

1 Ethereum
1.1 Blockchain
1.2 Smart Contracts
1.3 Decentralized applications (Ðapps)
1.4 Gas
1.5 ERC 20 Tokens
1.6 Ethereum networks
1.7 Raiden networks

2 Concept
2.1 Technology requirements and macro architecture
2.2 Accessibility
2.3 Environments

3 Requirements
3.1 Minimum
3.2 Optional
3.3 Technology
3.2 Warranty and maintenance
3.3 Credits and License
3.4 Useful links

4. The proponent

2/12

1 Ethereum

Ethereum is a platform intended to allow users to easily write decentralized applications (Đapps) that use
blockchain technology . A decentralized application is a distributed application like any others (hence 1

composed of multiple parts possibly remote to one another), with the distinguishing trait that each part is
individually able to do its job without depending on the other parts. Rather than serving as a front-end for
selling or providing a specific service, a Đapp is a tool for people and organizations at different sides of an
interaction to come together without any centralized intermediary (which occur in classic client-server
solutions). Intermediation functions, such as filtering and identity management are either handled directly 2

by Ethereum or left open for anyone to provide, using tools like internal token systems and reputation
systems , to ensure that users are offered high-quality (e.g., responsive, trustworthy, available) services. 3

The Ethereum blockchain can be described as a blockchain with a built-in programming language, or as
a consensus-based globally-executed virtual machine. The part of the protocol that handles the network
internal state and computation is referred to as the Ethereum Virtual Machine (EVM). The EVM can be
thought of as a large decentralized computer containing millions of objects, called "accounts", which have
the ability to maintain an internal database, execute code and communicate to each other.

The EVM allows code to be verified and executed on the blockchain, ensuring that it will be run the same
way on any machine where a party resides. This code is contained in "smart contracts". All nodes process
smart contracts to verify the integrity of the contracts and of their outputs. The applications that use smart
contracts for processing the data on the EVM are called Decentralized Applications (Ðapp). Every time the
EVM performs a computation (i.e.: run smart contracts, make transactions), the user of it (of the
computation) must pay for that execution. The payment is calculated in Gas. A unit of Gas is paid in
Ethereum cryptocurrency (Ether, or, short, ETH). 4

1.1 Blockchain
In order to understand what Ethereum is, we should make a step back and explain blockchain and how it
works. At its heart, a blockchain is a shared database, called a ledger. Much like a bank, the ledgers of
simple blockchains keep track of currency (in this case, cryptocurrency) ownership. Unlike a centralized
bank, however, everyone (every node) has a copy of the ledger and can verify anyone's accounts. This is
the distributed (or decentralized) part of the chain . Each connected device with a copy of the ledger is 5

called a node, see figure 1.

1 https://ethereumbuilders.gitbooks.io/guide/content/en/what_is_ethereum.html
2 It addresses the need to ensure appropriate access to resources across heterogeneous technology environments.
3 A system that allow users to rate each other in online communities in order to build trust through reputation.
4 https://ethereum.org/ether
5 For the remainder of the document we will using interchangeably the terms blockchain/chain.

3/12

https://ethereumbuilders.gitbooks.io/guide/content/en/what_is_ethereum.html
https://ethereum.org/ether

Figure 1: How blockchain works. Source: Financial Times, “Technology: Banks seek the key to
blockchain” . 6

Interactions between accounts in a blockchain network are called transactions. They can be either
monetary transactions, such as sending someone some Ether, or transmissions of data items, like a
comment or username. Every account on the blockchain has a unique signature, which lets everyone know
which account initiated the transaction.

Blockchains eliminate the problem of trust with the following key advantages over previous databases:

● Full Decentralization: Reading/writing to the database is completely decentralized and secure. No
single person or group controls a blockchain;

● Extreme Fault Tolerance (seen as the ability to handle data corruption): While fault tolerance is not
unique to blockchains, they take this ability to its logical extreme of having every party that shares
the database to be able to validate its changes;

● Independent Verification: Transactions can be verified individually by any single party, without the
need for others. This is sometimes referred to as disintermediation.

