
feature

74	 I E E E S o f t w a r e P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

e s t ima t i on

Achievements and
Challenges in Cocomo-
Based Software Resource
Estimation

Barry W. Boehm, University of Southern California

Ricardo Valerdi, Massachusetts Institute of Technology

A look at the
Cocomo suite
of models provides
an overview of
the achievements
of software resource
estimation over
the last 40 years.

S
oftware resource estimation methods and models have had a major impact on
successful software engineering practice. They provide milestone budgets and
schedules that help projects determine when they are making satisfactory prog-
ress and when they need corrective action. They help decision makers analyze

software cost-schedule-value trade-offs and make decisions regarding investments, out-
sourcing, COTS products, and legacy software phaseouts. They help organizations prior-
itize investments in improving software productivity, quality, and time to market. They

are included as essential capabilities in virtually all
major software capability maturity models, soft-
ware engineering textbooks, and software engi-
neering bodies of knowledge.

A counterpart appreciation of their contribution
involves what happens to projects that go forward
without good estimates of their milestone budgets
and schedules. All too frequently, such projects
commit to develop too much software within the
agreed-on budget and schedule, have no frame-
work to determine whether they are on track, and
end up with serious overruns or are terminated.
The Standish Group’s 2000–2006 Chaos surveys
produced data on the percentage of projects that
underperformed in certain areas in a particular
year (see Table 1).1

In light of these results, the importance of soft-
ware resource estimation is at center stage. This
article provides an overview of early and interme-
diate achievements from the perspective of the Co-
como (Constructive Cost Model) suite of models
as well as a look to future challenges. (For more

on the relationship between estimation and other
software engineering areas, see the related sidebar
on p. 76.)

Early achievements: 1965–1985
The earliest achievements in software resource es-
timation are tied to specific models developed,
calibrated, and published as early as 1965. Table 2
lists the most prominent of these models. For back-
ground, we explain how some of these models in-
fluenced Cocomo’s evolution over the last 27 years.

The search for good model forms
The most critical early resource-estimation-model-
ing issue was to find the right parametric forms for
estimating software project effort and schedules.
The experiences in analyzing the SDC database
convinced people that a purely linear additive model
didn’t work well. The behavioral phenomenology of
software development clearly wasn’t consistent with
effort estimators combining such factors as size and
complexity in linear additive forms.

	 September/October 2008 I E E E S o f t w a r e � 75

For a while, the best relationships people could
find involved estimating effort as a linear function
of size, modified by a complexity multiplier. The
initial complexity multiplier came from the nonlin-
ear distribution of programming rates in the 169-
project SDC sample shown in Figure 1. For exam-
ple, consider a project developing 10,000 object
instructions of software that’s deemed more com-
plex than 80 percent of the projects in the SDC
sample. For that project, the programming rate
would be roughly 7 person-months per 1,000 ob-
ject instructions. So, the estimated project effort
would be 7 × 10 = 70 person-months.

Most successful early effort estimation models
employed variants of this approach. TRW Wolver-
ton, Boeing Black, and early versions of RCA Price S
employed different programming-rate curves for
different software classes (scientific versus business
versus embedded real time).

By the late ’70s, the software community was
finding that simple complexity ratings weren’t ad-
equate for many software situations that produced
different programming rates. Some organizations
found that their programming rates were more,
rather than less, productive for higher-complexity
software because they assigned their best people
to the most complex projects. Most important,
though, the complexity rating was purely subjec-
tive. There was no objective way of determining
whether a project was at the 60 or 80 percent level,
but going from 80 to 60 percent in Figure 1 will
reduce the estimated effort by roughly a factor of
two. Some organizations were also finding that
their software projects exhibited economies or dis-
economies of scale involving estimation relations
with exponential functions of size.

Many estimation models were developed in the
late ’70s. Doty, IBM function points, the Walston-
Felix model,3 and intermediate versions of RCA
Price S employed multiple combinations of multipli-
cative cost drivers. The Bailey-Basili Meta-Model
experimented with an additive combination of
productivity multipliers and an exponential scale
factor. Putnam SLIM developed exponential rela-
tionships linking size, productivity, and schedule.
Alternative sizing methods such as function points4
were being developed to support better early size
estimation.

Positive and negative experiences with these and
other models led to a set of criteria for developing
additive, exponential, and multiplicative model fac-
tors. The following logic provided the general form
for Cocomo in 1981:

PM = A × (Size)B × (EM)

Table 1
The performance of 8,000 projects

in 350 organizations1

2000 2002 2004 2006

Percentage of projects
delivered within budget and
schedule

28 34 29 35

Percentage of projects can-
celled before completion

23 15 18 19

Percentage of projects over-
run on budget and schedule

49 51 53 46

Table 2
Prominent software estimation models

Model Year

SDC (Systems Development Corp.) 1965

TRW Wolverton 1974

Putnam SLIM (Software Lifecycle Management) 1976

Boeing Black 1977

Doty 1977

IBM-FSD (IBM Federal Systems Division) 1977

RCA Price S 1977

Walston-Felix 1977

IBM function points 1979

Bailey-Basili Meta-Model 1981

Cocomo (Constructive Cost Model) 1981

SoftCost-R 1981

Estimacs 1983

Jensen/SEER (Software Evaluation and Estimation of Resources) 1983

SPQR (Software Productivity Quality and Reliability)/Checkpoint 1985

0

5

10

15

20

Pr
og

ra
m

m
in

g
ra

te
(P

er
so

n-
m

on
th

s/
1,

00
0

ob
je

ct
 in

st
ru

ct
io

ns
)

SDC model
N = 169 programs

0 20 40 60 80 100
Percent of sample below programming rate

Figure 1. An SDC
(Systems Development
Corp.) model example.2
This was the first
parametric model
demonstrating the
nonlinear effects of
software size.

