teal.blue

digital solutions

NaturalAPI

e ———

from specs to code, smoothly

teal.blue
by: Maply SIT - VAT IT03820550162 - PEC maply.sit@legalmail.it
Headquarters: via Pasubio 5, Dalmine (Bergamo), 24044, Italy
For all enquiries: hello@teal.blue

https://teal.blue/
mailto:hello@teal.blue

1) Problem statement
1.1) Speaking the same language
1.2) Behavior-driven development
1.3) Shortcomings of current solutions

2) Proposed solution
2.1) Narrowing the spec/code gap
2.2) Natural Language Processing
2.3) Code generation

3) Project overview
3.1) Expected workflow

4) Product specification
4.1) Features
4.1.1) Mandatory requirements
4.1.1.1) NaturalAPI Discover
Extract_bdl_from_documents.feature
4.1.1.2) NaturalAPI Design
Generate_bal_from_bdl_and_bo.feature
4.1.2.3) NaturalAPI Develop
Generate_api_from_bal_and_pla.feature
4.1.2) Optional requirements
4.2) Delivery modes
4.2.1) Mandatory requirements
4.2.2) Optional requirements
4.3) Application architecture and code quality
4.3.1) Mandatory requirements
4.4) Input and output
4.4.1) Mandatory requirements
4.41.1) NaturalAPI Discover
4.41.2) NaturalAPI Design
4.4.1.3) NaturalAPI Develop

5) Intellectual property rights

6) Helpful resources and definitions
6.1) Natural language processing
6.2) Behavior-driven development
6.3) APl and DLS generation
6.4) Application architecture & code

7) About teal.blue

1) Problem statement

1.1) Speaking the same language

Having all stakeholders in a digital project speak the same language is not easy.

Clients, project managers, UX designers, developers and testers have different ways to
describe problems and solutions. This means in practice that there is ample room for
misunderstandings. When misunderstandings emerge only late in a project, these might
lead to all sorts of bad outcomes, including delays, increased costs, unhappy users,
layoffs, legal actions... and stress.

Besides speaking role-specific languages like code, flow diagrams and Ul mockups,
however, all stakeholders share a common language: natural language (like English or
Italian).

1.2) Behavior-driven development

Behavior-driven development provides a common language.

Behavior-driven development (BDD) leverages the untapped power of natural language to
bring all stakeholders around the same table, discuss about product features, and find a
shared understanding of what to expect from the product’s behaviour.

A common BDD practice is to use standardised language patterns to describe a sequence
of expected preconditions, an action, and its expected outcomes, describing a user's
interaction with a product or system. Such sequence is called a scenario. One or more
scenarios constitute a feature.

A quick ATM (cash machine) example:

Feature: Withdraw money

Scenario: valid card, sufficient money
GIVEN I have 30 Euros in my bank account
AND my bank card is valid
WHEN I try to withdraw 20 Euros from the ATM
THEN I should be given 20 Euros
AND I should be told 10 Euros are left on the account

The first benefit of describing features in this format (called Gherkin) is that important
issues to be discussed should surface early on. For instance, the example above does not
list all necessary preconditions for this use case to succeed (working data connection,

enough money in ATM), nor deals e.g. with the user's authentication method (PIN,
fingerprint, bodyscan?).

The second benefit is that the use of a standardised language makes it possible to link
natural language specifications with application code. This can be achieved with tools like
Cucumber.

1.3) Shortcomings of current solutions

But natural language and code are usually linked via a manually maintained “glue”
layer, and manually written APIs (function / method signatures).

Currently, the connection between scenarios written in natural language (tests) and
application code (APIs) is fairly arbitrary. Usually, a string of natural language which
contains placeholders for parameters is manually associated to a function or method call
(API) by writing glue code. The name and signature of the function or method itself, which
is part of the application programming interface, is usually invented by the person
responsible for designing the API.

