rcardin@math.unipd.it

o Introduction
o Layered architecture

o Event-driven architecture
o Microservices architecture

Ingegneria del software mod. B Riccardo Cardin 2

o Applications lacking a formal architecture are
generally coupled, brittle, difficult to change
e Modules result in a collection of unorganized

e Big ball of mud antipattern

e Deployment and maintenance problems

o Does the architecture scale? How does application response
to changes? What are the deployment characteristics?

o Architecture patterns

e Helps to manage these aspects, knowing the
characteristics, strengths and weakness

Ingegneria del software mod. B Riccardo Cardin 3

o0 Most common architecture pattern
o N-tier architecture pattern

¢ Standard de facto for most JEE applications
o Widely known by most architects and developers

o Reflects the organizational structure found in most IT
companies

o Components are organized into horizontal layers

e Each layer performs a single and specific role
o The most common implementation consists of four layers
o Presentation, business, persistence and database

Ingegneria del software mod. B Riccardo Cardin 4

S ol
oo () () (v
S e | e
e () (DS

o Every layer forms an abstraction over a
particular business request

e Components within a specific layer deal only with
logic that pertains to that layer

oi.e. Presentation layer does not need to know how to get
customer data

o Component classification makes easy to build
effective roles and responsibility models

e Limited component scopes make easy to develop,
test and govern, maintain such applications

o Well defined component interfaces

Ingegneria del software mod. B Riccardo Cardin

o Layers should be closed (layer isolation)

e Arequest move from one layer to the layer right
below it

e Changes made in one layer generally don’t impact or
effect components in other layers.

o Layers can be open, too
¢ Imagine a service layer below the business layer that

offers commong services.

o The business layer should go through the service layer to
access the persistence layer.

o Making the service layer open resolve the problem
o Open layers should be very well documented

Ingegneria del software mod. B Riccardo Cardin 7

(conpent) (cmpone] (conponen] - [|EEEDRY

smuv«' “l«w} (v (G

o LY () () (o) (R

Ingegneria del software mod. B Riccardo Cardin

Example
Consider a request from a business user to retrieve customer
information for a particular individual

4
1
- | ; Accepts the requests, routes
Presentation Layer m ---- (ummm them to business layer and
— display information
1)
Customer I-:_-‘-‘ Aggregates all the information
Business
™ .".'-J Object At needed by the business request
[]
Ty) Executes SQL statements to
Persistence Layer m::" retrieve the corresponding data
e - and passes it back up
T bt
G bller L Store information in a persistent
=t TS form
Ingegneria del software mod. B Riccardo Cardin 9

0 A good starting point for most application
¢ |t's a solid general purpose pattern
o Architecture sinkhole anti-pattern

e Requests flow through multiple layers as simple pass-
through
0 80-20 proportion of good paths wrt sinkhole path
o Open some layer (but be aware!)

o Tends to lend itself toward monolithic

applications
o It could be an issue in terms of deployment, robustness and
reliability
Ingegneria del software mod. B Riccardo Cardin 10

Characteristic Rating Description

Small changes can be properly isolated,
Overall agility ‘ big one are more difficult due to the
monolithic nature of the pattern
Difficult for larger applications, due to
Ease of o
deplovment monolithic deployments (that have to be
pioy properly scheduled
- Very easy to mock or stub layers not
Testability t affected by the testing process
Performance ‘ Most' of requests have to go through
multiple layers
Sl el ‘ The pveI:aII granqlarlty is too bread,
making it expensive to scale
E A well know pattern. In many cases It
ase of t) ; " ;
development has a direct connection with company’s
SYECR structure
Ingegneria del software mod. B Riccardo Cardin 11

o Popular asynchronous architeture pattern

¢ |t produces high scalable applications
o Very adaptable: from small to very large applications

