
OMG UnifiedModelingLanguage
Specification

Version 1.5
September 2002

Copyright © 2000-2002 Alcatel
Copyright © 1997-2001 Computer Associates International Inc.
Copyright © 1997-2001 Electronic Data Systems Corporation
Copyright © 1997-2001 Hewlett-Packard Company
Copyright © 1997-2001 IBM Corporation
Copyright © 1997-2002, I-Logix
Copyright © 1997-2001 IntelliCorp
Copyright © 2000-2002 Kabira Technologies
Copyright © 2000-2002 Kennedy Carter
Copyright © 1997-2001 Microsoft Corporation
Copyright © 1997-2001 Object Management Group
Copyright © 1997-2001 Oracle Corporation
Copyright © 2000-2002 Project Technology
Copyright © 1997-2001 Ptech Inc.
Copyright © 1997-2001 Rational Software Corporation
Copyright © 1997-2001 Reich Technologies
Copyright © 1997-2001 Softeam
Copyright © 1997-2001 Taskon A/S
Copyright © 2000-2002 Telelogic
Copyright © 1997-2001 Unisys Corporation

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice.

The material in this document details an Object Management Group, Inc. specification. This document does not represent
a commitment to implement any portion of this specification in any companies' products.

GENERAL USE RESTRICTIONS

The owners of the copyright in the UML specifications version 1.3 hereby grant you a fully-paid up, non-exclusive,
nontransferable, perpetual, worldwide license (without the right to sublicense), to create and distribute software and
special purpose specifications which are based upon the UML specifications, and to use, copy, and distribute the UML
specifications as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this
permission notice appear on any copies of the UML specifications; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise
resold or transferred for commercial purposes; and (3) no modifications are made to the UML specifications themselves.
This limited permission automatically terminates without notice if you breach any of these terms or conditions. Upon
termination, you will destroy immediately any copies of the specifications in your possession or control.

Software developed under the terms of this license may claim compliance or conformance with UML version 1.3 if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
ii OMG-Unified Modeling Language, v1.5 September 2002

specifications. Software developed only partially matching the applicable compliance points may claim only that the
software was based on the UML specifications, but may not claim compliance or conformance with any particular UML
version. In the event that testing suites are implemented by Object Management Group, Inc., software developed using the
UML specifications may claim compliance or conformance with the specifications only if the software satisfactorily
completes the testing suites.

Any unauthorized use of the UML specifications may violate copyright laws, trademark laws, and communications
regulations and statutes.

DISCLAIMER OF WARRANTY

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE UML
SPECIFICATIONS ARE PROVIDED "AS IS" AND MAY CONTAIN ERRORS OR MISPRINTS. THE
SPECIFICATIONS ARE PROVIDED FREE OF CHARGE OR AT A NOMINAL COST, AND ACCORDINGLY ARE
PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTY OF ANY KIND, INCLUDING WITHOUT
LIMITATION THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ERRORS
CONTAINED HEREIN OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE
FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF SUCH DAMAGES. The
entire risk as to the quality and performance of software developed using the specifications is borne by you. This
disclaimer of warranty constitutes an essential part of this Agreement.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government subcontractor is subject to the restrictions set forth in subparagraph
(c) (1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph
(c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in
48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the
Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated
above and may be contacted through the Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

OMG OBJECT MANAGEMENT GROUP, CORBA, CORBA ACADEMY, CORBA ACADEMY & DESIGN, THE
INFORMATION BROKERAGE, OBJECT REQUEST BROKER, OMG IDL, CORBAFACILITIES,
CORBASERVICES, CORBANET, CORBAMED, CORBADOMAINS, GIOP, IIOP, OMA, CORBA THE GEEK,
UNIFIED MODELING LANGUAGE, UML, and UML CUBE LOGO are registered trademarks or trademarks of the
Object Management Group, Inc.

