
feature

74	 I E E E  S o f t w a r e    P u b l i s h e d  b y  t h e  I E E E  C o m p u t e r  S o c i e t y � 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0  ©  2 0 0 8  I E E E

e s t ima t i on

Achievements and 
Challenges in Cocomo-
Based Software Resource 
Estimation

Barry W. Boehm, University of Southern California

Ricardo Valerdi, Massachusetts Institute of Technology

A look at the  
Cocomo suite  
of models provides 
an overview of  
the achievements  
of software resource 
estimation over 
the last 40 years.

S
oftware resource estimation methods and models have had a major impact on 
successful software engineering practice. They provide milestone budgets and 
schedules that help projects determine when they are making satisfactory prog-
ress and when they need corrective action. They help decision makers analyze 

software cost-schedule-value trade-offs and make decisions regarding investments, out-
sourcing, COTS products, and legacy software phaseouts. They help organizations prior-
itize investments in improving software productivity, quality, and time to market. They 

are included as essential capabilities in virtually all 
major software capability maturity models, soft-
ware engineering textbooks, and software engi-
neering bodies of knowledge.

A counterpart appreciation of their contribution 
involves what happens to projects that go forward 
without good estimates of their milestone budgets 
and schedules. All too frequently, such projects 
commit to develop too much software within the 
agreed-on budget and schedule, have no frame-
work to determine whether they are on track, and 
end up with serious overruns or are terminated. 
The Standish Group’s 2000–2006 Chaos surveys 
produced data on the percentage of projects that 
underperformed in certain areas in a particular 
year (see Table 1).1

In light of these results, the importance of soft-
ware resource estimation is at center stage. This 
article provides an overview of early and interme-
diate achievements from the perspective of the Co-
como (Constructive Cost Model) suite of models 
as well as a look to future challenges. (For more 

on the relationship between estimation and other 
software engineering areas, see the related sidebar 
on p. 76.)

Early achievements: 1965–1985
The earliest achievements in software resource es-
timation are tied to specific models developed, 
calibrated, and published as early as 1965. Table 2 
lists the most prominent of these models. For back-
ground, we explain how some of these models in-
fluenced Cocomo’s evolution over the last 27 years.

The search for good model forms
The most critical early resource-estimation-model-
ing issue was to find the right parametric forms for 
estimating software project effort and schedules. 
The experiences in analyzing the SDC database 
convinced people that a purely linear additive model 
didn’t work well. The behavioral phenomenology of 
software development clearly wasn’t consistent with 
effort estimators combining such factors as size and 
complexity in linear additive forms.
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For a while, the best relationships people could 
find involved estimating effort as a linear function 
of size, modified by a complexity multiplier. The 
initial complexity multiplier came from the nonlin-
ear distribution of programming rates in the 169- 
project SDC sample shown in Figure 1. For exam-
ple, consider a project developing 10,000 object 
instructions of software that’s deemed more com-
plex than 80 percent of the projects in the SDC 
sample. For that project, the programming rate 
would be roughly 7 person-months per 1,000 ob-
ject instructions. So, the estimated project effort 
would be 7 × 10 = 70 person-months.

Most successful early effort estimation models 
employed variants of this approach. TRW Wolver-
ton, Boeing Black, and early versions of RCA Price S 
employed different programming-rate curves for 
different software classes (scientific versus business 
versus embedded real time).

By the late ’70s, the software community was 
finding that simple complexity ratings weren’t ad-
equate for many software situations that produced 
different programming rates. Some organizations 
found that their programming rates were more, 
rather than less, productive for higher-complexity 
software because they assigned their best people 
to the most complex projects. Most important, 
though, the complexity rating was purely subjec-
tive. There was no objective way of determining 
whether a project was at the 60 or 80 percent level, 
but going from 80 to 60 percent in Figure 1 will 
reduce the estimated effort by roughly a factor of 
two. Some organizations were also finding that 
their software projects exhibited economies or dis-
economies of scale involving estimation relations 
with exponential functions of size.