¢ Single purpose, highly decoupled event processing
modules
o Process asynchronously events

o Mediator topology

e A central mediator is used to orchestrate events
throug multiple steps

o Broker topology

Ingegneria del software mod. B Riccardo Cardin 12

o Multiple steps orchestration
e Events have multiple ordered steps to execute
e Four main types of architecture components
o Event queues
o It is common to have anywhere from a dozen to hundreds
« Message queue, web service point, ...
o Event mediator
o Event channels
o Event processors

o Two types of main events
e Initial event / processing event

Ingegneria del software mod. B Riccardo Cardin 13

[9]
Event
Queve
* » ; o ; »
[9] @ 0]
Event Event Event
Ounnel (lmnel
Ingegneria del software mod. B Riccardo Cardin 14

o Event mediator

¢ Orchestrates the steps contained in the initial event

o For each step it sends a specific processing event to an event
channel

¢ Does not perform any business logic

o It knows only the step required to process the initial event
¢ Implementation through open source hubs

o Spring Integration, Apache Camel, Mule ESB

o More sophisticated, using Business Process Execution
Language (BPEL) engines or Business Process Managers
(BPM)

o BPMN allows to include human tasks

Ingegneria del software mod. B Riccardo Cardin 15

o Event channel

e Asynchronous communication channel
o Message queues
o Message topic

o An event can be processed by multiple specialized event
processors

o Event processor
¢ Contains business logic to process any event

¢ Self conteined, independent, highly decoupled
components
o Fine-grained / Coarse-grained

Ingegneria del software mod. B Riccardo Cardin 16

Example

decide to move.

Suppose you are insured through a insurance company and you

e

EEEIE =

-+
|

%

Ingegneria del software mod. B

The initial event is a
relocation event. Steps
are contained inside the
Event mediator.

For each event sends a
processing event
(change, address, recalc
quote) to each event
channel, and waits for
the response.

Riccardo Cardin 17

o There is no central mediator

e The message flow is distributed across the event
processors components
o Chain-like fashion, lightweight message broker
o Useful when the processing flow is very simple
¢ Two main types of component
o Broker: contains all event channels (queues, topics or both)

e Event-processor
o Contains the business logic
o Responsible for publishing a new event

o The event indicates the action is just performed. Some can
be created only for future development

Ingegneria del software mod. B Riccardo Cardin 18

[0]
Event
Channel

Event
Channel

—i
[¢
Event
Channel

F 3

Ingegneria del software mod. B

Riccardo Cardin 19

Example
Suppose you are insured through a insurance company and you
decide to move.

Customer process
m component receives the

event directly. Then, it
= ﬂ

sends out and event
[Claims Process l

change address.

Two processors are
interested in this event.
Both elaborate it, and so

on...
The event chain
LA continues until no more

events are published.

IMMI

Ingegneria del software mod. B Riccardo Cardin 20

o Event-driven is complex to implement

e Completly asynchronous and distributed

o Remote process availability, lack of responsiveness,
reconnection logic

e Lack of atomic transactions
o Which event can be run independently? Which granularity?

e Strict need of contracts for event-processors
o Standard data format (XML, JSON, Java Object, ...)
o Contract versioning poilicy

Ingegneria del software mod. B Riccardo Cardin 21

Characteristic Rating Description

Overall agilit t Changes are generally isolated and can
gLty be made quickly with small impacts
Ease of Ease to deploy due to the decoupled
depl t f nature of event-processor components.
EIopy e Broker topology is easier to deploy
. It requires some specialized testing client
Testability ‘ to generate events
In general, the pattern achieves high
Performance f performance through its asynchronous
capabilities
. Scaling separately event-processors,
Scalability t allowing for fine-grained scalability
Bleee @ Asynchronous programming, requires
hard contracts, advanced error handling
devel t
S ChIED conditions
Ingegneria del software mod. B Riccardo Cardin

22

o A still evolving pattern
¢ Aviable alternative to monolithic and service-
oriented architecutures

e Separately deployed unit
o Easier deployment, increased scalability, high degree of
decoupling

o Service components
e From a single module to a large application’s portion

o Choose the right level of service component granularity is
one of the biggest challenges

e Distributed: remote access protocol
0 JMS, AMQP, REST, SOAP, RMI, ...

