracles.
Often, oracles are specified sepa-
rately. In research such as ours, they
are built in, as the target software
already includes contracts that the
tests use as oracles.

Principle 4 (variant): Contracts as
oracles
Oracles should be part of the pro-
gram text, as contracts. Deter-
mining test success or failure
should be an automatic process
consisting of monitoring contract
satisfaction during execution.

This principle subsumes the previ-
ous one but is presented as a variant
so that people who do not use con-
tracts can retain the weaker form.

Manual and
automatic test cases

Many test cases are manual: Tes-
ters think up interesting execution
scenarios and devise tests accord-
ingly. To this category we may
add cases derived—according to
principle 3—from the failure of an
execution not initially intended as
a test run. It is becoming increas-
ingly realistic to complement these
two categories by automatic test
cases, derived from the specification
through an automatic test generator.
A process restricted to manual tests
underutilizes the power of modern
computers.

The approaches are complemen-
tary.

Principle 5: Manual and auto-
matic test cases
An effective testing process must
include both manually and auto-
matically produced test cases.

Manual tests are good at depth:
They reflect developers’ understand-
ing of the problem domain and data
structure. Automatic tests are good
at breadth: They try many values,
including extremes that humans
might miss.

Testing strategies
We now move from testing prac-

tice to research investigating new
techniques. Testing research is vul-
nerable to a risky thought process:
You hit upon an idea that seemingly
promises improvements and follow
your intuition. Testing is tricky; not
all clever ideas prove helpful when
submitted to objective evaluation.

A typical example is random
testing. Intuition suggests that any
strategy using knowledge about the
program must beat random input.
Yet objective measures, such as the
number of faults found, show that
random testing often outperforms
supposedly smart ideas. Richard
Hamlet’s review of random test-
ing (Encyclopedia of Software
Engineering, J.J. Marciniak, ed.,
Wiley, 1994, pp. 970-978) provides
a fascinating confrontation of folk
knowledge and scientific analysis.

There is no substitute for empiri-
cal assessment.

Principle 6: Empirical assess-
ment of testing strategies
Evaluate any testing strategy,
however attractive in principle,
through objective assessment
using explicit criteria in a repro-
ducible testing process.

I was impressed as a child by read-
ing in The Life of the Bee (Fasquelle,
1901) by Maurice Maeterlinck
(famous as the librettist of Debussy’s

Random testing often
outperforms supposedly

smart ideas.

Authorized licensed use limited to: ELETTRONICA E INFORMATICA PADOVA. Downloaded on October 7, 2008 at 6:23 from IEEE Xplore. Restrictions apply.

Pelléas et Mélisande) what happens
when you put a few bees and a few
flies in a bottle and turn the bot-
tom toward the light source. As Fig-
ure 1 shows, bees, attracted by the
light, get stuck and die of hunger or
exhaustion; flies don’t have a clue
and try all directions—getting out
within a couple of minutes.

Maeterlinck was a poet, not a pro-
fessional biologist, and I don’t know
if the experiment holds up. But it is
a good metaphor for cases of appar-
ent stupidity outsmarting apparent
cleverness, as happens in testing.

Assessment criteria
In applying the last principle, the

issue remains of which criteria to
use. The testing literature includes
measures such as “number of tests
to first failure.” For the practitio-
ner this is not the most useful: We
want to find all faults, not just one.
Granted, the idea is that the first
fault will be corrected and the cri-
terion applied again. But successive
faults might be of a different nature;
an automated process must trigger
as many failures as possible, not
stop at the first.

The number of tests is not that
useful to managers, who need help
deciding when to stop testing and
ship, or to customers, who need an
estimate of fault densities. More
relevant is the testing time needed
to uncover the faults. Otherwise we
risk favoring strategies that uncover
a failure quickly but only after a
lengthy process of devising the test;
what counts is total time. This is
why, just as flies get out faster than
bees, a seemingly dumb strategy
such as random testing might be
better overall.

Other measures commonly used
include test coverage of various
kinds (such as instruction, branch,
or path coverage). Intuitively they
seem to be useful, but there is little
actual evidence that higher cover-
age has any bearing on quality. In
fact, several recent studies suggest
a negative correlation; if a module
has higher test coverage, this is usu-

ally because the team knew it was
problematic, and indeed it will often
have more faults.

More than any of these metrics
what matters is how fast a strat-
egy can produce failures revealing
faults.

Principle 7: Assessment criteria
A testing strategy’s most impor-
tant property is the number of
faults it uncovers as a function
of time.

The relevant function is fault
count against time, fc (t), useful
in two ways: Researchers using a
software base with known faults
can assess a strategy by seeing how
many of them it finds in a given time;
project managers can feed fc (t) into
a reliability model to estimate how
many faults remain, addressing the

age-old question “when do I stop
testing?”

W e never strayed far from
where we started. The first
principle told us that testing

is about producing failures; the last
one is a quantitative restatement of
that general observation, which also
underlies all the others. n

Bertrand Meyer is professor of Soft-
ware Engineering at ETH Zürich
and chief architect at Eiffel Software
in Santa Barbara, Calif. Contact him
at bertrand.meyer@inf.ethz.ch.

Figure 1. Smarter is not always better. Maeterlinck observed that if you put bees and flies
into a bottle and turn the bottom toward the light source, the supposedly clever bees,
attracted by the light, get stuck and die, while apparently stupid flies get out within a
couple of minutes. Is this a metaphor for testing strategies?

Editor: Mike Hinchey,
Lero—The Irish Software
Engineering Research Centre;
mike.hinchey@lero.ie

Join the IEEE Computer Society online at www.computer.org/join/
Complete the online application and get
 • Immediate online access to Computer
 • A free e-mail alias — you@computer.org
 • Free access to 100 online books on technology topics
 • Free access to more than 100 distance learning course titles
 • Access to the IEEE Computer Society Digital Library for only $121
Read about all the benefits of joining the Society at:

 www.computer.org/join/benefits.htm

	 August 2008	 101

Authorized licensed use limited to: ELETTRONICA E INFORMATICA PADOVA. Downloaded on October 7, 2008 at 6:23 from IEEE Xplore. Restrictions apply.