76	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

where

PM is person-months;
A is the calibration factor;
Size is a software module’s functional size, ex-
pressed in terms of lines of code, which has an
additive effect on software development effort;
B represents the scale factors, which have an
exponential effect on software development ef-

■

■

■

■

fort; and
EM represents the effort multipliers, which
have a multiplicative effect on software devel-
opment effort.

The following criteria determine whether a fac-
tor is additive, exponential, or multiplicative:

A factor is additive if it has a local effect on the

■

■

Progress in software resource estimation is deeply intertwined
with progress in other software engineering areas, particu-
larly software architectures, processes, programming, and re-
quirements engineering. Estimation results demonstrating that
software costs escalate nonlinearly as utilization of hardware
resources approaches 100 percent led to information archi-
tectures with significant memory and CPU cycle margins.1
Software cost-schedule trade-off relations indicating that
excessive schedule compression leads to asymptotic cost in-
creases2 led to more realistic project schedules and research
on processes enabling more rapid development.3,4

A well-calibrated Cocomo II software cost driver showing
that inadequate requirements engineering and architecting
leads to disproportionate extra rework focused more emphasis
on these activities.5 The need to determine appropriate mile-
stone endpoints for estimating spiral-process-model costs and
schedules led to the development of spiral anchor-point mile-
stones6 (subsequently used in many projects) and in the Ratio-
nal Unified Process (RUP).7–9 On the other hand, we used the
RUP work breakdown structure to define the project activities
in Cocomo II software cost estimates. Another well-calibrated
Cocomo II scale factor, Software Process Maturity, provided
the best evidence to date that increased process maturity cor-
relates with increased software productivity. Regression analy-
sis of 161 projects indicated a 4 to 11 percent increase per
maturity level, excluding the effect of other factors.10

Resource estimation also interacts deeply with software
product engineering. Most leading cost and schedule estima-
tion models have parameters relating software project costs
and schedules to such product attributes as complexity, re-
quired reliability, hardware constraints, database size, and
software reuse. These contribute greatly to the key practice
of software architecture trade-off analysis. This is a neces-
sary discipline for meeting simultaneous stakeholder needs
for high performance, reliability, usability, evolvability, and
so on, within project budget and schedule constraints.11 Ad-
ditional estimation models in this regard include performance
models,12 reliability models,13 and real-options models for
analyzing investments in software modularity to provide fu-
ture evolvability options.14

Software product engineering and resource estimation
are particularly highly coupled in the area of software-

product-line reuse. Most books in this area integrate cost and
schedule estimation considerations in software domain archi-
tecting.9,15–18 An example success story is Hewlett-Packard’s
investment in product-line reuse to reduce time to market from
48 to 12 months.19

These interactions all come together in the emerging
area of value-based software engineering. This involves not
just business case analysis in the early stages but also the
integration of value considerations into all parts of software
engineering, including life-cycle processes, requirements en-
gineering, architecting, development, test, release planning,
and project management. Chapters on these topics appear in
Value-Based Software Engineering.20

References
	 1.	 B.W. Boehm, “Software and Its Impact: A Quantitative Assessment,”

Datamation, May 1973, pp. 48–59.
	 2.	 L. Putnam, “A General Empirical Solution to the Macro Software Sizing

and Estimating Problem,” IEEE Trans. Software Eng., vol. 4, no. 4, 1978,
pp. 345–361.

	 3.	 L. Arthur, Rapid Evolution Development, John Wiley & Sons, 1992.
	 4.	 S. McConnell, Rapid Development, Microsoft Press, 1996.
	 5.	 B.W. Boehm et al., Software Cost Estimation with Cocomo II, Prentice Hall,

2000.
	 6.	 B.W. Boehm and D. Port, “Escaping the Software Tar Pit: Model Clashes

and How to Avoid Them,” ACM Software Eng. Notes, vol. 24, no. 1, 1999,
pp. 36–48.

	 7.	 W. Royce, Software Project Management, Addison-Wesley, 1998.
	 8.	 P. Kruchten, The Rational Unified Process, 2nd ed., Addison-Wesley, 2001.
	 9.	 I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Develop-

ment Process, Addison-Wesley, 1999.
	10.	 B. Clark, “Quantifying the Effects on Effort of Process Improvement,” IEEE

Software, vol. 17, no. 6, 2000, pp. 65–70.
	11.	 P. Clements, R. Kazman, and M. Klein, Evaluating Software Architectures,

Addison-Wesley, 2002.
	12.	 C. Smith, Performance Engineering of Software Systems, Addison-Wesley,

1990.
	13.	 J. Musa, Software Reliability Engineering, McGraw-Hill, 1999.
	14.	 K. Sullivan et al., “The Structure and Value of Modularity in Software

Design,” Joint Proc. European Software Eng./ACM Sigsoft Foundations of
Software Eng. Conf. (Esec/FSE 05), 2005.