6 https://www.ft.com/content/eb1f8256-7b4b-11e5-a1fe-567b37f80b64

4/12

https://www.ft.com/content/eb1f8256-7b4b-11e5-a1fe-567b37f80b64

1.2 Smart Contracts
A smart contract is code that runs on the EVM. Smart contracts can accept and store Ether, data, or a
combination of both. Then, using the logic programmed into the contract, it can distribute that Ether to other
accounts or even other smart contracts. Smart contracts are written in a language called Solidity . Solidity is 7

statically typed, and supports inheritance, libraries, complex user-defined types, and numerous other
features.

Figure 2 below shows an example of the working of a smart contract embedding an escrow function. An
escrow is a place to store the value of a business transaction/negotiation (e.g. money), until a given
condition is fulfilled. In this example, Alice wants to hire Bob to build her a patio, and they are using an
escrow contract to store their respective Ether (payment vs. compensation) before the final transaction.

Figure 2.1

1. Alice agrees to store her
payment for the patio within the
escrow contract, and Bob agrees
to deposit an equal amount for
compensation (technically called
collateral) . 8

Figure 2.2

2. Bob completes the patio
project and Alice gives the smart
contract permission to release
the funds.

Figure 2.3

3. Bob receives Alice's payment
along with his collateral.

1.3 Decentralized applications (Ðapps)
Applications that use smart contracts for their processing are called "decentralized applications" (ÐApps).
The user interfaces for these ÐApp consist of familiar languages such as HTML, CSS, and JavaScript. The
application itself can be hosted on a traditional web server.

1.4 Gas
Ethereum provides the EVM that runs on blockchain. Ether (ETH) is the fuel for the execution of that virtual
machine. When you send tokens, interact with a contract, send ETH, or do anything else on the blockchain,
you must pay for that operation.
You are paying for the computation, regardless of whether your transaction succeeds or fails. Even if it fails,
the node must validate and execute your transaction (compute) and therefore you must pay for that
computation just like you would pay for a successful transaction.

7 https://solidity.readthedocs.io
8 A value (in this case Ether) pledged as security for the transaction. If Bob were to fail to build the patio then the
collateral will be released to Alice. That rule could be written in the smart contract code.

5/12

https://solidity.readthedocs.io/

When you hear someone say Gas, the person is either talking about:

● Gas Limit
● Gas Price.

Typically, if someone just says "Gas", they are talking about "Gas Limit". You can think of Gas limit as the
amount of liters of fuel needed for a car taking a trip. You can think of Gas price as the cost of fuel per liter.
Figure 3 summarises the analogy.

A. Gas price: If you want to spend less on a transaction, you can do so by lowering the amount you
pay per unit of Gas. The price you pay for each unit increases or decreases depending on how
quickly your transaction will be included in the ledger.

a. During normal times (at the moment of writing, see ETH Gas station for real-time info): 9

● 20 GWEI, transaction fast execution time (~0.5 min)
● 1 GWEI transaction average execution time (~1-2 mins)
● 0.1 GWEI transaction slow execution time (~4-5 mins)

B. Gas limit: The Gas limit is called “the limit” because it specifies the maximum amount of units of
Gas you are willing to spend on a transaction. This avoids situations where there is an error
somewhere in the contract, and you spend 1 ETH....10 ETH....1000 ETH..... going in circles but
arriving nowhere. However, the units of Gas necessary for a transaction are already defined by how
much code is executed on the blockchain. If you do not want to spend as much on Gas, lowering
the Gas limit won't help much. You must include enough Gas to cover the computational resources
you use or your transaction will fail due to an Out of Gas Error. All unused Gas is refunded to you at
the end of a transaction.

 Fuel price/
Gas price

Filled up tank/
Gas limit

Rome-Milan trip/
TX fee

Saved Fuel/
Reimbursed Gas

Total cost

Car 1.5 €/litre 25L 10L 15L 15€

Ethereum 10 GWEI/Gas
(10*10-9 ETH)

48000 Gas 26000 Gas 22000 Gas 0.00026 ETH

Figure 3. Analogy between gas in Ethereum and fuel in cars.

