
Behavior-driven development
An introduction

What is the “Definition of Done” for a project feature?
How to test whether it is satisfied?

● How to avoid ambiguity and miscommunications?
● Is a qualitative description in a high level document

sufficient?

● How to test the “right things”?
● Are unit tests sufficient?

● What is essential, what is “nice to have”?

THE “ACCEPTANCE” PROBLEM

How can all stakeholders in a digital project
agree on the Definition of Done?

● Clients, project managers, designers, developers, testers:

different ways to describe problems and solutions

● Clients: business business needs
● Project managers: high level specifications
● Designers: user journeys, mockups
● Developers: unit tests, api specifications
● Testers: end-to-end tests

THE “LANGUAGE” PROBLEM

The need for a feature could be captured by a story
that describes system behavior as value to the user.

As a [X]
I want [Y]
so that [Z]

● Y is some feature
● Z is the benefit or value of the feature
● X is the person (or role) who will benefit

If the system fulfills a story’s acceptance criteria, it’s
behaving correctly; if it doesn’t, it isn’t.
Acceptance criteria define how value is provided to users.

ALL STAKEHOLDERS CARE ABOUT VALUE

Feature: create project

As a comic creator
I want to create a project
so that I can keep all

related work and settings
in one place

EXAMPLE: COMICS WORKS STUDIO (DEMO)

Acceptance criteria should be provided in a language
that is common among all project stakeholders.

DEFINING ACCEPTANCE CRITERIA

Behavior-driven development relies on such a language:

controlled natural language (human language)

Given [A]
When [B]
Then [C]

● A is some initial context (the givens)
● B is an event that occurs
● C are the outcomes that the feature must ensure

Feature: describe panel
As a comic creator
I want to describe a panel
so that I can give it a meaning
 even before filling it

Scenario: completed
Given the panel with id "panel1"
 is created
When I try to describe panel
 "panel1" as "my first panel"
Then a description is added to
 panel "panel1"
And the description for panel
"panel1" reads "my first panel"

EXAMPLE: COMICS WORKS STUDIO (DEMO)

This controlled natural language
is called Gherkin

Typically we want to ensure that, for a given story,
from different preconditions we get different outcomes.

PRECONDITIONS DETERMINE BEHAVIOR

Each set of Given-When-Then’s is called a scenario.

Feature: create panel

 Scenario: completed
 Given no panel with id "panel1" exists in the
current project
 When I try to create a panel with id "panel1"
 Then the panel with id "panel1" is created
 And I can lookup the panel with id "panel1" in
the current project

 Scenario: abandoned - panel already exists
 Given a panel with id "panel1" exists in the
current project
 When I try to create a panel with id "panel1"
 Then the panel with id "panel1" is not created
 And I am told that a panel with id "panel1"
already exists

BDD acceptance criteria testing can be automated!

TESTING ACCEPTANCE CRITERIA

● Create a “world” (a mini application) to store all and
only the code objects needed for a scenario.

● Pass the world to each of the “givens” so they can
populate the world with known state (preconditions).

● Tell the event to “occur in” the world. The event
carries out the actual behaviour in the scenario.

● Check any outcomes that were defined for the story.

GIVEN("^no project with id \"([a-zA-Z]+[0-9]*)\" exists$") {
 REGEX_PARAM(QString, workspaceId);
 ScenarioScope<MainCtx> ctx;
 bool workspaceExists = ctx->entities.currentProject != nullptr;
 QVERIFY(! workspaceExists);
}

WHEN("^I try to create a project with id \"([a-zA-Z]+[0-9]*)\"$") {
 REGEX_PARAM(QString, workspaceId);
 ScenarioScope<MainCtx> ctx;
 ...
 ctx->uc.create_project(workspaceId);
 ...
 ctx->usecaseResult = usecaseResult.takeFirst().at(0).toMap();
}

THEN("^the project with id \"([a-zA-Z]+[0-9]*)\" is created$") {
 REGEX_PARAM(QString, workspaceId);
 ScenarioScope<MainCtx> ctx;
 QCOMPARE(ctx->entities.currentProject->eid(), workspaceId);
}

EXAMPLE: COMICS WORKS STUDIO (DEMO)

EXAMPLE: COMICS WORKS STUDIO (DEMO)