Test code (manually maintained “glue” layer):

Given('I have {float} Euros or more in my bank account', function (accountMoney) {
this.availableMoney = accountMoney;

1)

// When('I try to withdraw {float} Euros from the ATM', function (wantedMoney) {
this.actualAnswer = withdraw(wantedMoney, this.availableMoney);

I3

Then('I should be given {float} Euros', function (expectedAmount) {
assert.equal(this.actualAnswer[0], expectedAmount);

1)

Then('I should be told {float} euros are 1left on the account', function
(expectedMoneylLeft) {
assert.equal(this.actualAnswer[1], expectedMoneylLeft);

1)

Application code:

// manually written API
function withdraw(money, availableMoney) {
// manually written implementation
var moneylLeft = availableMoney - money
if (moneyLeft >= 0) {
return [money, moneylLeft]
} else {

return [0, moneylLeft]
}
}

With this approach, there is no guarantee that the natural language and the API “mean the
same thing” or, at least, are strongly coupled. The only piece of data that they actually
share are the input parameters (like wantedMoney in the example above).

2) Proposed solution

2.1) Narrowing the spec/code gap

We are looking for a toolkit to narrow the gap between project specifications and APIs.
What if the gap between natural language and application programming interfaces was
narrower?

What if I try to withdraw 20 Euros from the ATM could semi-automatically be converted
to a function with a signature like withdraw(user, amount, source)?

The aim of this project is to provide a proof-of-concept toolkit to narrow the gap
between project specifications and APIs. We will name such a toolkit NaturalAPI.

Thanks to the right mix of natural language processing and code generation, NaturalAP/
should allow the next generation of application developers to write APIs that are more
consistent, more predictable, and more maintainable. By writing feature scenarios in
controlled but natural language, project stakeholders will be able to turn project
requirements (use cases, business entities) into entry points for actual code (the
application’s high level API).

NaturalAPI should allow programmers to focus on developing functionality, rather than
replicating business domain modelling efforts.

As part of NaturalAPI, 3 proof-of-concept tools shall be developed:

e A business domain language (BDL) extractor, called NaturalAPl Discover, will
extract potential business entities (objects / names), processes (actions / verbs),
and combinations thereof (predicates) from business-relevant, unstructured text
documents.

How to Withdraw Cash from an
Automated Teller Maching

s Triton

atm.names.en_US.bdl

: mmm) atm.verbs.en_US.bdl
AQRQP \ atm.predicates.en_US.bdl

Tsen Mt

$ na_discover -i argo_manual.en_US.txt wikihow_atm.en_US.txt -o atm

A feature and scenario parser, called NaturalAPI Design, will create a business
application language (BAL) APl on-the-fly from Gherkin documents and an
available business domain language (BDL).

Faature: Deposit maney

Featura: withazaw money
arvel

Scemario: valid card, sufficient money

GIVEN T have 38 Euros in my bank account

ANO my bank cazd s valda bigcorp_atm.withdrawMoney.bal

:: : ::.: ::: : : o ' bigcorp_atm.depositMoney.bal

AND T should be told 10 Euros are left on the account

atm.names.en_US.bdl
atm.verbs.en_US.bdl
atm.predicates.en_US.bdl

$ na_design -i *.feature *.bdl -o bigcorp_atm

A Janguage exporter, called NaturalAPl Develop, will convert the business
application language (BAL) to test cases and APIs in one of the available
programming languages and frameworks, supporting both the creation of new
code repositories and the update of existing ones.

atm_app/features/steps/withdraw_money.py
atm_app/features/steps/deposit_money.py

bigcorp_atm.withdrawMoney.bal

atm_app/src/usecases/withdraw_money.
bigcorp_atm.depositMoney.bal -=PP RSV Y

atm_app/src/usecases/deposit_money.py

—

atm_app/src/entities/money.py

python3.code.pla atm_app/src/entities/bank_account.py
behave.test.pla atm_app/src/entities/atm.py

$ na_develop -i *.bal ¥.pla -o atm_app

NaturalAPl should take full advantage of existing open-source and commercial
technologies to provide added value to its users without reinventing the wheel.

2.2) Natural Language Processing

The toolkit should leverage powerful natural language processing.
Rather than relying on regular expression or similar string parsing techniques, NaturalAPI
should rely on advanced natural language processing (NLP) techniques and business
domain knowledge to:
1. Find combinations of verbs and nouns (i.e. predicates) in Gherkin natural language
specifications
2. Normalise and convert predicates into free functions or object methods with their
arguments
3. Find recurring function arguments and generate corresponding objects and
properties
To reach the goal, the toolkit can leverage state-of-the-art natural language tools
(dependency parsers, part-of-speech taggers, stemmers, etc.) which are compatible with
its license.