Many estimation models were developed in the 
late ’70s. Doty, IBM function points, the Walston-
Felix model,3 and intermediate versions of RCA 
Price S employed multiple combinations of multipli-
cative cost drivers. The Bailey-Basili Meta-Model 
experimented with an additive combination of 
productivity multipliers and an exponential scale 
factor. Putnam SLIM developed exponential rela-
tionships linking size, productivity, and schedule. 
Alternative sizing methods such as function points4 
were being developed to support better early size 
estimation.

Positive and negative experiences with these and 
other models led to a set of criteria for developing 
additive, exponential, and multiplicative model fac-
tors. The following logic provided the general form 
for Cocomo in 1981:

PM = A × (Size)B × (EM)

Table 1
The performance of 8,000 projects  

in 350 organizations1

2000 2002 2004 2006

Percentage of projects 
delivered within budget and 
schedule

28 34 29 35

Percentage of projects can-
celled before completion

23 15 18 19

Percentage of projects over-
run on budget and schedule

49 51 53 46 

Table 2
Prominent software estimation models

Model Year

SDC (Systems Development Corp.) 1965

TRW Wolverton 1974

Putnam SLIM (Software Lifecycle Management) 1976

Boeing Black 1977

Doty 1977

IBM-FSD (IBM Federal Systems Division) 1977

RCA Price S 1977

Walston-Felix 1977

IBM function points 1979

Bailey-Basili Meta-Model 1981

Cocomo (Constructive Cost Model) 1981

SoftCost-R 1981

Estimacs 1983

Jensen/SEER (Software Evaluation and Estimation of Resources) 1983

SPQR (Software Productivity Quality and Reliability)/Checkpoint 1985
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Figure 1. An SDC 
(Systems Development 
Corp.) model example.2 
This was the first 
parametric model 
demonstrating the 
nonlinear effects of 
software size.
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where

PM is person-months;
A is the calibration factor;
Size is a software module’s functional size, ex-
pressed in terms of lines of code, which has an 
additive effect on software development effort;
B represents the scale factors, which have an 
exponential effect on software development ef-

■

■

■

■

fort; and
EM represents the effort multipliers, which 
have a multiplicative effect on software devel-
opment effort.

The following criteria determine whether a fac-
tor is additive, exponential, or multiplicative:

A factor is additive if it has a local effect on the 

■

■

Progress in software resource estimation is deeply intertwined 
with progress in other software engineering areas, particu-
larly software architectures, processes, programming, and re-
quirements engineering. Estimation results demonstrating that 
software costs escalate nonlinearly as utilization of hardware 
resources approaches 100 percent led to information archi-
tectures with significant memory and CPU cycle margins.1 
Software cost-schedule trade-off relations indicating that 
excessive schedule compression leads to asymptotic cost in-
creases2 led to more realistic project schedules and research 
on processes enabling more rapid development.3,4

A well-calibrated Cocomo II software cost driver showing 
that inadequate requirements engineering and architecting 
leads to disproportionate extra rework focused more emphasis 
on these activities.5 The need to determine appropriate mile-
stone endpoints for estimating spiral-process-model costs and 
schedules led to the development of spiral anchor-point mile-
stones6 (subsequently used in many projects) and in the Ratio-
nal Unified Process (RUP).7–9 On the other hand, we used the 
RUP work breakdown structure to define the project activities 
in Cocomo II software cost estimates. Another well-calibrated 
Cocomo II scale factor, Software Process Maturity, provided 
the best evidence to date that increased process maturity cor-
relates with increased software productivity. Regression analy-
sis of 161 projects indicated a 4 to 11 percent increase per 
maturity level, excluding the effect of other factors.10

Resource estimation also interacts deeply with software 
product engineering. Most leading cost and schedule estima-
tion models have parameters relating software project costs 
and schedules to such product attributes as complexity, re-
quired reliability, hardware constraints, database size, and 
software reuse. These contribute greatly to the key practice 
of software architecture trade-off analysis. This is a neces-
sary discipline for meeting simultaneous stakeholder needs 
for high performance, reliability, usability, evolvability, and 
so on, within project budget and schedule constraints.11 Ad-
ditional estimation models in this regard include performance 
models,12 reliability models,13 and real-options models for 
analyzing investments in software modularity to provide fu-
ture evolvability options.14