	15.	 J. Poulin, Measuring Software Reuse, Addison-Wesley, 1997.
	16.	 D. Reifer, Practical Software Reuse, John Wiley & Sons, 1997.
	17.	 P. Clements and L. Northrop, Software Product Lines, Addison-Wesley,

2002.
	18.	 I. Jacobson, M. Griss, and P. Jonsson, Software Reuse, Addison-Wesley,

1997.
	19.	 W. Lim, Managing Software Reuse, Prentice Hall, 1999.
	20.	 S. Biffl et al., eds., Value-Based Software Engineering, Springer, 2005.

Relationship to Other Software Engineering Areas

	 September/October 2008 I E E E S o f t w a r e � 77

included entity (that is, it adds another source
instruction).
A factor is multiplicative or exponential if it has
a global effect across the overall system being
estimated (that is, it adds a security requirement
for the entire system).
A factor is exponential if it’s more influential
for larger projects than for smaller projects,
often because of the amount of rework due
to architecture and risk resolution, team com-
patibility, or readiness for system-of-systems
integration.5

We applied these criteria to the development of
the Cocomo and associated models. In order to en-
sure relevance, these models’ assumptions about the
cost-estimating relationships require validation by
historical projects.

Development of model evaluation criteria
Models are frequently evaluated for their ability
to estimate software development. To evaluate the
Cocomo model’s utility for practical estimation, we
used these criteria:2

Definition. Has the model clearly defined the
costs it’s estimating and the costs it’s excluding?
Fidelity. Are the estimates close to the actual
costs expended on the projects?
Scope. Does the model cover the class of
software projects whose costs you need to
estimate?
Objectivity. Does the model avoid allocating
most of the software cost variance to poorly
calibrated subjective factors (such as complex-
ity or personnel factors)? That is, is it difficult
to jigger the model to obtain any results you
want?
Constructiveness. Can a user tell why the model
gives the estimates it does? Does it help the user
understand the software job to be done?
Detail. Does the model easily accommodate the
estimation of a software system consisting of a
number of subsystems and units? Does it give
(accurate) phase and activity breakdowns?
Stability. Do small differences in inputs produce
small differences in output cost estimates?
Ease of use. Are the model inputs and options
easy to understand and specify?
Prospectiveness. Does the model avoid using
information that won’t be known until the proj-
ect is complete?
Parsimony. Does the model avoid using highly
redundant factors or factors that make no ap-
preciable contribution to the results?

■

■

■

■

■

■

■

■

■

■

■

■

For the most part, each of these criteria’s sig-
nificance is reasonably self-evident. From a generic
standpoint, the criteria have also proven helpful in
the development and evaluation of other cost esti-
mation models in the Cocomo suite and elsewhere.

Emergence of a model
marketplace and community of interest
The early ’80s marked the development of a soft-
ware resource estimation community of interest,
including conferences, journals, and books. This
helped socialize both the addressing of the issues we
just discussed and the emergence of several estima-
tion models that passed both usage tests and tests
of market viability. These models included refined
versions of earlier models such as RCA Price S and
Putnam SLIM and new models such as SPQR/
Checkpoint, Estimacs, Jensen/SEER, Softcost-R,
and Cocomo and its commercial implementations
such as PCOC (Personal Computer Cocomo), Ge-
como (General Electric [UK] Cocomo), Costar (Co-
como Star), and Before You Leap. These models
were highly effective for the largely waterfall-model,
build-from-scratch software projects of the ’80s but
began to encounter new classes of challenges, as we
discuss next.

Intermediate achievements:
1985–2005
We can divide these two decades roughly into two
equal periods: one of mainstream refinements and
one of proliferation of software development styles.

1985–1995: Mainstream refinements
This period primarily involved proprietors of the
leading cost models addressing problems that users
brought up in the context of their existing main-
stream capabilities. Good examples are the risk an-
alyzers, either Monte Carlo based or agent based,
and the breakdown of overall cost and schedule es-
timates by phase, activity, or increment.

The most significant extensions during this pe-
riod were in software sizing. Under the prospective-
ness criterion, accurate early estimation of SLOC
is a major challenge. Some comparison-oriented
methods involving paired size comparisons, rank-
ing methods, and degree-of-difference comparisons
were developed. They were helpful, but their per-
formance was spotty and expert-dependent.

During 1985–1995, the function-point commu-
nity made a major step forward in defining uniform
counting rules for its key size elements of inputs,
outputs, queries, internal files, and external inter-
faces, along with associated training and certifica-
tion capabilities.6 This made function points a good

An important
criterion
for model

evaluation is
whether the
model avoids
using highly
redundant

factors
or factors
that make

no appreciable
contribution

to the results.

78	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

match for business applications, which tend to have
simple internal business logic. However, this ap-
proach was not as good for scientific and real-time
control applications with more complex internals.

1995–2005: Proliferation
of development styles
The development of Cocomo II, starting in 1995,
was based primarily on the realization that the
1981 Cocomo model’s assumptions of sequential
waterfall-model development, three stratified de-
velopment modes, and occasional software reuse
with linear savings were becoming obsolete. We
projected software applications development classes
(end-user programming, application generators, ap-
plication composition, system integration, and in-
frastructure) out to 2005 and developed Cocomo II
to address them.7 This involved

developing new anchor-point milestones to
serve as the endpoints for concurrent spiral-
model cost and schedule estimates;
developing a more realistic nonlinear reuse
model;

■

■

adding exponential scale factors for such scal-
ability controllables as process maturity and
architecture/risk resolution;
adding new cost drivers for such phenomena as
development for reuse, distributed software de-
velopment, and personnel continuity;
dropping obsolete cost drivers such as turn-
around time; and
enabling the use of alternative early sizing meth-
ods such as function points.

