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o Introduction
o Layered architecture

o Event-driven architecture
o Microservices architecture
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o Applications lacking a formal architecture are
generally coupled, brittle, difficult to change
e Modules result in a collection of unorganized

e Big ball of mud antipattern

e Deployment and maintenance problems

o Does the architecture scale? How does application response
to changes? What are the deployment characteristics?

o Architecture patterns

e Helps to manage these aspects, knowing the
characteristics, strengths and weakness
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o0 Most common architecture pattern
o N-tier architecture pattern

¢ Standard de facto for most JEE applications
o Widely known by most architects and developers

o Reflects the organizational structure found in most IT
companies

o Components are organized into horizontal layers

e Each layer performs a single and specific role
o The most common implementation consists of four layers
o Presentation, business, persistence and database
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o Every layer forms an abstraction over a
particular business request

e Components within a specific layer deal only with
logic that pertains to that layer

oi.e. Presentation layer does not need to know how to get
customer data

o Component classification makes easy to build
effective roles and responsibility models

e Limited component scopes make easy to develop,
test and govern, maintain such applications

o Well defined component interfaces
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o Layers should be closed (layer isolation)

e Arequest move from one layer to the layer right
below it

e Changes made in one layer generally don’t impact or
effect components in other layers.

o Layers can be open, too
¢ Imagine a service layer below the business layer that

offers commong services.

o The business layer should go through the service layer to
access the persistence layer.

o Making the service layer open resolve the problem
o Open layers should be very well documented
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Example
Consider a request from a business user to retrieve customer
information for a particular individual

4
1
- | ; Accepts the requests, routes
Presentation Layer m ---- (ummm them to business layer and
— display information
1)
Customer I-:_-‘-‘ Aggregates all the information
Business
™ .".'-J Object At needed by the business request
[ ]
Ty ) Executes SQL statements to
Persistence Layer m::" retrieve the corresponding data
e - and passes it back up
T bt
G bller L Store information in a persistent
=t TS form
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0 A good starting point for most application
¢ |t's a solid general purpose pattern
o Architecture sinkhole anti-pattern

e Requests flow through multiple layers as simple pass-
through
0 80-20 proportion of good paths wrt sinkhole path
o Open some layer (but be aware!)

o Tends to lend itself toward monolithic

applications
o It could be an issue in terms of deployment, robustness and
reliability
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Characteristic Rating Description

Small changes can be properly isolated,
Overall agility ‘ big one are more difficult due to the
monolithic nature of the pattern
Difficult for larger applications, due to
Ease of o
deplovment monolithic deployments (that have to be
pioy properly scheduled
- Very easy to mock or stub layers not
Testability t affected by the testing process
Performance ‘ Most' of requests have to go through
multiple layers
Sl el ‘ The pveI:aII granqlarlty is too bread,
making it expensive to scale
E A well know pattern. In many cases It
ase of t ) ; " ;
development has a direct connection with company’s
SYECR structure
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o Popular asynchronous architeture pattern

¢ |t produces high scalable applications
o Very adaptable: from small to very large applications

¢ Single purpose, highly decoupled event processing
modules
o Process asynchronously events

o Mediator topology

e A central mediator is used to orchestrate events
throug multiple steps

o Broker topology
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o Multiple steps orchestration
e Events have multiple ordered steps to execute
e Four main types of architecture components
o Event queues
o It is common to have anywhere from a dozen to hundreds
« Message queue, web service point, ...
o Event mediator
o Event channels
o Event processors

o Two types of main events
e Initial event / processing event
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o Event mediator

¢ Orchestrates the steps contained in the initial event

o For each step it sends a specific processing event to an event
channel

¢ Does not perform any business logic

o It knows only the step required to process the initial event
¢ Implementation through open source hubs

o Spring Integration, Apache Camel, Mule ESB

o More sophisticated, using Business Process Execution
Language (BPEL) engines or Business Process Managers
(BPM)

o BPMN allows to include human tasks
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o Event channel

e Asynchronous communication channel
o Message queues
o Message topic

o An event can be processed by multiple specialized event
processors

o Event processor
¢ Contains business logic to process any event

¢ Self conteined, independent, highly decoupled
components
o Fine-grained / Coarse-grained
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Example

decide to move.

Suppose you are insured through a insurance company and you
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The initial event is a
relocation event. Steps
are contained inside the
Event mediator.

For each event sends a
processing event
(change, address, recalc
quote) to each event
channel, and waits for
the response.
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o There is no central mediator

e The message flow is distributed across the event
processors components
o Chain-like fashion, lightweight message broker
o Useful when the processing flow is very simple
¢ Two main types of component
o Broker: contains all event channels (queues, topics or both)

e Event-processor
o Contains the business logic
o Responsible for publishing a new event

o The event indicates the action is just performed. Some can
be created only for future development
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Example
Suppose you are insured through a insurance company and you
decide to move.