Software product engineering and resource estimation  
are particularly highly coupled in the area of software- 

product-line reuse. Most books in this area integrate cost and 
schedule estimation considerations in software domain archi-
tecting.9,15–18 An example success story is Hewlett-Packard’s 
investment in product-line reuse to reduce time to market from 
48 to 12 months.19

These interactions all come together in the emerging 
area of value-based software engineering. This involves not 
just business case analysis in the early stages but also the 
integration of value considerations into all parts of software 
engineering, including life-cycle processes, requirements en-
gineering, architecting, development, test, release planning, 
and project management. Chapters on these topics appear in 
Value-Based Software Engineering.20
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included entity (that is, it adds another source 
instruction).
A factor is multiplicative or exponential if it has 
a global effect across the overall system being 
estimated (that is, it adds a security requirement 
for the entire system).
A factor is exponential if it’s more influential 
for larger projects than for smaller projects, 
often because of the amount of rework due 
to architecture and risk resolution, team com-
patibility, or readiness for system-of-systems 
integration.5

We applied these criteria to the development of 
the Cocomo and associated models. In order to en-
sure relevance, these models’ assumptions about the 
cost-estimating relationships require validation by 
historical projects.

Development of model evaluation criteria
Models are frequently evaluated for their ability 
to estimate software development. To evaluate the 
Cocomo model’s utility for practical estimation, we 
used these criteria:2

Definition. Has the model clearly defined the 
costs it’s estimating and the costs it’s excluding?
Fidelity. Are the estimates close to the actual 
costs expended on the projects?
Scope. Does the model cover the class of 
software projects whose costs you need to 
estimate?
Objectivity. Does the model avoid allocating 
most of the software cost variance to poorly 
calibrated subjective factors (such as complex-
ity or personnel factors)? That is, is it difficult 
to jigger the model to obtain any results you 
want?
Constructiveness. Can a user tell why the model 
gives the estimates it does? Does it help the user 
understand the software job to be done?
Detail. Does the model easily accommodate the 
estimation of a software system consisting of a 
number of subsystems and units? Does it give 
(accurate) phase and activity breakdowns?
Stability. Do small differences in inputs produce 
small differences in output cost estimates?
Ease of use. Are the model inputs and options 
easy to understand and specify?
Prospectiveness. Does the model avoid using 
information that won’t be known until the proj-
ect is complete?
Parsimony. Does the model avoid using highly 
redundant factors or factors that make no ap-
preciable contribution to the results?

■

■

■

■

■

■

■

■

■

■

■

■

For the most part, each of these criteria’s sig-
nificance is reasonably self-evident. From a generic 
standpoint, the criteria have also proven helpful in 
the development and evaluation of other cost esti-
mation models in the Cocomo suite and elsewhere.

Emergence of a model  
marketplace and community of interest
The early ’80s marked the development of a soft-
ware resource estimation community of interest, 
including conferences, journals, and books. This 
helped socialize both the addressing of the issues we 
just discussed and the emergence of several estima-
tion models that passed both usage tests and tests 
of market viability. These models included refined 
versions of earlier models such as RCA Price S and 
Putnam SLIM and new models such as SPQR/
Checkpoint, Estimacs, Jensen/SEER, Softcost-R, 
and Cocomo and its commercial implementations 
such as PCOC (Personal Computer Cocomo), Ge-
como (General Electric [UK] Cocomo), Costar (Co-
como Star), and Before You Leap. These models 
were highly effective for the largely waterfall-model, 
build-from-scratch software projects of the ’80s but 
began to encounter new classes of challenges, as we 
discuss next.

Intermediate achievements:  
1985–2005
We can divide these two decades roughly into two 
equal periods: one of mainstream refinements and 
one of proliferation of software development styles.

1985–1995: Mainstream refinements
This period primarily involved proprietors of the 
leading cost models addressing problems that users 
brought up in the context of their existing main-
stream capabilities. Good examples are the risk an-
alyzers, either Monte Carlo based or agent based, 
and the breakdown of overall cost and schedule es-
timates by phase, activity, or increment.