(For a discussion of alternative model forms, see the
related sidebar.)

Each of these changes was supported by valu-
able research results and by our experiences in try-
ing to tailor the original Cocomo to new situations.
We based the nonlinear effects of software reuse on
research at the NASA Software Engineering Labo-
ratory,8 maintenance-effort distributions,9 and non-
linear software integration effects.10 Anchor-point
milestones and their phase distributions were sup-
ported by research at Rational and AT&T and by
spiral-model use at TRW.11,12 Process maturity char-
acterization was supported by collaboration with the

■

■

■

■

Researchers have been concurrently exploring alternative
software resource estimation model forms. Using metadata
about a project (size, type, process, domain, and so on),
analogy or case-based estimation produces estimates of the
project’s required resources on the basis of the resources
required for the most similar projects in a large database.1,2

One such database is the International Software Benchmark-
ing Standards Group (Isbsg) database of 3,000 software
projects.3 In one study, analogy-based estimation performed
better than alternative estimation methods in 60 percent of
the cases but performed worst in 30 percent of the cases,4 in-
dicating some promise but need of further refinement.

Neural-net models use layouts of simulated neurons and
training algorithms to adjust neuron connection parameters
to learn the best fit between input parameters and values to
be estimated. Implementations of these models have pro-
duced accuracies of plus or minus 10 percent error,5 but in
many cases, estimation of projects outside the training set has
been much less accurate. Under the constructiveness criterion
(see the section “Development of model evaluation criteria”
in the main article), these models do not provide constructive
insights on the software job to be done. Researchers have
recently used other machine-learning techniques to success-
fully determine reduced-parameter versions of parametric
cost models.6

Systems dynamics models integrate systems of differ-
ential equations to determine the flow of effort, defects, or

other quantities through a process as a function of time. They
are good for understanding the effects of dynamic relations
among software development subprocesses, such as the con-
ditions under which Brooks’ law holds (adding more people
to a late software project will make it later).7 Pioneering re-
search in this area has been done for general software proj-
ect relationships8 and for interactions among effort, schedule,
and effect density9 in performing software inspections.

Each of these model forms provides complementary per
spectives to those of parametric models. Challenges for the fu-
ture include finding better ways to integrate their contributions.

References
	 1.	 T. Mukhopadhyay, S. Vincinanza, and M. Prietula, “Examining the Feasi-

bility of a Case-Based Reasoning Model for Software Effort Estimation,”
MIS Quarterly, June 1992, pp. 155–171.

	 2.	 M. Shepperd and C. Schofield, “Estimating Software Project Effort Using
Analogies,” IEEE Trans. Software Eng., vol. 23, no. 11, 1997, pp. 736–743.

	 3.	 Data R8, Int’l Software Benchmarking Standards Group, 2005.
	 4.	 M. Ruhe, R. Jeffery, and I. Wieczorek, “Cost Estimation for Web Applica-

tions,” Proc. 25th Int’l Conf. Software Eng. (ICSE 03), IEEE CS Press, 2003,
p. 285.

	 5.	 G. Wittig, Estimating Software Development Effort with Connectionist
Models, paper 33/95, Dept. of Information Systems, Monash Univ., 1995.

	 6.	 T. Menzies et al., “Selecting Best Practices for Effort Estimation,” IEEE
Trans. Software Eng., vol. 32, no. 11, 2006, pp. 883–895.

	 7.	 A. Endres and D. Rombach, A Handbook of Software and Systems Engi
neering: Empirical Observations, Laws and Theories, Addison-Wesley,
2003.

	 8.	 T. Abdel-Hamid and S. Madnick, Software Project Dynamics, Prentice
Hall, 1991.

	 9.	 R. Madachy, Software Process Dynamics, Wiley-IEEE Press, 2008.

Alternative Model Forms

	 September/October 2008 I E E E S o f t w a r e � 79

Carnegie Mellon Software Engineering Institute and
its associated definitions and data on productivity ef-
fects.13 Estimation of the relative cost of writing for
reuse was supported by software reuse experiences.
We also addressed exponential-diseconomies-of-
scale effects in software development.14

We successfully calibrated the resulting Cocomo
II model to 161 carefully collected and verified proj-
ect data points. Its predictions within this sample
were within 30 percent of the actuals 75 percent of
the time for effort (80 percent with local calibra-
tion) and 64 percent of the time for schedule (75
percent with local calibration). It has been broadly
incorporated into several commercial cost estima-
tion models.

However, although Cocomo II does a good job
for the 2005 development styles projected in 1995,
it doesn’t cover several newer development styles
well. This led us to develop additional Cocomo II-
related models such as

the Chinese government version of Cocomo
(Cogomo),
Constructive Incremental Cocomo (Coincomo),
the Constructive Quality Model (Coqualmo),
Orthogonal Defect Classification (ODC)
Coqualmo,
Information Dependability Attribute Value Es-
timation (iDAVE),
the Constructive Product Line Investment
Model (Coplimo),
the Constructive Productivity-Improvement
Model (Copromo),
the Constructive Phased Schedule and Effort
Model (Copsemo),
the Constructive Rapid Application Develop-
ment Model (Coradmo),
the Constructive Security Cost Model (Co-
secmo),
the Constructive Commercial-off-the-Shelf
Cost Model (Cocots),
the Constructive Systems Engineering Cost
Model (Cosysmo), and
the Constructive System-of-Systems Integration
Model (Cososimo).