Customer process
m component receives the

event directly. Then, it
= ﬂ

sends out and event
[ Claims Process l

change address.

Two processors are
interested in this event.
Both elaborate it, and so

on...
The event chain
LA continues until no more

events are published.

IMMI
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o Event-driven is complex to implement

e Completly asynchronous and distributed

o Remote process availability, lack of responsiveness,
reconnection logic

e Lack of atomic transactions
o Which event can be run independently? Which granularity?

e Strict need of contracts for event-processors
o Standard data format (XML, JSON, Java Object, ...)
o Contract versioning poilicy
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Characteristic Rating Description

Overall agilit t Changes are generally isolated and can
gLty be made quickly with small impacts
Ease of Ease to deploy due to the decoupled
depl t f nature of event-processor components.
EIopy e Broker topology is easier to deploy
. It requires some specialized testing client
Testability ‘ to generate events
In general, the pattern achieves high
Performance f performance through its asynchronous
capabilities
. Scaling separately event-processors,
Scalability t allowing for fine-grained scalability
Bleee @ Asynchronous programming, requires
hard contracts, advanced error handling
devel t
S ChIED conditions
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o A still evolving pattern
¢ Aviable alternative to monolithic and service-
oriented architecutures

e Separately deployed unit
o Easier deployment, increased scalability, high degree of
decoupling

o Service components
e From a single module to a large application’s portion

o Choose the right level of service component granularity is
one of the biggest challenges

e Distributed: remote access protocol
0 JMS, AMQP, REST, SOAP, RMI, ...
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User Interface Layer

Service Component Service Component Service Component
(moduie) (module) (moduie) (module)
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o Evolved from issues associated with other
architectures

e From monolithic: open to continous delivery

o Avoid the «monthly deployment» cycles due to tightly
coupling between components

o Every service component is independent developed, tested
and deployed

e From SOA: simplification of the service notion

o SOA is a powerful pattern, that promises to align business
goals with IT capabilities

o Expensive, ubiquitous, difficult to understand / implement
o Eliminates orchestration needs, simplyfing connectivity
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o Useful for websites that expose small services

e Service components are very fine-grained
o Specific business function, independet from the rest

o Only one or two modules
o Microservice

o These services are accessed through and API

e REST-based interface
o Separately deployed web-based API layer
o Google, Amazon, Yahoo cloud-based RESTful web services
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[ Clent Requests [ lient Requests [ Client Requests

Application Programming Interface (api)
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o Accessed directly by fat / web based clients
e User interface is deployed separately

e REST-based interface
o No middle API layer required

o Larger and coarse-grained

e Represent a small portion of the overall business
application
o Common for small to medium-sized business applications
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o Lightweight centralized message broker

¢ No trasformation, orchestration or complex routing
o Not to confuse with Service-oriented application

¢ No REST-based access required
e Found in larger business applications

o Sophisticated control over the transport layer

¢ Advanced queuing mechanisms, asynchronous
messaging, monitoring, error handling, ...

e Broker clustering and federation
o Avoid the architectural single point of failure and bottleneck
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o The main challenge is to defined the right
granularity of service components
¢ Coarse-grained services
o Not easy to deploy, scale, test and are not loose couples

¢ Too fine-grained services
o Require orchestration, turning into SOA application

o Require inter-service communication to process a single
request

o Use database communication

¢ Avoid service-to-service communication
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o Violation of the DRY principle

¢ Replicate some functionalities to keep independency
across services
o No share of business logic

o Is it the right pattern for your architecture?

¢ NO, if you still cannot avoid service-component
orchestration

¢ No definition of transactional unit of work
o Due to the distributed nature of the pattern
o Using transaction framework adds too much complexity
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o Robustness, better scalability, continous delivery

e Small application component, separately deployed
o Solve many problems of monolithic and SOA architectures

o Real-time production deployments

¢ Only changed service components can be deployed
o Redirection to an error / waiting page
o Continous availability (hotdeploy)

o Distributed architeture problems

e Contract creation and maintanance, remote system
availability, remote access authentication, ...
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Characteristic Rating Description

. Changes are generally isolated. Fast and
Overall agility :
easy deployment. Loose cooupling
Ease to deploy due to the decoupled
Ease of .
deployment nature of service components. Hotdeploy
el and continous delivery
Due to isolation of business functions,
Testability . testing can be scoped. Small chance of
regression
Due to distributed nature of the pattern,
Performance .
performance are not generally high
. Each service component can be
Scalability t separately scaled (fine tuning)
Small and isolated business scope. Less
Ease of t ;ane
development coordination needed among developers or
Sl development teams
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o Software Architecture Patterns, Mark Richards, 2015, O’Reilly
http://www.oreilly.com/programming/free/software-architecture-

patterns.csp
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