

II – Programmatori e verificatori

□ Programmatori

- O Partecipano alla realizzazione e manutenzione del prodotto
- O Hanno competenze tecniche, visione e responsabilità circoscritte
- O Formano la categoria storicamente più popolosa
- O Partecipano anche alla manutenzione

□ Verificatori

- O Partecipano all'intero ciclo di vita
- Hanno competenze tecniche, esperienza di progetto, conoscenza delle norme
- O Hanno capacità di giudizio e di relazione

Dipartimento di Informatica, Università di Pisa

9/40

Gestione di progetto

IV – Amministratore

□ Controllo dell'ambiente di lavoro

- O Amministrazione delle risorse e delle infrastrutture
- O Risoluzione di problemi legati alla gestione dei processi
- O Gestione della documentazione di progetto (librarian)
- O Controllo di versioni e configurazioni

□ Funzione o ruolo?

- Funzione aziendale in organizzazioni molto strutturate, con più progetti simili
- O Ruolo di progetto in strutture con ambiti eterogenei

Dipartimento di Informatica, Università di Pisa

11/40

Gestione di progetto

III - Responsabile

- Rappresenta il progetto presso il fornitore e presso il committente
 - O Accentra le responsabilità di scelta e approvazione
 - O Partecipa al progetto per tutta la sua durata
 - o È difficilmente sostituibile

□ Ha responsabilità su

- Pianificazione
- O Gestione delle risorse umane
- O Controllo, coordinamento e relazioni esterne

□ Deve avere conoscenze e capacità tecniche

O Per comprendere e anticipare l'evoluzione del progetto

Dipartimento di Informatica, Università di Pisa

10/40

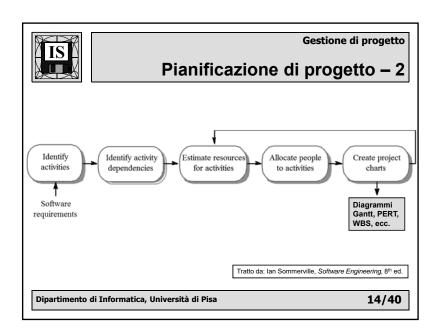
Gestione di progetto

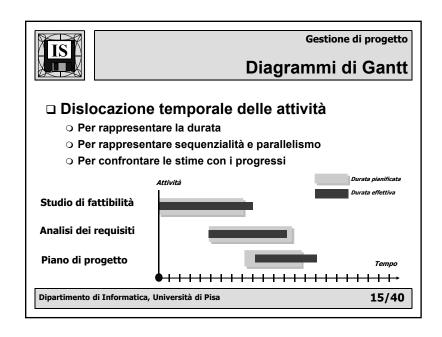
Gestione qualità

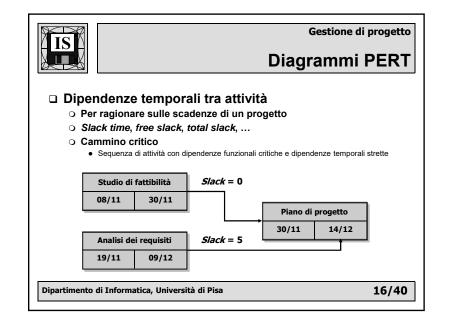
□ La funzione di più recente introduzione

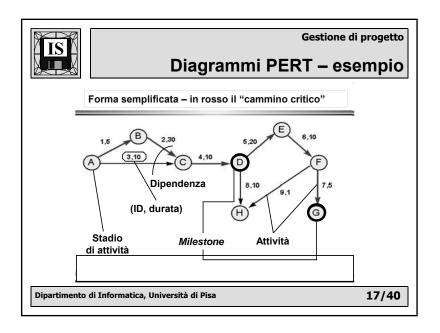
O Funzione aziendale e non ruolo di progetto!

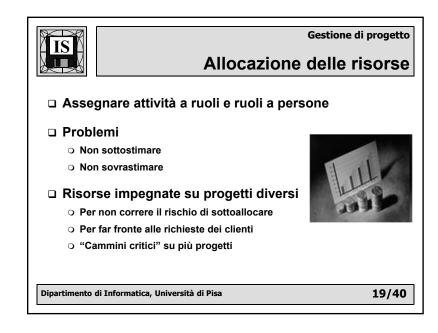
□ Dimensioni di qualità

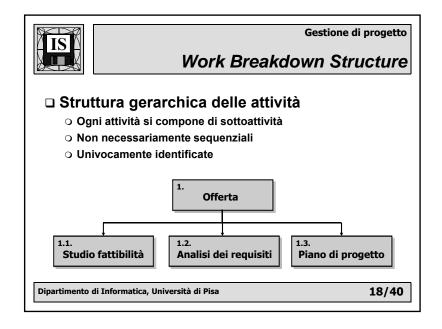

- O Dei prodotti e dei processi
- O Sia verso il committente che verso la direzione aziendale