2.3) Code generation

The toolkit should generate complete APIs and automated tests.

Thanks to its highly specialised domain-specific language, NaturalAPI should be able to
generate complete and easily maintainable application programming interfaces, and
related integration and unit tests, covering popular programming languages and
frameworks.

To reach the goal, the toolkit can leverage state-of-the art API generation tools and
specifications, such as the Open API specification.

3) Project overview

3.1) Expected workflow

NaturalAPI should provide a seamless workflow from specs to code.
A typical NaturalAPI workflow should be as follows.

A) Project stakeholders will decide on the natural language to be used to document
product features / scenarios.

Typically, but not necessarily, product features will be drafted in US English or British
English.

Feature: Withdraw money

Scenario: valid card, sufficient money
GIVEN I have 30 Euros in my bank account
AND my bank card is valid
WHEN I try to withdraw 20 Euros from the ATM
THEN I should be given 20 Euros
AND I should be told 10 Euros are left on the account

B) A set of textual documents which are relevant to the business domain will be selected
as input to NaturalAPI Discover.

For good results, such documents should be focussed on the tasks to be modelled. Good
examples include high level project specifications, instruction manuals, WikiHow articles,
Wikipedia articles, tutorials, textbooks, etc.

How wodoanyting.. - ﬁ ﬂ-i tan '

Anticle Edit Discuss Home . Categories - Finance and Business - Banks ar Pﬂl’fﬂfﬁhlp Meas"'ed m DefadeS.. %
£ Learn why people trust wikiHow

How to Withdraw Cash from an /\I !G D
Automated Teller Machine

Co-authored by Michael R. Lewis £ AUTOMATED TELLER M‘ACHINE
Updated: March 29, 2019 USER MANUAL

An Automated Teller Machine (ATM) card is a great TDN 07103-00339 Rev. B July 7, 2015
Explore this Article
convenience as you can use it to get cash from just

about any place in the world. If you just signed up for ~ ® Choosing an ATM and Logging In
a new bank account and received your ATM card in X Obtalning Casty
the mail, you may use it at any ATM. Here is howto " Getting a Recelpt and Recordkeeping

f 3 = Show 1 more... s
use it to withdraw cash.
Questions & Answers
Related Articles .
References
e ' 1

C) NaturalAPI Discover will generate a set of candidate actions (verbs), objects (nouns),
and combinations thereof (predicates), automatically extracted from the documents
collected in the previous step.

The output of this step will be named a business domain language (BDL).

If the project language is not US English, NaturalAPI Discover will translate the documents
into US English before generating candidate verbs, nouns and predicates, as US English is
the de-facto standard for writing internationally shareable code.

VERBS fre | NOUNS fre | PREDICATES freq
q q

withdraw 35 transaction 12 withdraw cash 6

select 22 | cash 1 select amount 4

press 5 withdrawal 9 check balance 4

type 3 bank account 6 insert card 3

D) Project stakeholders will draft a set of BDD features and scenarios to document all
use cases that should be supported by the system to be created.

In doing so, they might consult the business domain language of NaturalAPI Discover to
choose the most appropriate and consistent terminology (verbs, nouns and predicates).

Feature: Withdraw merey cash

Scenario: valid card, sufficient money cash
GIVEN I have 30 Euros in my bank account
AND my bank card is valid
WHEN I try to withdraw 20 Euros from the ATM
THEN I should be given 20 Euros
AND I should be told 10 Euros are left on the account

E) NaturalAPI Design will take BDD feature descriptions, a business domain language
(BDL) and an optional business ontology (BO), and generate business application
language (BAL) suggestions to be interactively evaluated by API designers.

The output of this process will be named a business application language (BAL). During the
interactive process, API developers will have a chance to define additional API aspects,
such as: dictate required / optional input objects; merge, group or split actions and
objects, etc.