Ingegneria del software mod. B Riccardo Cardin 23

[(lient Requests [Client Requests [Client Requests

User Interface Layer

Service Component Service Component Service Component
(moduie) (module) (moduie) (module)
T

Ingegneria del software mod. B Riccardo Cardin

24

o Evolved from issues associated with other
architectures

e From monolithic: open to continous delivery

o Avoid the «monthly deployment» cycles due to tightly
coupling between components

o Every service component is independent developed, tested
and deployed

e From SOA: simplification of the service notion

o SOA is a powerful pattern, that promises to align business
goals with IT capabilities

o Expensive, ubiquitous, difficult to understand / implement
o Eliminates orchestration needs, simplyfing connectivity

Ingegneria del software mod. B Riccardo Cardin 25

o Useful for websites that expose small services

e Service components are very fine-grained
o Specific business function, independet from the rest

o Only one or two modules
o Microservice

o These services are accessed through and API

e REST-based interface
o Separately deployed web-based API layer
o Google, Amazon, Yahoo cloud-based RESTful web services

Ingegneria del software mod. B Riccardo Cardin 26

[Clent Requests [lient Requests [Client Requests

Application Programming Interface (api)

Ingegneria del software mod. B Riccardo Cardin 27

o Accessed directly by fat / web based clients
e User interface is deployed separately

e REST-based interface
o No middle API layer required

o Larger and coarse-grained

e Represent a small portion of the overall business
application
o Common for small to medium-sized business applications

Ingegneria del software mod. B Riccardo Cardin 28

[dinrequess | [denrequess | [GentRequess

User Interface Layer

Service Component Service Component Service Component
module |mod|le'|mnduie' lnndlle'[mndme'
==

Ingegneria del software mod. B Riccardo Cardin 29

o Lightweight centralized message broker

¢ No trasformation, orchestration or complex routing
o Not to confuse with Service-oriented application

¢ No REST-based access required
e Found in larger business applications

o Sophisticated control over the transport layer

¢ Advanced queuing mechanisms, asynchronous
messaging, monitoring, error handling, ...

e Broker clustering and federation
o Avoid the architectural single point of failure and bottleneck

Ingegneria del software mod. B Riccardo Cardin 30

[Clientll.equeﬂs] [(]ienlllgquests] [Giemngquest]

User Interface Layer

Ingegneria del software mod. B Riccardo Cardin 31

o The main challenge is to defined the right
granularity of service components
¢ Coarse-grained services
o Not easy to deploy, scale, test and are not loose couples

¢ Too fine-grained services
o Require orchestration, turning into SOA application

o Require inter-service communication to process a single
request

o Use database communication

¢ Avoid service-to-service communication

Ingegneria del software mod. B Riccardo Cardin 32

o Violation of the DRY principle

¢ Replicate some functionalities to keep independency
across services
o No share of business logic

o Is it the right pattern for your architecture?

¢ NO, if you still cannot avoid service-component
orchestration

¢ No definition of transactional unit of work
o Due to the distributed nature of the pattern
o Using transaction framework adds too much complexity

Ingegneria del software mod. B Riccardo Cardin 33

o Robustness, better scalability, continous delivery

e Small application component, separately deployed
o Solve many problems of monolithic and SOA architectures

o Real-time production deployments

¢ Only changed service components can be deployed
o Redirection to an error / waiting page
o Continous availability (hotdeploy)

o Distributed architeture problems

e Contract creation and maintanance, remote system
availability, remote access authentication, ...

Ingegneria del software mod. B Riccardo Cardin 34

Characteristic Rating Description

. Changes are generally isolated. Fast and
Overall agility :
easy deployment. Loose cooupling
Ease to deploy due to the decoupled
Ease of .
deployment nature of service components. Hotdeploy
el and continous delivery
Due to isolation of business functions,
Testability . testing can be scoped. Small chance of
regression
Due to distributed nature of the pattern,
Performance .
performance are not generally high
. Each service component can be
Scalability t separately scaled (fine tuning)
Small and isolated business scope. Less
Ease of t ;ane
development coordination needed among developers or
Sl development teams

Ingegneria del software mod. B Riccardo Cardin 35

o Software Architecture Patterns, Mark Richards, 2015, O’Reilly
http://www.oreilly.com/programming/free/software-architecture-

patterns.csp

Ingegneria del software mod. B Riccardo Cardin 36