SOME OPEN SOURCE PROJECTS USING BDD

Jekyll

a blog-aware static site generator in Ruby

https://jekyllrb.com

RadiantCMS

an open source content management system
designed for small teams

http://radiantcms.org

POPULAR BDD TOOLS & FRAMEWORKS

Open Source - Supports many programming languages

Cloud-based continuous testing environment with
code generation - free for Open Source projects

From BDD’s creator Dan North

Gherkin: the formalized language used in BDD
https://cucumber.io/docs/gherkin/reference/

https://cucumber.io

https://hiptest.com

https://jbehave.orghttps://dannorth.net/introducing-bdd/

https://dannorth.net/introducing-bdd/

This year’s project
NaturalAPI: a toolkit to narrow
the gap between project
specifications and APIs.

Contact point: marco.piccolino@teal.blue

mailto:marco.piccolino@teal.blue

Natural Language Processing
A brief introduction

How to program computers that can analyze and
generate natural language data?

“Language is highly ambiguous– it relies on subtle cues and
contexts to convey meaning.

Take this simple example: “I love flying planes.”

Do I enjoy participating in the act of piloting an aircraft? Or
am I expressing an appreciation for man-made vehicles
engaged in movement through the air on wings?”

Source: Vincent Chen

THE MAIN TASK

Current computers do not like ambiguity.
Either it’s a 0, or it’s a 1.

Ambiguity in language is present at various levels, e.g.:
● Pragmatics (deal with context contributing to meaning)

“Wow, what a beautiful hat!” (said with a disgusted face)

● Semantics (deals with sentence meaning)
“We saw her duck” (duck name vs. duck verb)

● Syntax (deals with sentence structure)
“John ate the cookies on the couch” (John or cookies on couch?)

● Phonetics (deals with language sounds)
“ice cream" vs "I scream”

THE GROUND PROBLEM

Historically, two main, complementary approaches:
Symbolic and Statistical Natural Language Processing

Symbolic

define rules to parse/generate language “by
hand”,
often using formalisms from classical computer
science.

Example: hand-written context-free grammars
(CFGs) to perform syntactic analysis (parsing).

APPROACHES TO SOLVE THE ISSUE

Statistical

infer rules (or rule probabilities) from (usually
large) data collections by so-called machine
learning methods.

Example: neural networks to perform text
categorization (is this a legal text or a piece of
literature?).

EX.: SYMBOLIC NLP - CFG PARSING

Source: http://www.bowdoin.edu/~allen/nlp/nlp1.html

EX.: STAT. NLP - TEXT CATEGORIZATION

Source: https://www.nltk.org/book/ch06.html

Most NLP systems nowadays make use of probability
to deal with language ambiguity at various levels.

PROBABILITY

Source: Michael Collins

Remove inflectional endings to return the base
dictionary form of a word (lemma).

USEFUL NLP TASK: Lemmatization

Source: https://kavita-ganesan.com/

Mark up a word in a text as corresponding to a
particular part of speech.

USEFUL NLP TASK: Part-of-speech tagging

Source: Lluís Màrquez

Determine sentence structure by the relation between a
word (a head) and its dependents.

USEFUL NLP TASK: Dependency parsing

Source: Wikipedia

Automatically extract relevant terms (or keywords)
from a given collection of texts (a corpus).

USEFUL NLP TASK: Terminology extraction

Source: https://www.r-bloggers.com/

NLP TOOLS & RESOURCES
Natural language processing
https://en.wikipedia.org/wiki/Natural_language_processing
An overview of NLP’s subdisciplines and tasks

Speech and Language Processing (3rd ed. Draft - free!)
Dan Jurafsky and James H. Martin
https://web.stanford.edu/~jurafsky/slp3/
Great introduction to NLP and speech technology

Dependency parsing - Stanford parser
https://nlp.stanford.edu/software/nndep.html
Brief definition of dependency parsing, state-of-the art parser.

SpaCy
https://spacy.io/
Open-source software library for advanced NLP

https://en.wikipedia.org/wiki/Natural_language_processing
https://web.stanford.edu/~jurafsky/slp3/
https://nlp.stanford.edu/software/nndep.html
https://spacy.io/

This year’s project
NaturalAPI: a toolkit to narrow
the gap between project
specifications and APIs.

Contact point: marco.piccolino@teal.blue

mailto:marco.piccolino@teal.blue

	P1
	P2