Optional resources will include business ontologies of domain-relevant concepts, which will
expand nouns into structured objects (see the bankCard example below).

withdraw(cash)
cash - type: currency; min: ©

isValid(bankCard)
bankCard - type: paymentMethod;
id - type: string (required)
expirationDate - type: date (required)

give(cash)
cash - type: currency; minValue: ©

process(transaction)
transaction - type: transaction

F) NaturalAPI Develop will take the business application language (BAL), together with
any additional optional resources, and convert it to a common programming language
/ framework API.

The tool will also generate corresponding integration tests for the provided BDDs in one of
the supported frameworks (e.g. Cucumber). It will provide an interactive session, so that
programming-language specific details not already specified in the optional resources can

be defined by the API developer. These programming-specific aspects will be stored in a
programming language adapter (PLA).

The toolsuite will be designed so that changes in any of the resources (input documents,
BDD features, BDLs, BALs and PLAs) can be easily propagated downstream.

4) Product specification

4.1) Features

4.1.1) Mandatory requirements

Notice: scenarios for the following features are just a starting point, and might be refined
and adjusted by project stakeholders in the initial project phase, and also later if required.
The scenarios can optionally be used to perform automated testing of NaturalAP/
features.

4.11.1) NaturalAPI Discover

Extract_bdl_from_documents.feature

As an application spec writer, | want to extract a business domain language (BDL) from a
set of documents, so that | can write better features/scenarios and create a business
application language (BAL).

Scenario: one or more documents - en-US
GIVEN there are one or more documents containing potential BDL candidates
AND all the documents are written in en-US
WHEN I extract the BDL from the documents
THEN I am given a list of business-domain related nouns, verbs, and predicates
AND I am given the frequency across all documents of each noun, verb and predicate
AND I am not given very common and non business-domain related nouns, verbs, predicates

4.1.1.2) NaturalAPI Design

Generate_bal_from_bdl_and_bo.feature

As an API designer, | want to interactively generate a business application language (BAL)
from a business domain language (BDL) and an optional business ontology (BO), so that |
can write an APl which closely reflects the natural language specification
(features/scenarios) and the business domain.

Scenario: no business ontology
GIVEN there is a business domain language
WHEN I generate a business application language from the business domain language
THEN I am asked to confirm each business application language suggestion

10

AND finally I am given a business application language with all suggestions I confirmed

Scenario: business ontology

GIVEN there is a business domain language

AND there is a business ontology

WHEN I generate a business application language from the business domain language and the
business ontology

THEN I am asked to confirm each business application language suggestion

AND I am given the option to substitute a suggested object with a related ontology object

AND finally I am given a business application language with all suggestions I confirmed

4.1.2.3) NaturalAPI Develop

Generate_api_from_bal_and_pla.feature

As an API designer/developer, | want to interactively generate a programming language
APl from a business application language and an optional programming language
adapter, so that | can implement the application spec in the most convenient language /
framework with little effort.

Notice: the following programming language / test framework combination is just an
example

Scenario: Python / behave - no programming language adapter
GIVEN there is a business application language
AND there is a set of related BDD feature scenarios
WHEN I generate an API from the business application language
THEN I am asked to confirm each API suggestion (method names, argument types)
AND finally I am given an API in the “Python” language with all suggestions I confirmed
AND finally I am given a test API in the “behave” framework for the given feature scenarios

4.1.2) Optional requirements

Optional requirements might include e.g. adding support for writing specifications in a
language different from en-US; creating workflows to connect the three steps
(discover-design-develop) together; etc.

4.2) Delivery modes

4.2.1) Mandatory requirements

Each NaturalAPI feature shall be accessible through at least two modes among the
following:

e a Command Line Interface

e a minimal Graphical User Interface

e a web REST interface

n

All delivery modes should share the same logic layers (see next section). The delivery
modes can be implemented in any programming language/framework of choice. The
delivery modes shall be accessible through at least one popular desktop platform (e.g.
Ubuntu Linux, macOS, Windows, or in-browser).

4.2.2) Optional requirements

Optional requirements might include e.g. adding a third delivery mode to one or more
features; creating a richer Graphical User Interface, etc.