1.5 ERC 20 Tokens
Ethereum tokens are digital assets that are being built on top of the Ethereum blockchain. They benefit
from Ethereum’s current infrastructure instead of developers having to build an entirely new blockchain . 10

ERC20 is a standard interface for tokens. It allows for the implementation of a standard API for tokens
within smart contracts. The standard provides basic functionality to transfer tokens, as well as allow tokens
to be approved so they can be spent by another on-chain third party . 11

An Ethereum token to be considered ERC20 compliant must implement at least the API defined in the
interface . Many implementation are available with different additional capabilities such as the ability to be 12

minted on demand, to have a fixed amount or to be suspended . 13

9 https://ethgasstation.info
10 https://blog.coinbase.com/a-beginners-guide-to-ethereum-tokens-fbd5611fe30b
11 https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
12 https://theethereum.wiki/w/index.php/ERC20_Token_Standard
13 https://github.com/OpenZeppelin/openzeppelin-solidity/tree/master/contracts/token/ERC20

6/12

http://ethgasstation.info/
https://blog.coinbase.com/a-beginners-guide-to-ethereum-tokens-fbd5611fe30b
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://github.com/OpenZeppelin/openzeppelin-solidity/tree/master/contracts/token/ERC20

1.6 Ethereum networks
The main Ethereum public blockchain is called MainNet, but other networks exist, as anyone can create
their own Ethereum network. On MainNet, data on the chain—including account balances and
transactions—are public, and anyone can create a node and begin verifying transactions. Ether on this
network has a market value and can be exchanged for other cryptocurrency or fiat currencies like Euro.

● Local test networks: The Ethereum blockchain can be simulated locally for development. Local
test networks process transactions instantly and Ether can be distributed as desired. One good
example of local test network is ganache-cli . 14

● Public test networks: developers use public test networks (or testnet) to test Ethereum
applications before final deployment to the main network. Ether on these networks is used for
testing purposes only and has no value.

● Ropsten: The official test network, created by The Ethereum Foundation. Its functionality is
similar to the MainNet.

1.7 Raiden networks
The Blockchain technology provides a way to find a total order of transactions in a distributed system
without relying on a trusted third party. The main advantage of this technology with respect to traditional
transition systems is its decentralized nature . The main drawback is the speed of the system. The current 15

version of Ethereum reaches a maximal transaction throughput of approximately 15 transactions per
second.
The Raiden Network is an off-chain scaling solution for performing near-instant ERC20 token transfers on 16

the Ethereum blockchain. It enables near-instant, low-fee, scalable, and privacy-preserving payments. It is
an infrastructure layer on top of the Ethereum blockchain. The main building block is based on payment
channels that allow for unlimited, bidirectional transfers between two participants . 17

14 https://github.com/trufflesuite/ganache-cli
15 https://github.com/herrBez/ethereum-scalability/releases/download/1.1.0/ethereum-scalability.pdf
16 https://raiden.network
17 https://raiden.network/101.html

7/12

https://www.ethereum.org/foundation
https://github.com/trufflesuite/ganache-cli
https://github.com/herrBez/ethereum-scalability/releases/download/1.1.0/ethereum-scalability.pdf
https://raiden.network/
https://raiden.network/101.html

2 Concept
Soldino is a platform provided by the Government . It allows business owners to register their business 18

and buy/sell goods/services as well to receive and record taxes. The Government can mint and redistribute
to citizen money used to sell and buy goods and pay taxes. Citizens can buy things or services using
money minted by the Government. The currency used in this project will be an ECR20 compliant token
named Cubit.

The goal of the Soldino project is to build a set ÐApps running on the EVM. Soldino enables the automatic
tracking of Value-added tax (VAT). The Government and the Businesses are assisted by Soldino to perform
the usual accounting operation related to the VAT (e.g. quarterly fill, managing payments, change rates, etc
etc). Other types of taxes are out of the scope for this project.

Similarly to the current VAT system, three main actors are involved:

1. Government;
2. Business owner;
3. Citizens.

The business logic encapsulating the interaction between these actors should be written as a set of smart
contracts. Each actor will then have a set of well-defined capabilities.

The Government is responsible for creating the money as medium for allowing business transactions and
tax payments. The Government mints Cubit and gives a certain amount of this medium to the Citizens and
the Business Owners. The Government owns the list of the registered businesses. Only the businesses
registered can perform transaction in the system.

A Business owner registers its business to the list held by the Government. As soon as the business is
registered, it can start selling goods or services. The Business owner, through the business, is able to
create the goods or services he/she is selling. On a quarterly basis, the business is entitled to pay the VAT
to the government.

Citizens can buy service or goods from businesses using Cubit. The Citizens who want to open a business
can subscribe to the list and become Business owners.