The most significant extensions during this pe-
riod were in software sizing. Under the prospective-
ness criterion, accurate early estimation of SLOC 
is a major challenge. Some comparison-oriented 
methods involving paired size comparisons, rank-
ing methods, and degree-of-difference comparisons 
were developed. They were helpful, but their per-
formance was spotty and expert-dependent.

During 1985–1995, the function-point commu-
nity made a major step forward in defining uniform 
counting rules for its key size elements of inputs, 
outputs, queries, internal files, and external inter-
faces, along with associated training and certifica-
tion capabilities.6 This made function points a good 

An important 
criterion 
for model 

evaluation is 
whether the 
model avoids 
using highly 
redundant 

factors  
or factors  
that make  

no appreciable 
contribution  

to the results.
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match for business applications, which tend to have 
simple internal business logic. However, this ap-
proach was not as good for scientific and real-time 
control applications with more complex internals.

1995–2005: Proliferation  
of development styles
The development of Cocomo II, starting in 1995, 
was based primarily on the realization that the 
1981 Cocomo model’s assumptions of sequential 
waterfall-model development, three stratified de-
velopment modes, and occasional software reuse 
with linear savings were becoming obsolete. We 
projected software applications development classes 
(end-user programming, application generators, ap-
plication composition, system integration, and in-
frastructure) out to 2005 and developed Cocomo II 
to address them.7 This involved

developing new anchor-point milestones to 
serve as the endpoints for concurrent spiral-
model cost and schedule estimates;
developing a more realistic nonlinear reuse 
model;

■

■

adding exponential scale factors for such scal-
ability controllables as process maturity and  
architecture/risk resolution;
adding new cost drivers for such phenomena as 
development for reuse, distributed software de-
velopment, and personnel continuity;
dropping obsolete cost drivers such as turn-
around time; and
enabling the use of alternative early sizing meth-
ods such as function points.

(For a discussion of alternative model forms, see the 
related sidebar.)

Each of these changes was supported by valu-
able research results and by our experiences in try-
ing to tailor the original Cocomo to new situations. 
We based the nonlinear effects of software reuse on 
research at the NASA Software Engineering Labo-
ratory,8 maintenance-effort distributions,9 and non-
linear software integration effects.10 Anchor-point  
milestones and their phase distributions were sup-
ported by research at Rational and AT&T and by 
spiral-model use at TRW.11,12 Process maturity char-
acterization was supported by collaboration with the 

■

■

■

■

Researchers have been concurrently exploring alternative 
software resource estimation model forms. Using  metadata 
about a project (size, type, process, domain, and so on), 
analogy or case-based estimation produces estimates of the 
project’s required resources on the basis of the resources 
required for the most similar projects in a large database.1,2 

One such database is the International Software Benchmark-
ing Standards Group (Isbsg) database of 3,000 software 
projects.3 In one study, analogy-based estimation performed 
better than alternative estimation methods in 60 percent of 
the cases but performed worst in 30 percent of the cases,4 in-
dicating some promise but need of further refinement.

Neural-net models use layouts of simulated neurons and 
training algorithms to adjust neuron connection parameters 
to learn the best fit between input parameters and values to 
be estimated. Implementations of these models have pro-
duced accuracies of plus or minus 10 percent error,5 but in 
many cases, estimation of projects outside the training set has 
been much less accurate. Under the constructiveness criterion 
(see the section “Development of model evaluation criteria” 
in the main article), these models do not provide constructive 
insights on the software job to be done. Researchers have 
recently used other machine-learning techniques to success-
fully determine reduced-parameter versions of parametric 
cost models.6

Systems dynamics models integrate systems of differ-
ential equations to determine the flow of effort, defects, or 

other quantities through a process as a function of time. They 
are good for understanding the effects of dynamic relations 
among software development subprocesses, such as the con-
ditions under which Brooks’ law holds (adding more people 
to a late software project will make it later).7 Pioneering re-
search in this area has been done for general software proj-
ect relationships8 and for interactions among effort, schedule, 
and effect density9 in performing software inspections.

