

1​ ​Ethereum 3
Blockchain 3
Smart​ ​Contracts 5
Decentralized​ ​applications​ ​(Ðapps) 5
Gas 5
Ethereum​ ​networks 6

2​ ​Concept 7
Technology​ ​requirements​ ​and​ ​macro​ ​architecture 7
Accessibility 8
Environments 8

3​ ​Requirements 10
Technology 10
Warranty​ ​and​ ​maintenance 11
Credits​ ​and​ ​License 11
Useful​ ​links 11

4.​ ​The​ ​proponent 11

2/11

1​ ​Ethereum

Ethereum is a platform intended to allow users to easily write decentralized applications (Đapps) that use
blockchain technology . A decentralized application is a distributed application like any others (hence 1

composed of multiple parts), but with the distinguishing property that each part is individually able to do its
job without depending on the other parts. Rather than serving as a front-end for selling or providing a
specific service, a Đapp is a tool for people and organizations at different sides of an interaction to come
together without any centralized intermediary (which occur in classic client-server solutions)​. Intermediation
functions, such as filtering and identity management are either handled directly by Ethereum or left open 2

for anyone to provide, using tools like internal token systems and reputation systems , to ensure that users 3

are​ ​offered​ ​high-quality​ ​(e.g.,​ ​responsive,​ ​trustworthy,​ ​available)​ ​services.

The Ethereum blockchain can be described as a blockchain ​with a built-in programming language​, or as
a consensus-based globally-executed virtual machine. The part of the protocol that handles the network
internal state and computation is referred to as the Ethereum Virtual Machine (EVM). The EVM can be
thought of as a large decentralized computer containing millions of objects, called "accounts", which have
the​ ​ability​ ​to​ ​maintain​ ​an​ ​internal​ ​database,​ ​execute​ ​code​ ​and​ ​communicate​ ​to​ ​each​ ​other.

The EVM allows code to be verified and executed on the blockchain, ensuring that it will be run the same
way on any machine where a party resides. This code is contained in "smart contracts". All nodes process
smart contracts to verify the integrity of the contracts and of their outputs. The applications that use smart
contracts for processing the data on the EVM are called Decentralized Applications (Ðapp). Every time the
EVM performs a computation (i.e.: run smart contracts, make transactions), the user of it (of the
computation) must pay for that execution. The payment is calculated in Gas. A unit of Gas is paid in
Ethereum​ ​cryptocurrency ​ ​(Ether,​ ​or,​ ​short,​ ​ETH). 4

Blockchain
In order to understand what Ethereum is, we should make a step back and explain blockchain and how it
works. At its heart, a blockchain is a shared database, called a ledger. Much like a bank, the ledgers of
simple blockchains keep track of currency (in this case, cryptocurrency) ownership. Unlike a centralized
bank, however, everyone (every node) has a copy of the ledger and can verify anyone's accounts. This is
the distributed (or decentralized) part of the blockchain. Each connected device with a copy of the ledger is
called​ ​a​ ​node,​ ​see​ ​figure​ ​1.

1 ​ ​​https://ethereumbuilders.gitbooks.io/guide/content/en/what_is_ethereum.html
2 ​ ​It​ ​addresses​ ​the​ ​need​ ​to​ ​ensure​ ​appropriate​ ​access​ ​to​ ​resources​ ​across​ ​heterogeneous​ ​technology​ ​environments.
3 ​ ​A​ ​system​ ​that​ ​allow​ ​users​ ​to​ ​rate​ ​each​ ​other​ ​in​ ​online​ ​communities​ ​in​ ​order​ ​to​ ​build​ ​trust​ ​through​ ​reputation.
4 ​ ​​https://ethereum.org/ether

3/11

https://ethereumbuilders.gitbooks.io/guide/content/en/what_is_ethereum.html
https://ethereum.org/ether

Figure​ ​1:​ ​How​ ​blockchain​ ​works.​ ​Source:​ ​Financial​ ​Times,​ ​“Technology:​ ​Banks​ ​seek​ ​the​ ​key​ ​to
blockchain” . 5

Interactions between accounts in a blockchain network are called transactions. They can be monetary
transactions, such as sending someone some Ether. Or they are transmissions of data, like a comment or
username. Every account on the blockchain has a unique signature, which lets everyone know which
account​ ​initiated​ ​the​ ​transaction.