4.3) Application architecture and code quality

4.3.1) Mandatory requirements

The logic layers should be deployed in one of the following ways:
e as a library (static or dynamic)
e as part of the same executable as the chosen delivery modes
e as anindependent process/service, locally or remotely

In any case, logic layers shall have no dependency on any specific delivery mode.

For the implementation of the logic layers, a Clean Architecture approach is suggested,
but any structured and motivated approach to modern software architecture is welcome.
The development team is encouraged to practice The Joel Test.

4.4) Input and output

4.4.1) Mandatory requirements

Notice: all textual input/output resources should have UTF-8 encoding and Unix line
breaks.

4.4.1.1) NaturalAPI Discover

Input
documents
Format: plain text
file pattern: [documentName].en_US.txt
Output

list of lemmatized verbs and frequencies
format: CSV
file name pattern: [projectName].names.en_US.bdl
list of lemmatized nouns and frequencies
format: CSV
file name pattern: [projectName].verbs.en_US.bdl
list of lemmatized predicates and frequencies
format: CSV
file name pattern: [projectName].predicates.en_US.bdl

12

4.4.1.2) NaturalAPI Design

Input
feature scenarios
format: gherkin .feature
list of lemmatized verbs and frequencies
list of lemmatized nouns and frequencies
list of lemmatized predicates and frequencies
ontology
format: OWL v2
Output
business application language
Format: OpenAPI v3 JSON Objects (esp. OperationObject, ParameterObject)
File name pattern: [projectName].[operationId].bal

4.4.1.3) NaturalAPI Develop

Input
business application language
programming language adapter
Output
language/framework-specific API
language/framework-specific BDD test entry points

5) Intellectual property rights

The proposing company’s aim for this project is evaluating the proof of concept’s (PoC)
feasibility. All the code and artifacts will remain property of the development team (the
students). The development team will grant the proposing company a perpetual, free of
charge license to use the PoC’s artifacts and to inspect the related source code.

The proposing company encourages the development team to release the PoC under a
permissive Open Source license (e.g. MIT, Apache) and to publish the code on an easily
accessible public repository (e.g. on github.com).

6) Helpful resources and definitions

6.1) Natural language processing

Natural language processing -
https://en.wikipedia.org/wiki/Natural language_processing
An overview of NLP’s subdisciplines and tasks.

Dependency parsing - Stanford parser - https://nlp.stanford.edu/software/nndep.html
Brief definition of dependency parsing, state-of-the art parser.

13

https://en.wikipedia.org/wiki/Natural_language_processing
https://nlp.stanford.edu/software/nndep.html

6.2) Behavior-driven development

Introducing BDD - https://dannorth.net/introducing-bdd/
A brief intro to BDD by its initiator.

Gherkin - https://cucumber.io/docs/gherkin/
The de facto standard to write feature specifications in natural language.

Hiptest - https://hiptest.com/
An online tool for writing BDD features with code generation capabilities.

Cucumber - https://cucumber.io/docs
A framework for automated BDD testing.

6.3) APl and DLS generation

OpenAPI Specification - https://github.com/OAl/OpenAPI-Specification
A recognized standard to write API specifications.

Swagger - https://swagger.io/
Code generation tools based on OpenAPI.

OWL v2 ontologies - https://www.w3.0rg/OWL/
W3C format for ontology representation.

6.4) Application architecture & code

Clean Architecture -
https.//blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
A principled way to application architecture.

The Joel test -
https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better-code/
Useful checklist for more effective software projects.

7) About teal.blue

tealblue, a Maply SIT brand, is a small digital solutions
;EeCﬂIk')I Ue provider based in the Bergamo areaq, with headquarters at
Igital solutions POINT (Polo per 'innovazione scientifica e tecnologica della

14

https://dannorth.net/introducing-bdd/
https://cucumber.io/docs/gherkin/
https://hiptest.com/
https://cucumber.io/docs
https://github.com/OAI/OpenAPI-Specification
https://swagger.io/
https://www.w3.org/OWL/
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better-code/

provincia di Bergamo) in Dalmine. Its customers include businesses from the industrial,
entertainment and medical sectors.

teal.blue’s core competence is the development of cross-platform applications based on
the Qt framework with rich user interfaces for desktop, mobile and embedded systems.

15