Each of these model forms provides complementary per
spectives to those of parametric models. Challenges for the fu-
ture include finding better ways to integrate their contributions.
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Carnegie Mellon Software Engineering Institute and 
its associated definitions and data on productivity ef-
fects.13 Estimation of the relative cost of writing for 
reuse was supported by software reuse experiences. 
We also addressed exponential-diseconomies-of-
scale effects in software development.14

We successfully calibrated the resulting Cocomo 
II model to 161 carefully collected and verified proj-
ect data points. Its predictions within this sample 
were within 30 percent of the actuals 75 percent of 
the time for effort (80 percent with local calibra-
tion) and 64 percent of the time for schedule (75 
percent with local calibration). It has been broadly 
incorporated into several commercial cost estima-
tion models.

However, although Cocomo II does a good job 
for the 2005 development styles projected in 1995, 
it doesn’t cover several newer development styles 
well. This led us to develop additional Cocomo II-
related models such as

the Chinese government version of Cocomo 
(Cogomo),
Constructive Incremental Cocomo (Coincomo),
the Constructive Quality Model (Coqualmo),
Orthogonal Defect Classification (ODC) 
Coqualmo,
Information Dependability Attribute Value Es-
timation (iDAVE),
the Constructive Product Line Investment 
Model (Coplimo),
the Constructive Productivity-Improvement 
Model (Copromo),
the Constructive Phased Schedule and Effort 
Model (Copsemo),
the Constructive Rapid Application Develop-
ment Model (Coradmo),
the Constructive Security Cost Model (Co- 
secmo),
the Constructive Commercial-off-the-Shelf 
Cost Model (Cocots),
the Constructive Systems Engineering Cost 
Model (Cosysmo), and
the Constructive System-of-Systems Integration 
Model (Cososimo).

(For more information on these models, visit the 
Center for Systems and Software Engineering, 
http://csse.usc.edu.)

The maturity of the models in the Cocomo suite 
varies depending on the amount of validation ob-
tained through expert opinion and historical data, 
as indicated in Figure 2. For more information on 
the model development methodology, see the “Cop-
ing with Future Trends” sidebar (see p. 80).

■

■

■

■

■

■

■

■

■

■

■

■

■

Counterpart commercial software-cost-model 
companies, such as CostXpert, Galorath (SEER), 
Price Systems (Price S), and Softstar Systems (Co-
star), have become USC Center for Systems and 
Software Engineering (CSSE) Affiliates. As such, 
they have participated in the research on these 
model extensions and are developing counterpart 
extensions to their commercial offerings. This 
enables the software resource estimation field to 
share expertise while offering users a range of 
solutions.

Future challenges and responses
In the ’80s, our vision of the future was that those 
in the software estimation field were like Tycho 
Brahe in the 16th century, compiling observational 
data that later Keplers and Newtons would use to 
develop a quantitative science of software engi-
neering.2 As we went from unprecedented to prec-
edented software applications, we thought, our 
productivity would increase and our error in esti-
mating software costs would continue to decrease 
(see Figure 3 on p. 82).

However, this view assumed that, like the stars, 
planets, and satellites, software projects would con-
tinue to behave in the same way as time went on. 
But, as we have repeatedly seen, this assumption was 
invalid. The software field is continually being rein-
vented via structured methods, abstract data types, 
information hiding, reusable components, com-
mercial packages, very-high-level languages, rapid-
application-development processes, model-driven  
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Figure 2. The Cocomo suite of models. Dates indicate the time that the 
first paper was published for the model.
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development, agile methods, autonomic software, 
and so on.

So, at point A in Figure 3, increased domain 
understanding led to the ability to develop and 
reuse software components. This boosted pro-
ductivity but increased the estimation error of ex-
isting resource estimation models, until model re-
finements for software reuse were developed and 
calibrated.