Blockchains​ ​eliminate​ ​the​ ​problem​ ​of​ ​trust​ ​with​ ​the​ ​following​ ​key​ ​advantages​ ​over​ ​previous​ ​databases:

● Full Decentralization: Reading/writing to the database is completely decentralized and secure. No
single​ ​person​ ​or​ ​group​ ​controls​ ​a​ ​blockchain;

● Extreme Fault Tolerance (seen as the ability to handle data corruption): While fault tolerance is not
unique to blockchains, they take this ability to its logical extreme of having every party that shares
the​ ​database​ ​to​ ​be​ ​able​ ​to​ ​validate​ ​its​ ​changes;

● Independent Verification: Transactions can be verified individually by any single party, without the
need​ ​for​ ​others.​ ​This​ ​is​ ​sometimes​ ​referred​ ​to​ ​as​ ​disintermediation.

5 ​ ​​https://www.ft.com/content/eb1f8256-7b4b-11e5-a1fe-567b37f80b64

4/11

https://www.ft.com/content/eb1f8256-7b4b-11e5-a1fe-567b37f80b64

Smart​ ​Contracts
A smart contract is code that runs on the EVM. Smart contracts can accept and store Ether, data, or a
combination of both. Then, using the logic programmed into the contract, it can distribute that Ether to other
accounts or even other smart contracts. Smart contracts are written in a language called Solidity . Solidity is 6

statically typed, and supports inheritance, libraries, complex user-defined types, and numerous other
features.

Figure 2 below shows an example of the working of a smart contract embedding an escrow function. An
escrow is a place to store the value of the transaction/negotiation (e.g. money), until a condition is fulfilled.
In this example Alice wants to hire Bob to build her a patio, and they are using an escrow contract to store
their​ ​respective​ ​Ether​ ​(payment​ ​vs.​ ​compensation)​ ​before​ ​the​ ​final​ ​transaction.

Figure​ ​2.1

1. Alice agrees to store her
payment for the patio within the
escrow contract, and Bob agrees
to deposit an equal amount for
compensation (technically called
collateral)​ ​. 7

Figure​ ​2.2

2. Bob completes the patio
project and Alice gives the smart
contract permission to release
the​ ​funds.

Figure​ ​2.3

3. Bob receives Alice's payment
along​ ​with​ ​his​ ​collateral.

Decentralized​ ​applications​ ​(Ðapps)
Applications that use smart contracts for their processing are called "decentralized applications" (ÐApps).
The user interfaces for these ÐApp consist of familiar languages such as HTML, CSS, and JavaScript. The
application​ ​itself​ ​can​ ​be​ ​hosted​ ​on​ ​a​ ​traditional​ ​web​ ​server.

Gas
Ethereum provides the EVM that runs on blockchain. Ether (ETH) is the fuel for the execution of that virtual
machine. When you send tokens, interact with a contract, send ETH, or do anything else on the blockchain,
you​ ​must​ ​pay​ ​for​ ​that​ ​operation.
You are paying for the computation, regardless of whether your transaction succeeds or fails. Even if it fails,
the node must validate and execute your transaction (compute) and therefore you must pay for that
computation​ ​just​ ​like​ ​you​ ​would​ ​pay​ ​for​ ​a​ ​successful​ ​transaction.

6 ​ ​​https://solidity.readthedocs.io
7 ​ ​A​ ​value​ ​(in​ ​this​ ​case​ ​Ether)​ ​pledged​ ​as​ ​security​ ​for​ ​the​ ​transaction.​ ​If​ ​Bob​ ​were​ ​to​ ​fail​ ​to​ ​build​ ​the​ ​patio​ ​then​ ​the
collateral​ ​will​ ​be​ ​released​ ​to​ ​Alice.​ ​That​ ​rule​ ​could​ ​be​ ​written​ ​in​ ​the​ ​smart​ ​contract​ ​code.

5/11

https://solidity.readthedocs.io/

When​ ​you​ ​hear​ ​someone​ ​say​ ​Gas,​ ​the​ ​person​ ​is​ ​either​ ​talking​ ​about:

● Gas​ ​Limit
● Gas​ ​Price.

Typically, if someone just says "​Gas​", they are talking about "​Gas Limit​". You can think of Gas limit as the
amount of liters of fuel needed for a car. You can think of Gas price as the cost the fuel per liter. Figure 3
summarises​ ​the​ ​analogy.