(For more information on these models, visit the
Center for Systems and Software Engineering,
http://csse.usc.edu.)

The maturity of the models in the Cocomo suite
varies depending on the amount of validation ob-
tained through expert opinion and historical data,
as indicated in Figure 2. For more information on
the model development methodology, see the “Cop-
ing with Future Trends” sidebar (see p. 80).

■

■

■

■

■

■

■

■

■

■

■

■

■

Counterpart commercial software-cost-model
companies, such as CostXpert, Galorath (SEER),
Price Systems (Price S), and Softstar Systems (Co-
star), have become USC Center for Systems and
Software Engineering (CSSE) Affiliates. As such,
they have participated in the research on these
model extensions and are developing counterpart
extensions to their commercial offerings. This
enables the software resource estimation field to
share expertise while offering users a range of
solutions.

Future challenges and responses
In the ’80s, our vision of the future was that those
in the software estimation field were like Tycho
Brahe in the 16th century, compiling observational
data that later Keplers and Newtons would use to
develop a quantitative science of software engi-
neering.2 As we went from unprecedented to prec-
edented software applications, we thought, our
productivity would increase and our error in esti-
mating software costs would continue to decrease
(see Figure 3 on p. 82).

However, this view assumed that, like the stars,
planets, and satellites, software projects would con-
tinue to behave in the same way as time went on.
But, as we have repeatedly seen, this assumption was
invalid. The software field is continually being rein-
vented via structured methods, abstract data types,
information hiding, reusable components, com-
mercial packages, very-high-level languages, rapid-
application-development processes, model-driven

iDAVE
2003

Coplimo
2003

Copsemo
1998

Cosecmo
2004

Coradmo
1999

Copromo
1998

ODC
Coqualmo

2007

Coqualmo
1998

Cocomo 81
1981

Model has been calibrated with historical project data and expert (Delphi) data
Model is derived from Cocomo II
Initial model framework established; model being refined

Cocots
2000

Cosysmo
2002

Cocomo II
2000

Cogomo
2007

Coincomo
2004

Software cost models

Software extensions

Other independent
estimation models

Cososimo
2004

Figure 2. The Cocomo suite of models. Dates indicate the time that the
first paper was published for the model.

80	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

development, agile methods, autonomic software,
and so on.

So, at point A in Figure 3, increased domain
understanding led to the ability to develop and
reuse software components. This boosted pro-
ductivity but increased the estimation error of ex-
isting resource estimation models, until model re-
finements for software reuse were developed and
calibrated.

With each reinvention (points B, C, and D in Fig-
ure 3), software cost estimation and other software
engineering fields must also reinvent themselves just
to keep up, resulting in the type of progress shown
in the right side of Figure 3. The most encouraging
thing in Figure 3, though, is that leading and new

companies can build on this experience and con-
tinue to increase our relative productivity in deliver-
ing the huge masses of software our society increas-
ingly depends on. Our biggest challenges are to
figure out how to selectively prune the parts of the
software engineering experience base that become
less relevant, and to conserve and build on the parts
with lasting value for the future.

D espite the challenges in software resource
estimation, major technical achievements
have enabled the development of sophis-

ticated estimation models. The following achieve-
ments are among the most significant:

some COTS-specific effort multipliers such as COTS
product maturity, vendor support, interface complexity,
and performance limitations.

A behavioral analysis of the candidate cost drivers was
performed (Step 3) and was iterated with the affiliates at two
follow-up workshops. These workshops also determined the
cost drivers’ relative significance and motivated the model
developers to drop and combine some of the drivers. The re-
mainder of Step 4 involved development, review, and itera-
tion of the cost driver rating scales and model data defini-
tions, including definition of the relationships between Cocots
estimates and Cocomo II estimates. These enabled the execu-
tion of the Delphi process with affiliate and USC-CSSE experts
(Step 5), and the beginning of Step 6 with the initial collection
of two affiliate pilot project data points (which identified fur-
ther data definition clarifications needed).

The two affiliate data points appeared compatible with
the model. However, at this point, we completed six well-
instrumented COTS-based applications as part of our series
of campus e-services team project applications. Four of these
didn’t fit the model well. In analyzing the data and interview-
ing the developers, we found that these projects were spend-
ing much effort in COTS assessment and tailoring, none of
which generated glue code.

This caused Abts to revise his hypothesis and to go back
to Step 3 to perform behavioral analyses and develop forms
for estimating COTS assessment and tailoring. The resulting
revised model, with significant support from the US Federal
Aviation Administration, the US Office of Naval Research, the
US Air Force Electronic Systems Center, and the USC-CSSE
Affiliates, achieved a reasonably accurate set of estimates
across a 20-project set of project data points.1

The data collection and analysis also provided us with
further insights on the critical success factors and processes of
COTS-based application development. Using the principle of

■ “process happens where the effort happens,” we were able to
develop, apply, and validate a set of composable process ele-
ments for COTS-based applications development.2

Step 7 involved integrating inputs from experts and statis-
tical data analysis to produce a calibrated model. We did this
using the Bayesian approach, which allows the combination
of expert opinion from Step 5 and empirical data from Step
6. Multiple-regression analysis of project data points pro-
duced outcome-influenced values. For Cocomo II, 161 data
points produced mostly statistically significant parameter val-
ues. The Bayesian approach favors experts when they agree
or historical data where results are significant. The Bayesian
version of Cocomo II performed considerably better than the
pure data-regression version in estimating the 161 projects
in the Cocomo II database. This shows that including expert
judgment produced a more robust model by avoiding too
much chasing of noisy data or outliers.