With each reinvention (points B, C, and D in Fig-
ure 3), software cost estimation and other software 
engineering fields must also reinvent themselves just 
to keep up, resulting in the type of progress shown 
in the right side of Figure 3. The most encouraging 
thing in Figure 3, though, is that leading and new 

companies can build on this experience and con-
tinue to increase our relative productivity in deliver-
ing the huge masses of software our society increas-
ingly depends on. Our biggest challenges are to 
figure out how to selectively prune the parts of the 
software engineering experience base that become 
less relevant, and to conserve and build on the parts 
with lasting value for the future.

D espite the challenges in software resource 
estimation, major technical achievements 
have enabled the development of sophis-

ticated estimation models. The following achieve-
ments are among the most significant:

some COTS-specific effort multipliers such as COTS 
product maturity, vendor support, interface complexity, 
and performance limitations.

A behavioral analysis of the candidate cost drivers was 
performed (Step 3) and was iterated with the affiliates at two 
follow-up workshops. These workshops also determined the 
cost drivers’ relative significance and motivated the model 
developers to drop and combine some of the drivers. The re-
mainder of Step 4 involved development, review, and itera-
tion of the cost driver rating scales and model data defini-
tions, including definition of the relationships between Cocots 
estimates and Cocomo II estimates. These enabled the execu-
tion of the Delphi process with affiliate and USC-CSSE experts 
(Step 5), and the beginning of Step 6 with the initial collection 
of two affiliate pilot project data points (which identified fur-
ther data definition clarifications needed).

The two affiliate data points appeared compatible with 
the model. However, at this point, we completed six well- 
instrumented COTS-based applications as part of our series 
of campus e-services team project applications. Four of these 
didn’t fit the model well. In analyzing the data and interview-
ing the developers, we found that these projects were spend-
ing much effort in COTS assessment and tailoring, none of 
which generated glue code.

This caused Abts to revise his hypothesis and to go back 
to Step 3 to perform behavioral analyses and develop forms 
for estimating COTS assessment and tailoring. The resulting 
revised model, with significant support from the US Federal 
Aviation Administration, the US Office of Naval Research, the 
US Air Force Electronic Systems Center, and the USC-CSSE 
Affiliates, achieved a reasonably accurate set of estimates 
across a 20-project set of project data points.1

The data collection and analysis also provided us with 
further insights on the critical success factors and processes of 
COTS-based application development. Using the principle of 

■ “process happens where the effort happens,” we were able to 
develop, apply, and validate a set of composable process ele-
ments for COTS-based applications development.2

Step 7 involved integrating inputs from experts and statis-
tical data analysis to produce a calibrated model. We did this 
using the Bayesian approach, which allows the combination 
of expert opinion from Step 5 and empirical data from Step 
6. Multiple-regression analysis of project data points pro-
duced outcome-influenced values. For Cocomo II, 161 data 
points produced mostly statistically significant parameter val-
ues. The Bayesian approach favors experts when they agree 
or historical data where results are significant. The Bayesian 
version of Cocomo II performed considerably better than the 
pure data-regression version in estimating the 161 projects 
in the Cocomo II database. This shows that including expert 
judgment produced a more robust model by avoiding too 
much chasing of noisy data or outliers.

The eight-step methodology has also been used on such 
Cocomo II extensions as the Constructive Quality Model (Co-
qualmo), the Constructive Systems Engineering Cost Model 
(Cosysmo),3 and an elaboration of the Cocomo II Tools effort 
multiplier. Further uses of this methodology are underway 
for Cocomo II extensions addressing computer security cost 
increases and software-intensive systems-of-systems integra-
tion. The process has enabled successful responses to the 
challenges of developing resource estimation models for new 
software development styles and objectives.
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The need for specialized modeling of particular software 
engineering phenomena led to frameworks for developing 
additional cost models. This trend in turn led to the eight-step 
methodology (see Figure A) we successfully used to develop 
the Cocomo II family of models.