A. Gas price​: If you want to spend less on a transaction, you can do so by lowering the amount you
pay per unit of Gas. The price you pay for each unit increases or decreases depending on how
quickly​ ​your​ ​transaction​ ​will​ ​be​ ​included​ ​in​ ​block.

a. During​ ​normal​ ​times​ ​(at​ ​the​ ​moment​ ​​ ​of​ ​writing,​ ​see​ ​ETH​ ​Gas​ ​station​ ​for​ ​real-time​ ​info): 8

● 20​ ​GWEI,​ ​transaction​ ​fast​ ​execution​ ​time​ ​(~0.5​ ​min)
● 1​ ​GWEI​ ​transaction​ ​average​ ​execution​ ​time​ ​(~1-2​ ​mins)
● 0.1​ ​GWEI​ ​transaction​ ​slow​ ​execution​ ​time​ ​(~4-5​ ​mins)

B. Gas limit​: The Gas limit is called “the limit” because it specifies the maximum amount of units of
Gas you are willing to spend on a transaction. This avoids situations where there is an error
somewhere in the contract, and you spend 1 ETH....10 ETH....1000 ETH..... going in circles but
arriving nowhere. However, the units of Gas necessary for a transaction are already defined by how
much code is executed on the blockchain. If you do not want to spend as much on Gas, lowering
the Gas limit won't help much. You must include enough Gas to cover the computational resources
you use or your transaction will fail due to an ​Out of Gas Error​. All unused Gas is refunded to you at
the​ ​end​ ​of​ ​a​ ​transaction.

 Fuel​ ​price/
Gas​ ​price

Filled​ ​up​ ​tank/
Gas​ ​limit

Rome-Milan​ ​trip/
TX​ ​fee

Saved​ ​Fuel/
Reimbursed​ ​Gas

Total​ ​cost

Car 1.5​ ​€/litre 25L 10L 15L 15€

Ethereum 10 GWEI/Gas
(10*10​-9​​ ​ETH)

48000​ ​Gas 26000​ ​Gas 22000​ ​Gas 0.00026​ ​ETH

Figure​ ​3.​ ​Analogy​ ​between​ ​gas​ ​in​ ​Ethereum​ ​and​ ​fuel​ ​in​ ​cars.

Ethereum​ ​networks
The main Ethereum public blockchain is called ​MainNet​, but other networks exist, as anyone can create
their own Ethereum network. On MainNet, data on the chain—including account balances and
transactions—are public, and anyone can create a node and begin verifying transactions. Ether on this
network​ ​has​ ​a​ ​market​ ​value​ ​and​ ​can​ ​be​ ​exchanged​ ​for​ ​other​ ​cryptocurrency​ ​or​ ​fiat​ ​currencies​ ​like​ ​Euro.

● Local test networks​: The Ethereum blockchain can be simulated locally for development. Local
test networks process transactions instantly and Ether can be distributed as desired. One good
example​ ​of​ ​local​ ​test​ ​network​ ​is​ ​​testrpc . 9

● Public test networks​: developers use public test networks (or testnet) to test Ethereum
applications before final deployment to the main network. Ether on these networks is used for
testing​ ​purposes​ ​only​ ​and​ ​has​ ​no​ ​value.

● Ropsten​: The official test network, created by ​The Ethereum Foundation​. Its functionality is
similar​ ​to​ ​the​ ​MainNet.

8 ​ ​​http://ethgasstation.info
9 ​ ​​https://github.com/ethereumjs/testrpc

6/11

https://www.ethereum.org/foundation
http://ethgasstation.info/
https://github.com/ethereumjs/testrpc

2​ ​Concept
Uniweb is a portal provided by the University of Padua. It allows students to access information about their
study career and directly manage their university duties, starting from registration, to enrollment of exams,
up to final degree application. Professors use Uniweb to publish exam lists, publish votes, and register
outcomes . 10

The goal of the Marvin project is to realize a subset of Uniweb functionalities as a ÐApp running on the
EVM.​ ​Similarly​ ​to​ ​the​ ​Uniweb​ ​portal,​ ​three​ ​main​ ​actors​ ​are​ ​involved​ ​in​ ​​Marvin​:

1. University​;
2. Professors​;
3. Students​.

The business logic encapsulating the interaction between these actors should be written as a set of smart
contracts.​ ​Each​ ​actor​ ​will​ ​then​ ​have​ ​a​ ​set​ ​of​ ​well-defined​ ​capabilities.