2.1 Technology requirements and macro architecture
A set of web pages should act as user interface to smart contracts. Soldino is therefore composed of two
macro modules:

1. Smart contracts: which contain all the smart contracts that must be deployed to the Ethereum
network;

2. Web/UI: which contains all the code for rendering the front-end that interacts with the EVM.

The system must be implemented using the Truffle development framework for Ethereum. Truffle helps 19

and guides the development with best practices and tools/utilities that take out most of the
boilerplate/routine work. As such, smart contracts compilation, testing framework, deployment of contracts
with migrations and, interaction with the frontend is taken care of by it.

18 For simplicity we conflate Government and tax office.
19 http://truffleframework.com

8/12

http://truffleframework.com/

Soldino must have a comprehensive set of unit/integration tests and must run in a local environment and at
least in the ropsten network.
The above applies equally to both modules.

2.2 Accessibility
The distinctive trait of a ÐApp is its interaction with the Ethereum network. Such interaction means that all
the transactions must be signed and paid for in Ether.
This requirement poses two challenges:

1. Access to the Ethereum network;
2. Signing with a private key to allow for the required amount of Ether to be used in the transaction.

The former means that the browser running the ÐApp should have access to an Ethereum node. Of course
that exposes the ÐApp to the risk of malicious access (a security concern attached to the management of
private keys holding some value, Ether in this case). This risk could be addressed in the Web/UI, but --
owing to the complexity of solving it right --, we leave it out of the scope of this project.

To allow for greater flexibility and better security, we require using Metamask , which provides transparent 20

access to the Ethereum network using a public node and includes a secure identity vault, providing a user 21

interface to manage your identities on different sites and sign blockchain transactions.

Finally, we require paying close attention to the following two critical aspects:

1. Deployability of the project by the developer;
2. Accessibility of the project by everybody.

2.3 Environments
A best practice in industry is to divide software development across different environments, Each such
environment provides a set of the resources (e.g. networks, servers, file storage, others) needed to run (an
instance of) the system. Every environment is capable of running the whole system, but it is entirely
independent of the others. Therefore, using one resource in one environment (e. g. store a file or write in a
database) does not conflict with the usage of resources in another. Environments are used to test the
system before deployment to production. They also allow developers to run the system locally.

In a simple scenario, we have at least 4 environments encompassing the following flow among them.
The developer builds some features and run them in her local computer. When satisfied, she will build a
suite of (verification) tests. Such tests could be run locally or as part of a continuous integration process. 22

The features will be then deployed on a staging environment so other people can use/test such features.
Finally, the release cycle will determine when the final deployment to production will occur.

This project must use the following minimal number of environments: Local, Test, Staging, Production.

1. Local: In the local environment, the Ethereum testrpc network provided by Truffle could be used.
Truffle provides also a local web server to serve the front end files.

2. Test: The same network and web server could be used for the test environment.

20 https://metamask.io
21 https://infura.io
22 https://docs.microsoft.com/en-us/azure/devops/learn/what-is-continuous-integration

9/12

https://metamask.io/
https://infura.io/
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-continuous-integration

3. Staging: Must be publicly accessible. For it, Ethereum network Ropsten shall be used. Ethers 23

could be found online (e.g. https://faucet.metamask.io). As for the web server, Surge.sh shall 24

used.

4. Production: Not required, but the project should be production-ready. For production, the
deployment will be done against the Ethereum main network. Surge.sh shall be used as web server.
To interact with the main network, real Ether needs to be used. We will explore the possibility of
such deployment in due time.

Figure 4. Various environments.

23 https://ropsten.etherscan.io
24 https://surge.sh

10/12

https://faucet.metamask.io/
https://ropsten.etherscan.io/
https://surge.sh/

3 Requirements

3.1 Minimum
Web/UI must provide at least the following list of screens:

1. One or more screens where the the Government can:
a. Mint and distribuite Cubit to Citizens;
b. Manage the list of the registered businesses;
c. Check the VAT paid by the business.

2. One or more screens where each Business owner can:
a. Register the business to the Government list;
b. Manage (add/remove/update) the goods or services on sell;
c. Buy goods or services from other businesses;
d. Create a pdf document with the VAT assessment for the current quarter;
e. Calculate/Reject/Put on hold/Download the VAT receipt;
f. Pay the VAT.

3. One or more screens where Citizens can:
a. Buy goods or services from the businesses;

4. One or more screens where Government and Business owners can:
a. Signup/Login using Metamask as identity management;
b. The user cannot perform any action before authenticating against Metamask.