The eight-step methodology has also been used on such
Cocomo II extensions as the Constructive Quality Model (Co-
qualmo), the Constructive Systems Engineering Cost Model
(Cosysmo),3 and an elaboration of the Cocomo II Tools effort
multiplier. Further uses of this methodology are underway
for Cocomo II extensions addressing computer security cost
increases and software-intensive systems-of-systems integra-
tion. The process has enabled successful responses to the
challenges of developing resource estimation models for new
software development styles and objectives.

References
	 1.	 C. Abts, “A Cost Estimation Model for COTS Integration,” PhD disserta-

tion, Industrial and Systems Eng. Dept., Univ. of Southern Calif., 2004.
	 2.	 Y. Yang et al., “Value-Based Processes for COTS-Based Applications,”

IEEE Software, vol. 22, no. 4, 2005, pp. 54–62.
	 3.	 R. Valerdi, Systems Engineering Cost Estimation with Cosysmo, John Wiley

& Sons, 2008.

The need for specialized modeling of particular software
engineering phenomena led to frameworks for developing
additional cost models. This trend in turn led to the eight-step
methodology (see Figure A) we successfully used to develop
the Cocomo II family of models.

A case study of the Constructive Commercial-off-the-Shelf
Cost Model (Cocots) model illustrates the eight steps. The
model’s development began in 1995 with a University of
Southern California Center for Systems and Software Engi-
neering (CSSE) Affiliates workshop on processes and archi-

tectures for the development and evolution of COTS-based
systems. A breakout group at the workshop identified model
needs (Step 1) and sources of further information for Step 2.
This led to Christopher Abts’s hypothesis that a good estima-
tion model would consist of

a Cocomo II-like model using source lines of COTS-
integration glue code as a sizing parameter;
some Cocomo II effort multipliers such as personnel
capability, continuity, and experience; and

■

■

Coping with Future Trends

Determine model needs
Step 1

Analyze existing literature
Step 2

Perform behavioral analyses
Step 3

Define relative significance,
data, and ratings
Step 4

Perform expert-judgment Delphi
assessment; formulate a priori
model
Step 5

Gather project data
Step 6

Determine Bayesian
a posteriori model
Step 7

Gather more data; refine model
Step 8

Figure A. The eight-step
modeling methodology.
This methodology was
used to develop the
Cocomo II family of
models.

	 September/October 2008 I E E E S o f t w a r e � 81

Appropriate functional forms for estimation
models—determining which parameters con-
tribute in additive, multiplicative, exponential,
and asymptotic ways.
Statistically significant model calibration—
obtaining critical masses of carefully defined,
multiparameter project data that produce ro-
bust, statistically significant parameter values.
Bayesian combination of expert judgment and
statistical data analysis—providing the ability
to bootstrap model usage and accumulation of
critical masses of project data.
Model reinvention to accommodate new de-
velopment paradigms—developing anchor-
point milestones enabling not only principled

■

■

■

■

estimation but also controllable concurrent en-
gineering for spiral and evolutionary software
processes.15 This achievement includes models
for rapid development, reuse, product lines, and
COTS integration.
New sizing parameters, including function
points, object-oriented metrics, and specifica-
tion-based sizing parameters.
Methodologies for development, calibration,
and evolution of new models, including the
multistep process for exploration, analysis,
definition, calibration, and refinement of para-
metric estimation models and techniques for
determining viable reduced-parameter models
in special domains.

■

■

some COTS-specific effort multipliers such as COTS
product maturity, vendor support, interface complexity,
and performance limitations.

A behavioral analysis of the candidate cost drivers was
performed (Step 3) and was iterated with the affiliates at two
follow-up workshops. These workshops also determined the
cost drivers’ relative significance and motivated the model
developers to drop and combine some of the drivers. The re-
mainder of Step 4 involved development, review, and itera-
tion of the cost driver rating scales and model data defini-
tions, including definition of the relationships between Cocots
estimates and Cocomo II estimates. These enabled the execu-
tion of the Delphi process with affiliate and USC-CSSE experts
(Step 5), and the beginning of Step 6 with the initial collection
of two affiliate pilot project data points (which identified fur-
ther data definition clarifications needed).

The two affiliate data points appeared compatible with
the model. However, at this point, we completed six well-
instrumented COTS-based applications as part of our series
of campus e-services team project applications. Four of these
didn’t fit the model well. In analyzing the data and interview-
ing the developers, we found that these projects were spend-
ing much effort in COTS assessment and tailoring, none of
which generated glue code.