The ​University is responsible for the didactic offer. Every year, it creates a set of degree courses offered to
students. A degree course contains a list of exams available for that year. Every exam has a topic, a
number of credit points, and an associated professor. The ​University is responsible for which ​Professor is
associated with which exam. ​Students can enroll in a specific degree and get a ​Libretto to keep formal track
of​ ​the​ ​progress.
A ​Professor is responsible for running the exam. Specifically, she can register the vote for that exam in the
student’s​ ​​Libretto​.
A ​Student needs to keep track of her progress, which exams she successfully sustained, and which exams
he/she​ ​have​ ​still​ ​to​ ​pass.

Technology​ ​requirements​ ​and​ ​macro​ ​architecture
A set of web pages should act as user interface to smart contracts. ​Marvin is therefore composed of two
macro​ ​modules:

1. Smart contracts: which contain all the smart contracts that must be deployed to the Ethereum
network;

2. Web/UI:​ ​which​ ​contains​ ​all​ ​the​ ​code​ ​for​ ​rendering​ ​the​ ​front-end​ ​that​ ​interacts​ ​with​ ​the​ ​EVM.

The system must be implemented using the Truffle development framework for Ethereum. Truffle helps 11

and guides the development with best practices and tools/utilities that take out most of the
boilerplate/routine work. As such, smart contracts compilation, testing framework, deployment of contracts
with​ ​migrations​ ​and,​ ​interaction​ ​with​ ​the​ ​frontend​ ​is​ ​taken​ ​care​ ​of​ ​by​ ​it.

Marvin must have a comprehensive set of unit/integration tests and must run in a local environment and at
least in one public test network. A final deployment on the MainNet is strongly appreciated as final
demonstration,​ ​although​ ​not​ ​required.

The​ ​above​ ​applies​ ​equally​ ​to​ ​both​ ​modules.

10 ​ ​​http://www.unipd.it/uniweb
11 ​ ​​http://truffleframework.com

7/11

http://www.unipd.it/uniweb
http://truffleframework.com/

Accessibility
The distinctive trait of a ÐApp is its interaction with the Ethereum network. Such interaction means that all
the​ ​transactions​ ​must​ ​be​ ​signed​ ​and​ ​paid​ ​for​ ​in​ ​Ether.
This​ ​requirement​ ​poses​ ​two​ ​challenges:

1. Access​ ​to​ ​the​ ​Ethereum​ ​network;
2. Signing​ ​with​ ​a​ ​private​ ​key​ ​to​ ​allow​ ​for​ ​the​ ​required​ ​amount​ ​of​ ​Ether​ ​to​ ​be​ ​used​ ​in​ ​the​ ​transaction.

The former means that the browser running the ÐApp should have access to an Ethereum node. Of course
that exposes the ÐApp to the risk of malicious access (a security concern attached to the management of
private keys holding some value, Ether in this case). This risk could be addressed in the Web/UI, but --
owing​ ​to​ ​the​ ​complexity​ ​of​ ​solving​ ​it​ ​right​ ​--,​ ​we​ ​leave​ ​it​ ​out​ ​of​ ​the​ ​scope​ ​of​ ​this​ ​project.

To allow for greater flexibility and better security, we therefore require using Metamask . It provides 12

transparent access to the Ethereum network using a public node and includes a secure identity vault, 13

providing​ ​a​ ​user​ ​interface​ ​to​ ​manage​ ​your​ ​identities​ ​on​ ​different​ ​sites​ ​and​ ​sign​ ​blockchain​ ​transactions.

As​ ​a​ ​final​ ​note,​ ​we​ ​require​ ​paying​ ​close​ ​attention​ ​to​ ​the​ ​following​ ​two​ ​critical​ ​aspects:

1. Deployability​ ​of​ ​the​ ​project​ ​by​ ​the​ ​developer;
2. Accessibility​ ​of​ ​the​ ​project​ ​by​ ​everybody.

Environments
A best practice in the industry is to divide the development across different environments, Each of which a
set of resources (e. g. networks, servers, file storage, others) needed to run (an instance) the system.
Every environment is capable of running the whole system, but it is entirely independent of the others.
Therefore, using one resource in one environment (e. g. store a file or write in a database) does not conflict
with the usage of resources in another. Environments are used to test the system before deployment to
production.​ ​They​ ​also​ ​allow​ ​developers​ ​to​ ​run​ ​the​ ​system​ ​locally.