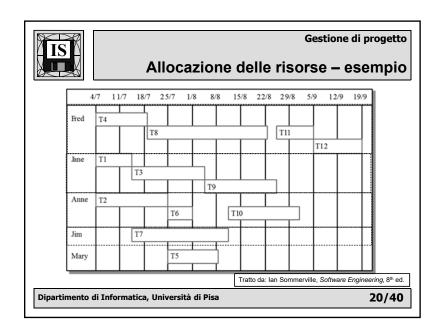

□ Dare confidenza


- O Definendo e manutenendo i processi aziendali (ciclo PDCA)
- O Verificandone la corretta applicazione


Dipartimento di Informatica, Università di Pisa







Stima dei costi di progetto

- □ Come pianificare?
 - O Gli strumenti permettono di organizzare le attività
 - O Gli strumenti permettono di evidenziare le criticità
 - O Gli strumenti permettono di studiare scenari diversi
 - O Come definire durata e costo delle attività?
- □ Tempo/persona
 - O Unità di misura del tempo necessario a un progetto
 - Unità di tempo = mese / settimane / giorni
 - O Come stimare il tempo/persona?

Dipartimento di Informatica, Università di Pisa

21/40

Gestione di progetto

Problematiche di stima

- □ Legge di Parkinson
 - Cyril Northcote Parkinson, Parkinson's Law: The Pursuit of Progress, 1951: "work expands to fill the time available" come critica dell'inefficienza (dell'amministrazione, ma non solo)
- □ Legge della domanda
 - "The lower the price of a service or commodity, the greater the quantity demanded" (se un programmatore costa poco ne prendiamo due ...)
- □ Prezzo per battere la competizione
- □ Giudizio dell'esperto
- Stima per analogia
- Modello algoritmico dei costi

Dipartimento di Informatica, Università di Pisa

23/40

Gestione di progetto

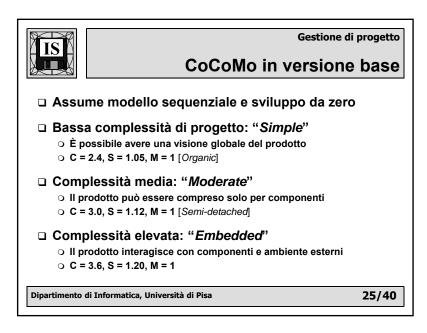
Fattori di influenza

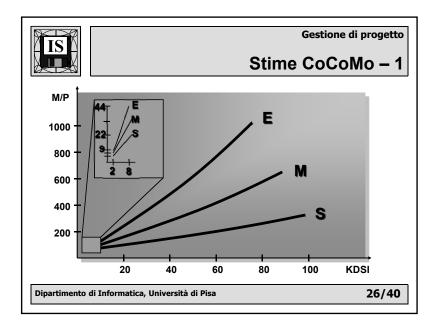
- □ Dimensione del progetto
- □ Esperienza del dominio
- □ Tecnologie adottate
- □ Ambiente di sviluppo
- □ Qualità richiesta dei processi

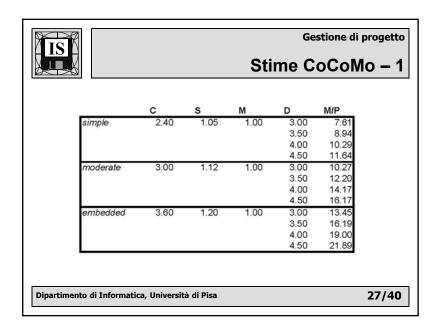
Dipartimento di Informatica, Università di Pisa

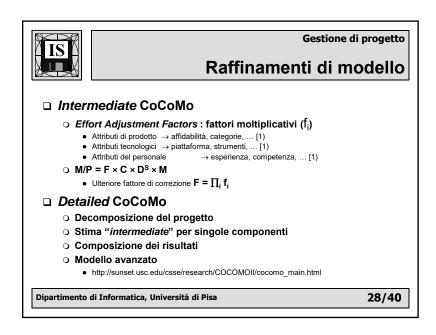
22/40

Gestione di progetto


Constructive Cost Model (CoCoMo)


- □ Stima le risorse necessarie
 - Esprimendone la misura in Mesi/Persona (M/P)
 - Software Engineering Economics, B. Boehm, Prentice-Hall, 1981
 - Per provare


http://ivs.cs.uni-magdeburg.de/sw-eng/us/java/COCOMO/index.shtml


- \circ M/P = C \times D^S \times M
 - C fattore di complessità del progetto
 - D misura (in KDSI) della dimensione stimata del prodotto software
 - · Kilo delivered source instructions
 - S fattore di complessità
 - M moltiplicatori di costo
 - Composizione di attributi α_i con valori in intervalli prefissati ($\mathbf{M} = \prod_i \alpha_i$)

Dipartimento di Informatica, Università di Pisa

Piano di progetto - 1

□ Il piano di progetto fissa

- O Le risorse disponibili
- O La suddivisione delle attività
- O II calendario delle attività

□ Obiettivi

- Organizzare le attività in modo da produrre risultati utili per valutare con efficacia il grado di avanzamento del lavoro
- O Fissare "milestone" come punti critici o finali delle attività

Dipartimento di Informatica, Università di Pisa

29/40

Gestione di progetto

Rischi di progetto

□ Risultati dei progetti software

- O Costi eccessivi, scadenze non rispettate
- O Prodotti insoddisfacenti

□ Perché?