This caused Abts to revise his hypothesis and to go back
to Step 3 to perform behavioral analyses and develop forms
for estimating COTS assessment and tailoring. The resulting
revised model, with significant support from the US Federal
Aviation Administration, the US Office of Naval Research, the
US Air Force Electronic Systems Center, and the USC-CSSE
Affiliates, achieved a reasonably accurate set of estimates
across a 20-project set of project data points.1

The data collection and analysis also provided us with
further insights on the critical success factors and processes of
COTS-based application development. Using the principle of

■ “process happens where the effort happens,” we were able to
develop, apply, and validate a set of composable process ele-
ments for COTS-based applications development.2

Step 7 involved integrating inputs from experts and statis-
tical data analysis to produce a calibrated model. We did this
using the Bayesian approach, which allows the combination
of expert opinion from Step 5 and empirical data from Step
6. Multiple-regression analysis of project data points pro-
duced outcome-influenced values. For Cocomo II, 161 data
points produced mostly statistically significant parameter val-
ues. The Bayesian approach favors experts when they agree
or historical data where results are significant. The Bayesian
version of Cocomo II performed considerably better than the
pure data-regression version in estimating the 161 projects
in the Cocomo II database. This shows that including expert
judgment produced a more robust model by avoiding too
much chasing of noisy data or outliers.

The eight-step methodology has also been used on such
Cocomo II extensions as the Constructive Quality Model (Co-
qualmo), the Constructive Systems Engineering Cost Model
(Cosysmo),3 and an elaboration of the Cocomo II Tools effort
multiplier. Further uses of this methodology are underway
for Cocomo II extensions addressing computer security cost
increases and software-intensive systems-of-systems integra-
tion. The process has enabled successful responses to the
challenges of developing resource estimation models for new
software development styles and objectives.

References
	 1.	 C. Abts, “A Cost Estimation Model for COTS Integration,” PhD disserta-

tion, Industrial and Systems Eng. Dept., Univ. of Southern Calif., 2004.
	 2.	 Y. Yang et al., “Value-Based Processes for COTS-Based Applications,”

IEEE Software, vol. 22, no. 4, 2005, pp. 54–62.
	 3.	 R. Valerdi, Systems Engineering Cost Estimation with Cosysmo, John Wiley

& Sons, 2008.

The need for specialized modeling of particular software
engineering phenomena led to frameworks for developing
additional cost models. This trend in turn led to the eight-step
methodology (see Figure A) we successfully used to develop
the Cocomo II family of models.

A case study of the Constructive Commercial-off-the-Shelf
Cost Model (Cocots) model illustrates the eight steps. The
model’s development began in 1995 with a University of
Southern California Center for Systems and Software Engi-
neering (CSSE) Affiliates workshop on processes and archi-

tectures for the development and evolution of COTS-based
systems. A breakout group at the workshop identified model
needs (Step 1) and sources of further information for Step 2.
This led to Christopher Abts’s hypothesis that a good estima-
tion model would consist of

a Cocomo II-like model using source lines of COTS-
integration glue code as a sizing parameter;
some Cocomo II effort multipliers such as personnel
capability, continuity, and experience; and

■

■

Coping with Future Trends

Determine model needs
Step 1

Analyze existing literature
Step 2

Perform behavioral analyses
Step 3

Define relative significance,
data, and ratings
Step 4

Perform expert-judgment Delphi
assessment; formulate a priori
model
Step 5

Gather project data
Step 6

Determine Bayesian
a posteriori model
Step 7

Gather more data; refine model
Step 8

Figure A. The eight-step
modeling methodology.
This methodology was
used to develop the
Cocomo II family of
models.

82	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

Contributions to value-based software engi-
neering—integration of resource investment
levels and benefits estimation models into re-
turn-on-investment models.

These achievements have also impacted the man-
agement of software engineering. Practitioners have
benefited from them in these areas:

The basis of project stakeholder negotiation
and expectations management. This includes
the ability to avoid overcommitment to infea-
sible budgets and schedules.
The basis of project planning and control, and
impact on processes. Anchor-point milestones
enable control of complex concurrent engineer-
ing processes. Schedule, cost, and quality as
independent-variable processes enable meeting
targets by prioritizing and adding or dropping
marginal-priority features.
Improved project performance. Phase and ac-
tivity estimates provide a framework for better
progress monitoring and control.
A framework for process improvement. This
includes improved planning realism; monitor-
ing and control; models; and productivity, cycle
time, quality, and business value.
Contributions to communities of interest. Be-
sides the core estimation community, these
include the communities concerned with em-
pirical methods, metrics, economics-driven
or value-based software engineering, systems
architecting, software processes, and project
management.

Given that the software engineering field is con-

■

■

■

■

■

■

tinually reinventing itself, it is evident that software
resource estimation is not a solved problem. Be-
cause we expect software engineering to continue
changing, future challenges will introduce new op-
portunities for improved methods and tools. Here
are the most significant challenges:

Integration of software- and systems-engineer-
ing estimation. Challenges include compatible
sizing parameters, schedule estimation, and
compatible output estimates.
Sizing for new product forms. These include re-
quirements or architectural specifications, sto-
ries, and component-based development sizing.
Exploration of new model forms. Candidates
include case-based or analogy-based estimation;
neural nets; system dynamics; and new sizing,
complexity, reuse, or volatility parameters.
Maintaining compatibility across multiple
classes of models. Challenges include compat-
ibility of inputs, outputs, and assumptions.
Total-cost-of-ownership estimation. In addi-
tion to software development, this can include
estimation of costs of installation, training, ser-
vices, equipment, COTS licenses, facilities, op-
erations, maintenance, and disposal.
Benefits and return-on-investment estimation.
This can include valuation of products, services,
and less-quantifiable returns such as customer
satisfaction, controllability, and staff morale.
Accommodating future software engineering
trends. These can include ultralarge software-
intensive systems, ultrahigh dependability,
increasingly rapid change, massively distrib-
uted and concurrent development, and the ef-
fects of computational plenty, autonomy, and
biocomputing.