A case study of the Constructive Commercial-off-the-Shelf 
Cost Model (Cocots) model illustrates the eight steps. The 
model’s development began in 1995 with a University of 
Southern California Center for Systems and Software Engi-
neering (CSSE) Affiliates workshop on processes and archi-

tectures for the development and evolution of COTS-based 
systems. A breakout group at the workshop identified model 
needs (Step 1) and sources of further information for Step 2. 
This led to Christopher Abts’s hypothesis that a good estima-
tion model would consist of

a Cocomo II-like model using source lines of COTS- 
integration glue code as a sizing parameter;
some Cocomo II effort multipliers such as personnel 
capability, continuity, and experience; and

■

■
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Figure A. The eight-step 
modeling methodology. 
This methodology was 
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Cocomo II family of 
models.
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Appropriate functional forms for estimation 
models—determining which parameters con-
tribute in additive, multiplicative, exponential, 
and asymptotic ways.
Statistically significant model calibration—
obtaining critical masses of carefully defined, 
multiparameter project data that produce ro-
bust, statistically significant parameter values.
Bayesian combination of expert judgment and 
statistical data analysis—providing the ability 
to bootstrap model usage and accumulation of 
critical masses of project data.
Model reinvention to accommodate new de-
velopment paradigms—developing anchor-
point milestones enabling not only principled 

■

■

■

■

estimation but also controllable concurrent en-
gineering for spiral and evolutionary software 
processes.15 This achievement includes models 
for rapid development, reuse, product lines, and 
COTS integration.
New sizing parameters, including function 
points, object-oriented metrics, and specifica-
tion-based sizing parameters.
Methodologies for development, calibration, 
and evolution of new models, including the 
multistep process for exploration, analysis, 
definition, calibration, and refinement of para-
metric estimation models and techniques for 
determining viable reduced-parameter models 
in special domains.

■

■

some COTS-specific effort multipliers such as COTS 
product maturity, vendor support, interface complexity, 
and performance limitations.

A behavioral analysis of the candidate cost drivers was 
performed (Step 3) and was iterated with the affiliates at two 
follow-up workshops. These workshops also determined the 
cost drivers’ relative significance and motivated the model 
developers to drop and combine some of the drivers. The re-
mainder of Step 4 involved development, review, and itera-
tion of the cost driver rating scales and model data defini-
tions, including definition of the relationships between Cocots 
estimates and Cocomo II estimates. These enabled the execu-
tion of the Delphi process with affiliate and USC-CSSE experts 
(Step 5), and the beginning of Step 6 with the initial collection 
of two affiliate pilot project data points (which identified fur-
ther data definition clarifications needed).

The two affiliate data points appeared compatible with 
the model. However, at this point, we completed six well- 
instrumented COTS-based applications as part of our series 
of campus e-services team project applications. Four of these 
didn’t fit the model well. In analyzing the data and interview-
ing the developers, we found that these projects were spend-
ing much effort in COTS assessment and tailoring, none of 
which generated glue code.

This caused Abts to revise his hypothesis and to go back 
to Step 3 to perform behavioral analyses and develop forms 
for estimating COTS assessment and tailoring. The resulting 
revised model, with significant support from the US Federal 
Aviation Administration, the US Office of Naval Research, the 
US Air Force Electronic Systems Center, and the USC-CSSE 
Affiliates, achieved a reasonably accurate set of estimates 
across a 20-project set of project data points.1

The data collection and analysis also provided us with 
further insights on the critical success factors and processes of 
COTS-based application development. Using the principle of 

■ “process happens where the effort happens,” we were able to 
develop, apply, and validate a set of composable process ele-
ments for COTS-based applications development.2

Step 7 involved integrating inputs from experts and statis-
tical data analysis to produce a calibrated model. We did this 
using the Bayesian approach, which allows the combination 
of expert opinion from Step 5 and empirical data from Step 
6. Multiple-regression analysis of project data points pro-
duced outcome-influenced values. For Cocomo II, 161 data 
points produced mostly statistically significant parameter val-
ues. The Bayesian approach favors experts when they agree 
or historical data where results are significant. The Bayesian 
version of Cocomo II performed considerably better than the 
pure data-regression version in estimating the 161 projects 
in the Cocomo II database. This shows that including expert 
judgment produced a more robust model by avoiding too 
much chasing of noisy data or outliers.