In​ ​a​ ​simple​ ​scenario,​ ​we​ ​have​ ​at​ ​least​ ​4​ ​environments​ ​encompassing​ ​the​ ​following​ ​flow​ ​among​ ​them.
The developer builds some features and run them in her ​local computer. When satisfied, she will build a
suite of (verification) ​tests​. Such tests could be run locally or as part of a continuous integration process.
The features will be then deployed on a ​staging environment so other people can use/test such features.
Finally,​ ​the​ ​release​ ​cycle​ ​will​ ​determine​ ​when​ ​the​ ​final​ ​deployment​ ​to​ ​​production​ ​​will​ ​occur.

This​ ​project​ ​​must​​ ​use​ ​the​ ​following​ ​minimal​ ​number​ ​of​ ​environments:​ ​Local,​ ​Test,​ ​Staging,​ ​Production.

1. Local: In the local environment, the Ethereum testrpc network provided by Truffle could be used.
Truffle​ ​provides​ ​also​ ​a​ ​local​ ​web​ ​server​ ​to​ ​serve​ ​the​ ​front​ ​end​ ​files.

2. Test:​ ​The​ ​same​ ​network​ ​and​ ​web​ ​server​ ​could​ ​be​ ​used​ ​for​ ​the​ ​test​ ​environment.

3. Staging: Must be publicly accessible. As For it, Ethereum network Ropsten shall be used. Ethers 14

could be found online (e.g. ​https://faucet.metamask.io​). As for the web server, Surge.sh shall 15

used.

12 ​ ​​https://metamask.io
13 ​ ​​https://infura.io
14 ​ ​​https://ropsten.etherscan.io
15 ​ ​​https://surge.sh

8/11

https://faucet.metamask.io/
https://metamask.io/
https://infura.io/
https://ropsten.etherscan.io/
https://surge.sh/

4. Production: Not required, but the project should be production-ready. For production, the
deployment will be done against the Ethereum main network. Surge.sh shall be used as web server.
To interact with the main network, real Ether needs to be used. We will explore the possibility of
such​ ​deployment​ ​in​ ​due​ ​time.

Figure​ ​4.​ ​Various​ ​environments.

9/11

3​ ​Requirements
Web/UI​ ​must​ ​show​ ​at​ ​least​ ​the​ ​following​ ​list​ ​of​ ​screens:

1. One​ ​or​ ​more​ ​screens​ ​where​ ​the​ ​the​ ​University​ ​can:
a. Add​ ​an​ ​Academic​ ​Year,
b. Add​ ​a​ ​list​ ​of​ ​professors
c. For​ ​each​ ​academic​ ​year,​ ​the​ ​university​ ​can​ ​add​ ​the​ ​exams​ ​associated​ ​to​ ​the​ ​Academic​ ​year
d. For each exam, the university can associate the professor who can perform the exam

registration
2. One​ ​or​ ​more​ ​screens​ ​where​ ​each​ ​Professor​ ​can:

a. See​ ​the​ ​list​ ​of​ ​exams​ ​associated​ ​to​ ​him/her
b. See​ ​the​ ​list​ ​of​ ​students​ ​associated​ ​to​ ​each​ ​exams
c. Register​ ​the​ ​exams​ ​to​ ​a​ ​student​ ​associated​ ​to​ ​that​ ​specific​ ​exam

3. One​ ​or​ ​more​ ​screens​ ​where​ ​each​ ​Student​ ​can:
a. Choose​ ​what​ ​exam​ ​he/she​ ​can​ ​subscribe​ ​to
b. See​ ​the​ ​list​ ​of​ ​registered​ ​exams

4. One​ ​or​ ​more​ ​screens​ ​where​ ​every​ ​user​ ​can:
a. Signup
b. Login
c. The​ ​user​ ​cannot​ ​perform​ ​any​ ​action​ ​before​ ​the​ ​login​ ​in​ ​the​ ​system.

In each page, for every operation the UI must provide a button “Show Me the cost”. The button will show to
the​ ​user​ ​the​ ​estimated​ ​cost​ ​of​ ​the​ ​related​ ​operation.​ ​The​ ​cost​ ​must​ ​be​ ​shown​ ​in:

● Gas
● Ether
● Euro.