- Fonte: studio Standish Group (1994)
 - Da leggere con cautela rispetto ai numeri assoluti, ma solido nella sostanza
- O Analisi delle cause dei fallimenti
- L'affidabilità di altri settori produttivi deriva dall'esperienza

Dipartimento di Informatica, Università di Pisa

31/40

Gestione di progetto

Piano di progetto – 2

□ Struttura tipica del PdP

- O Introduzione (scopo e struttura)
- Organizzazione del progetto
- O Analisi dei rischi
- O Risorse necessarie e risorse disponibili (HW e SW)
- Suddivisione del lavoro (work breakdown)
- O Calendario delle attività (project schedule)
- O Meccanismi di controllo e di rendicontazione

Dipartimento di Informatica, Università di Pisa

30/40

Gestione di progetto

Categorie di progetti

□ Progetti di successo

- O In tempo, senza costi aggiuntivi, prodotto soddisfacente
- 16.2% del totale (dati USA 1994)

□ Progetti a rischio

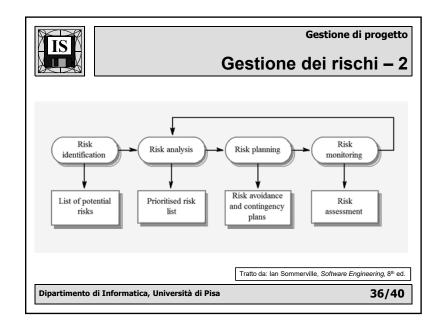
- O Fuori tempo, o con costi aggiuntivi, o con prodotto difettoso
- O 52.7%, con costi fino al 189% delle stime iniziali

□ Fallimenti

Progetti cancellati prima della fine

o 31.1%

ATTENZIONE:
Vi è bias nei dati
assoluti ma alla ha


assoluti ma alla base v sono elementi di realtà

Dipartimento di Informatica, Università di Pisa

IS	Gestione di progetto Fattori di successo	
□ Coinvolgimento del cliente		15.9%
□ Supporto della direzione esecutiva		13.9%
□ Definizione chiara dei requisiti		13.0%
□ Pianificazione corretta		9.6%
□ Aspettative realistiche		8.2%
□ Personale competente		7.2%
Dipartimento di Informatica, Università di Pisa		33/40

IS	Gestione di progetto La situazione 10 anni dopo	
□ CHAOS Chronicles 2004 (X edizione) ○ Oltre 40.000 progetti USA studiati in 10 anni ○ Costo complessivo dei progetti : 255 miliardi \$ (250Mld \$ nel 1994)		
□ Progetti finiti con successo : 34% (16,2% nel 1994) ○ Importante miglioramento nelle tecniche di gestione		
□ Progetti falliti : 15% (31,1% nel 1994) ○ Danno economico : 55 miliardi \$ (140 nel 1994)		
□ Ecces	sso di costo : 43% (189% nel 1994)	
Dipartimento d	di Informatica, Università di Pisa 35/40	

Gestione dei rischi – 3

- □ Identificazione dei rischi
 - O In relazione al progetto, al prodotto, al business
- □ Analisi dei rischi
 - O Valutazione della probabilità di occorrenza
 - O Valutazione delle conseguenze
- □ Pianificazione di controllo e mitigazione
 - O Verifica costante del livello di rischio
 - O Riconoscimento e trattamento

Dipartimento di Informatica, Università di Pisa

37/40

Gestione di progetto

Verifica del livello di rischio

- □ Da effettuare su base regolare per determinare il livello corrente di rischio
 - O Non tutti i rischi sono costanti nel tempo
- □ Anche per valutare se gli effetti dei rischi possano essere cambiati
 - O Non tutti gli effetti sono costanti nel tempo
- □ Riportare periodicamente ciascun rischio serio all'attenzione del management

Dipartimento di Informatica, Università di Pisa

39/40

Gestione di progetto

Identificazione dei rischi

- □ A livello tecnologico
- □ A livello del personale
- □ A livello organizzativo
- □ A livello dei requisiti
- □ A livello di valutazione dei costi

Dipartimento di Informatica, Università di Pisa

38/40

Gestione di progetto

Riferimenti

- □ Software Project Managenment Technology Report, www.slideshare.net/Samuel90/project-management-technologyreport
- □ La stima dei costi dei sistemi informativi automatizzati, <u>www.researchgate.net/publication/265986910 LA STIMA DEI C</u> <u>OSTI DEI SISTEMI INFORMATIVI AUTOMATIZZATI</u>
- B. Boehm et al., "Cost Models for Future Software Life Cycle Processes: CoCoMo II", USC CSSE, sunset.usc.edu/csse/research/COCOMOII/cocomo main.html
- Standish Group, "The CHAOS Report" [vedi pagina del corso]

Dipartimento di Informatica, Università di Pisa