The eight-step methodology has also been used on such 
Cocomo II extensions as the Constructive Quality Model (Co-
qualmo), the Constructive Systems Engineering Cost Model 
(Cosysmo),3 and an elaboration of the Cocomo II Tools effort 
multiplier. Further uses of this methodology are underway 
for Cocomo II extensions addressing computer security cost 
increases and software-intensive systems-of-systems integra-
tion. The process has enabled successful responses to the 
challenges of developing resource estimation models for new 
software development styles and objectives.
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The need for specialized modeling of particular software 
engineering phenomena led to frameworks for developing 
additional cost models. This trend in turn led to the eight-step 
methodology (see Figure A) we successfully used to develop 
the Cocomo II family of models.

A case study of the Constructive Commercial-off-the-Shelf 
Cost Model (Cocots) model illustrates the eight steps. The 
model’s development began in 1995 with a University of 
Southern California Center for Systems and Software Engi-
neering (CSSE) Affiliates workshop on processes and archi-

tectures for the development and evolution of COTS-based 
systems. A breakout group at the workshop identified model 
needs (Step 1) and sources of further information for Step 2. 
This led to Christopher Abts’s hypothesis that a good estima-
tion model would consist of

a Cocomo II-like model using source lines of COTS- 
integration glue code as a sizing parameter;
some Cocomo II effort multipliers such as personnel 
capability, continuity, and experience; and
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Contributions to value-based software engi-
neering—integration of resource investment 
levels and benefits estimation models into re-
turn-on-investment models.

These achievements have also impacted the man-
agement of software engineering. Practitioners have 
benefited from them in these areas:

The basis of project stakeholder negotiation 
and expectations management. This includes 
the ability to avoid overcommitment to infea-
sible budgets and schedules.
The basis of project planning and control, and 
impact on processes. Anchor-point milestones 
enable control of complex concurrent engineer-
ing processes. Schedule, cost, and quality as 
independent-variable processes enable meeting 
targets by prioritizing and adding or dropping 
marginal-priority features.
Improved project performance. Phase and ac-
tivity estimates provide a framework for better 
progress monitoring and control.
A framework for process improvement. This 
includes improved planning realism; monitor-
ing and control; models; and productivity, cycle 
time, quality, and business value.
Contributions to communities of interest. Be-
sides the core estimation community, these 
include the communities concerned with em-
pirical methods, metrics, economics-driven 
or value-based software engineering, systems 
architecting, software processes, and project 
management.

Given that the software engineering field is con-

■

■

■

■

■

■

tinually reinventing itself, it is evident that software 
resource estimation is not a solved problem. Be-
cause we expect software engineering to continue 
changing, future challenges will introduce new op-
portunities for improved methods and tools. Here 
are the most significant challenges:

Integration of software- and systems-engineer-
ing estimation. Challenges include compatible 
sizing parameters, schedule estimation, and 
compatible output estimates.
Sizing for new product forms. These include re-
quirements or architectural specifications, sto-
ries, and component-based development sizing.
Exploration of new model forms. Candidates 
include case-based or analogy-based estimation; 
neural nets; system dynamics; and new sizing, 
complexity, reuse, or volatility parameters.
Maintaining compatibility across multiple 
classes of models. Challenges include compat-
ibility of inputs, outputs, and assumptions.
Total-cost-of-ownership estimation. In addi-
tion to software development, this can include 
estimation of costs of installation, training, ser-
vices, equipment, COTS licenses, facilities, op-
erations, maintenance, and disposal.
Benefits and return-on-investment estimation. 
This can include valuation of products, services, 
and less-quantifiable returns such as customer 
satisfaction, controllability, and staff morale.
Accommodating future software engineering 
trends. These can include ultralarge software-
intensive systems, ultrahigh dependability, 
increasingly rapid change, massively distrib-
uted and concurrent development, and the ef-
fects of computational plenty, autonomy, and 
biocomputing.

These trends contribute to the ever-receding ho-
rizon of perfectible resource estimation models but 
keep the model development and evolution com-
munity in a highly stimulating and challenge-driven 
state.
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domain understanding 
led to the ability to 
develop and reuse 
software components. 
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where software 
development was 
essentially reinvented.
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