Technology
1. Marvin will be developed using Javascript 8th edition (ES8) using a promise centric approach. The 16

usage​ ​of​ ​callbacks​ ​must​ ​be​ ​limited​ ​and​ ​thoroughly​ ​justified​ ​(i.e.​ ​do​ ​not​ ​use​ ​them);
2. The Airbnb Javascript style guide must be used and enforced using ESLint throughout the 17 18

development​ ​process;
3. The framework and the demo should follow as close as possible, when relevant, the ​12 Factors app

​ ​guidelines.​ ​The​ ​application​ ​of​ ​the​ ​12​ ​guidelines​ ​must​ ​be​ ​documented; 19

4. it will be developed using React/Redux framework. It is strongly recommended to start from a
react/redux​ ​boilerplate​ ​such​ ​as​ ​​https://github.com/catalin-luntraru/redux-minimal

5. The​ ​usage​ ​of​ ​SCSS ​ ​is​ ​preferred; 20

The​ ​source​ ​code​ ​of​ ​​Marvin​​ ​should​ ​be​ ​published​ ​and​ ​versioned​ ​using​ ​either​ ​GitHub,​ ​BitBucket,​ ​or​ ​GitLab.
Along with the source code, the necessary documentation should be provided for the end user to use the
system​ ​and​ ​for​ ​the​ ​developer​ ​to​ ​run​ ​and​ ​deploy​ ​the​ ​modules.

16 ​ ​​https://exploringjs.com/es6/ch_promises.html
17 ​ ​​https://github.com/airbnb/javascript
18 ​ ​​https://github.com/eslint/eslint
19 ​ ​​https://12factor.net
20 ​ ​​http://sass-lang.com

10/11

https://github.com/catalin-luntraru/redux-minimal
https://exploringjs.com/es6/ch_promises.html
https://github.com/airbnb/javascript
https://github.com/eslint/eslint
https://12factor.net/
http://sass-lang.com/

Warranty​ ​and​ ​maintenance
The vendor has to demonstrate at the RA ​(Revisione di accettazione) that the product works correctly and
according to requirements. Fixing bugs, flaws and any not-compliance with the requirements are entirely at
the​ ​expenses​ ​of​ ​the​ ​vendor.

Credits​ ​and​ ​License
RedBabel holds interests in this project as ​proof of concept of the productivity of the technologies
specified above. The system will be distributed under the MIT license, the developer will be mentioned in
the copyright credits. RedBabel will be credited too, under the section credits in the README file. Please
refer to the Italian law about the management of public bids for what is not specified in this technical
specifications​ ​document.

Useful​ ​links
● Truffle​ ​Framework​:​ ​development​ ​framework​ ​for​ ​Ethereum;
● Etherscan.io​: blockchain explorer. A search engine that allows users to easily lookup, confirm and

validate​ ​transactions​ ​that​ ​have​ ​taken​ ​place​ ​on​ ​the​ ​Ethereum​ ​Blockchain;
● Etherest.io​: exposes API endpoints for anyone to execute a method call or transaction against any

smart​ ​contract​ ​address​ ​in​ ​the​ ​Ethereum​ ​network;
● Ethgasstation.info​:​ ​dashboard​ ​that​ ​shows​ ​information​ ​about​ ​Gas​ ​on​ ​the​ ​ethereum​ ​mainnet.
● http://truffleframework.com/tutorials/ethereum-overview​;
● https://www.ethnews.com/glossary​.

4.​ ​The​ ​proponent
RedBabel is a Webcraft consulting firm based in Amsterdam and formed by Alessandro Maccagnan and
Milo Ertola. The firm operates in Amsterdam and Italy where it holds close relationships with the respective
startup​ ​ecosystems.
Contacts:

● Alessandro​ ​Maccagnan:​ ​​alessandro@redbabel.com
● Milo​ ​Ertola:​ ​​milo@redbabel.com

To allow for a better and seamless communication between us, the proponent, and you, the vendor, we
provide​ ​a​ ​Slack​ ​group​ ​available​ ​to​ ​all​ ​group​ ​members.​ ​To​ ​access​ ​it:​ ​​https://slackin-tutcjuiyym.now.sh​.

11/11

https://github.com/trufflesuite/truffle
https://etherscan.io/
https://www.etherest.io/
http://ethgasstation.info/
http://truffleframework.com/tutorials/ethereum-overview
https://www.ethnews.com/glossary
mailto:alessandro@redbabel.com
mailto:milo@redbabel.com
https://slackin-tutcjuiyym.now.sh/