These trends contribute to the ever-receding ho-
rizon of perfectible resource estimation models but
keep the model development and evolution com-
munity in a highly stimulating and challenge-driven
state.

References
	 1.	 Chaos Report, Standish Group Int’l, 2007.
	 2.	 B.W. Boehm, Software Engineering Economics, Pren-

tice Hall, 1981.
	 3.	 C.E. Walston and C.P. Felix, “A Method of Program-

ming Measurement and Estimation,” IBM Systems J.,
vol. 16, no. 1, 1977, pp. 54–73.

	 4.	 A.J. Albrecht and J. Gaffney, “Software Function,
Source Lines of Code, and Development Effort Predic-
tion: A Software Science Validation,” IEEE Trans.
Software Eng., vol. SE-9, no. 6, 1983, pp. 639–648.

	 5.	 J. Lane and R. Valerdi, “Synthesizing System-of-Sys-
tems Concepts for Use in Cost Estimation,” Systems
Eng., Dec. 2007, pp. 297–308.

■

■

■

■

■

■

■

A

Component-
based

Precedented

Unprecedented
COTS Very-high-level

languages
Agents, agility,

aspects, autonomy

B C D
Time and domain understanding

Relative productivity

Estimation error

Figure 3. Software
estimation—the
receding horizon. At
point A, increased
domain understanding
led to the ability to
develop and reuse
software components.
Points B, C, and D
indicate other points
where software
development was
essentially reinvented.

	 September/October 2008 I E E E S o f t w a r e � 83

	 6.	 H. Rehesaar, “ISO/IEC Functional Size Measurement
Standards,” Proc. Gufpi/Ifpug Conf. Software Mea-
surement and Management, Int’l Function Point Users
Group, 1996, pp. 311–318.

	 7. 	B.W. Boehm et al., Software Cost Estimation with
Cocomo II, Prentice Hall, 2000.

	 8.	 R. Selby, “Empirically Analyzing Software Reuse in a
Production Environment,” Software Reuse: Emerging
Technology, W. Tracz, ed., IEEE CS Press, 1988, pp.
176–189.

	 9.	 G. Parikh and N. Zvegintzov, “The World of Software
Maintenance,” Tutorial on Software Maintenance,
IEEE CS Press, 1993, pp. 1–3.

	10.	 R. Gerlich and U. Denskat, “A Cost Estimation Model
for Maintenance and High Reuse,” Proc. European
Software Cost Modeling Meeting (Escom 94), 1994.

	11.	 W. Royce, Software Project Management, Addison-
Wesley, 1998.

	12.	 J. Marenzano, “System Architecture Review Findings,”
Proc. 17th Int’l Conf. Software Eng. Architecture
Workshop, Carnegie Mellon Univ., 1995.

	13.	 W. Hayes and D. Zubrow, Moving on Up: Data and
Experience Doing CMM-Based Process Improvement,
tech. report CMU/SEI-95-TR-008, Software Eng. Inst.,
Carnegie Mellon Univ., 1995.

	14.	 R. Banker, H. Chang, and C. Kemerer, “Evidence on
Economies of Scale in Software Development,” Infor-
mation and Software Technology, vol. 36, no. 5, 1994,
pp. 275–282.

	15.	 B.W. Boehm and W. Hansen, “The Spiral Model as a
Tool for Evolutionary Acquisition,” CrossTalk, vol. 14,
no. 5, 2001, pp. 4–11.

About the Authors
Barry W. Boehm is the TRW Professor of Software Engineering in the University of
Southern California’s Computer Science and Industrial and Systems Engineering Depart-
ments. He’s also the director of the university’s Center for Systems and Software Engineer-
ing. Boehm received his PhD in mathematics from the University of California, Los Angeles.
Contact him at boehm@usc.edu.

Ricardo Valerdi is a research associate at the Massachusetts Institute of Technology’s
Lean Advancement Initiative and the Systems Engineering Advancement Research Initiative.
Valerdi received his PhD in industrial and systems engineering from the University of South-
ern California. Contact him at rvalerdi@mit.edu.

Call for articles

This special issue will share proven embedded-

systems ideas and experiences from all phases of the

development life cycle and from a range of industry domains.

Of specific interest is how practices and methods from

enterprise and desktop computing can be transferred into

the embedded domain. Topics of particular interest include

Design methods (so-called DFX)
Domain-specific languages, including
hardware-related issues
State of the practice in modeling, design,
verification, and validation
Communication protocols and middleware
Modeling of quality attributes (for instance,
where safety meets security)
Concepts for maintenance, robustness, and
remote diagnosable architectures
Schemes for remote software maintenance and testing

■

■

■

■

■

■

■

Publication: May/June 2009
Submission deadline: 1 Nov. 2008

Guest Editors:
Christof Ebert, Vector,
christof.ebert@vector-consulting.de
Jürgen Salecker, Siemens,
juergen.salecker@siemens.com

Complete call: www.computer.org/
software/cfp3.htm
Author guidelines: www.computer.org/
software/author.htm
Submission details: software@computer.org

■

■

Software Development
for Embedded Systems

www.computer.org/
software