3.2 Optional
To transfer some tokens between parties a transactions must be performed. For security reasons before
accepting the transaction as final it is highly suggested to wait for a certain number of subsequent block to
be mined (confirmations). As today most websites use between 10 and 30 confirmations where 12 is
generally considered acceptable for most use cases. Given the current time for a single block to be mined
(~15 seconds) we must assume that a transactions will take around 3 minutes to be completed.
That is acceptable for a set of transactions. In fact wired transfers with the current systems require from few
hours (intra country) to a couple of days (intra europe). There is of course a different set of transactions for
which 3 minutes waiting is not acceptable (e.g. debit/credit cards).

We want to improve the system as specified so far to allow to perform fast transactions in a similar fashion
as using debit card (as opposed to a waiting time of 3 minutes).
Therefore we want to explore Raiden as an off-chain technology to perform fast transactions. A clear model
should be specified as part of this requirement on how Raiden would be used as solution.

3.3 Technology
1. Soldino must be EIP-712 compliant; 25

2. Smart contracts must be upgradable;
3. Soldino will be developed using Javascript 8th edition (ES8) using a promise centric approach. 26

The usage of callbacks must be limited and thoroughly justified (i.e., do not use them);

25 https://medium.com/metamask/eip712-is-coming-what-to-expect-and-how-to-use-it-bb92fd1a7a26
26 http://exploringjs.com/es6/ch_promises.html

11/12

https://medium.com/metamask/eip712-is-coming-what-to-expect-and-how-to-use-it-bb92fd1a7a26
https://exploringjs.com/es6/ch_promises.html

4. The Airbnb Javascript style guide must be used and enforced using ESLint throughout the 27 28

development process;
5. It will be developed using React/Redux framework. It is strongly recommended to start from a

react/redux boilerplate such as https://github.com/Gigacore/React-Redux-Sass-Starter
6. The usage of SCSS is preferred; 29

The source code of Soldino should be published and versioned using either GitHub or GitLab.
Along with the source code, the necessary documentation should be provided for the end user to use the
system and for the developer to run and deploy the modules.

3.2 Warranty and maintenance
The vendor has to demonstrate at the RA (Revisione di accettazione) that the product works correctly and
according to requirements. Fixing bugs, flaws and any not-compliance with the requirements are entirely at
the expenses of the vendor.

3.3 Credits and License
RedBabel holds interests in this project as proof of concept of the productivity of the technologies
specified above. The system will be distributed under the MIT license, the developer will be mentioned in
the copyright credits. Redbabel will be credited to, under the section credits in the README file. Please
refer to the Italian law about the management of public bids for what is not specified in this technical
specifications document.

3.4 Useful links
● https://blog.zeppelin.solutions: best practices for smart contract development;
● Truffle Framework: development framework for Ethereum;
● Etherscan.io: blockchain explorer. A search engine that allows users to easily lookup, confirm and

validate transactions that have taken place on the Ethereum Blockchain;
● Ethgasstation.info: dashboard that shows information about Gas on the ethereum mainnet.
● https://truffleframework.com/tutorials/ethereum-overview;
● https://www.ethnews.com/glossary.

4. The proponent
RedBabel is a Webcraft consulting firm based in Amsterdam and formed by Alessandro Maccagnan and
Milo Ertola. The firm operates in Amsterdam and Italy where it holds close relationships with the respective
startup ecosystems.
Contacts:

● Alessandro Maccagnan: alessandro@redbabel.com
● Milo Ertola: milo@redbabel.com

To allow for a better and seamless communication between us, the proponent, and you, the vendor, we
provide a Slack group available to all group members. To access it: https://slackin-tutcjuiyym.now.sh.

27 https://github.com/airbnb/javascript
28 https://github.com/eslint/eslint
29 https://sass-lang.com

12/12

https://github.com/Gigacore/React-Redux-Sass-Starter
https://blog.zeppelin.solutions/
https://github.com/trufflesuite/truffle
https://etherscan.io/
http://ethgasstation.info/
http://truffleframework.com/tutorials/ethereum-overview
https://www.ethnews.com/glossary
mailto:alessandro@redbabel.com
mailto:milo@redbabel.com
https://slackin-tutcjuiyym.now.sh/
https://github.com/airbnb/javascript
https://github.com/eslint/eslint
http://sass-lang.com/