Rational Software is a trademark of Rational Software Corporation.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form at
http://www.omg.org/library/issuerpt.htm.
September 2002 OMG-Unified Modeling Language, v1.5 iii

iv OMG-Unified Modeling Language, v1.5 September 2002

Contents
Contents . v

Foreword . xxv

Preface . xxvii

1 UML Summary. 1-1
1.1 Overview 1-1

1.2 Primary Artifacts of the UML 1-2

1.2.1 UML-defining Artifacts . 1-2
1.2.2 Development Project Artifacts. 1-2

1.3 Motivation to Define the UML 1-3

1.3.1 Why We Model . 1-3
1.3.2 Industry Trends in Software 1-3

1.3.3 Prior to Industry Convergence 1-4

1.4 Goals of the UML 1-4

1.5 Scope of the UML 1-6

1.5.1 Outside the Scope of the UML 1-7
1.5.2 Comparing UML to Other Modeling Languages . . . 1-8

1.5.3 Features of the UML . 1-9

1.6 UML - Past, Present, and Future 1-11
1.6.1 UML 0.8 - 0.91 . 1-11

1.6.2 UML Partners . 1-12
1.6.3 UML - Present and Future . 1-13

2 UML Semantics . 2-1

Part 1 - Background
September 2002 OMG-Unified Modeling Language, v1.5 v

2.1 Introduction 2-2
2.1.1 Purpose and Scope. 2-2

2.1.2 Approach . 2-3

2.2 Language Architecture 2-4
2.2.1 Four-Layer Metamodel Architecture 2-4

2.2.2 Package Structure . 2-6

2.3 Language Formalism 2-7
2.3.1 Levels of Formalism . 2-8

2.3.2 Package Specification Structure 2-9
2.3.3 Use of a Constraint Language 2-10

2.3.4 Use of Natural Language . 2-10
2.3.5 Naming Conventions and Typography. 2-11

Part 2 - Foundation

2.4 Foundation Package 2-11

2.5 Core 2-12
2.5.1 Overview . 2-12

2.5.2 Abstract Syntax . 2-12
2.5.3 Well-Formedness Rules . 2-56

2.5.4 Detailed Semantics . 2-69

2.6 Extension Mechanisms 2-77

2.6.1 Overview . 2-77
2.6.2 Abstract Syntax . 2-79

2.6.3 Well-Formedness Rules . 2-84
2.6.4 Detailed Semantics . 2-86

2.6.5 Notes . 2-87

2.7 Data Types 2-89
2.7.1 Overview . 2-89

2.7.2 Abstract Syntax . 2-89

Part 3 - Behavioral Elements

2.8 Behavioral Elements Package 2-97

2.9 Common Behavior 2-97

2.9.1 Overview . 2-97
2.9.2 Abstract Syntax . 2-98

2.9.3 Well-Formedness Rules . 2-107
2.9.4 Detailed Semantics . 2-112

2.10 Collaborations 2-114

2.10.1 Overview . 2-114
2.10.2 Abstract Syntax . 2-116

2.10.3 Well-Formedness Rules . 2-122
vi OMG-Unified Modeling Language, v1.5 September 2002

2.10.4 Detailed Semantics . 2-127

2.10.5 Notes . 2-132

2.11 Use Cases 2-132

2.11.1 Overview . 2-132
2.11.2 Abstract Syntax . 2-133

2.11.3 Well-FormednessRules . 2-136
2.11.4 Detailed Semantics . 2-138

2.11.5 Notes . 2-143

2.12 State Machines 2-143
2.12.1 Overview . 2-143

2.12.2 Abstract Syntax . 2-144
2.12.3 Well-FormednessRules . 2-154

2.12.4 Detailed Semantics . 2-158
2.12.5 Notes . 2-167

2.13 Activity Graphs 2-172

2.13.1 Overview . 2-172
2.13.2 Abstract Syntax . 2-173

2.13.3 Well-Formedness Rules . 2-178
2.13.4 Detailed Semantics . 2-181

2.13.5 Notes . 2-183

2.14 Actions 2-183

Part 4 - General Mechanisms

2.15 Model Management 2-184

2.15.1 Overview . 2-184
2.15.2 Abstract Syntax . 2-184

2.15.3 Well-Formedness Rules . 2-189
2.15.4 Semantics . 2-194

2.15.5 Notes . 2-200

Part 5 - Actions

2.16 Action Package 2-202

2.17 Actions Overview 2-202

2.17.1 Action Metamodel . 2-203
2.17.2 Design Principles and Rationale 2-204

2.17.3 The Actions . 2-207

2.16 Action Conventions 2-210

2.16.1 Chapter Structure. 2-210
2.16.2 Description of a Class . 2-211

2.17 Action Foundation 2-214

2.17.1 Action Specification . 2-214
September 2002 OMG-Unified Modeling Language, v1.5 vii

2.17.2 Action Execution Model . 2-217
2.17.3 Action Foundation Classes 2-221

2.18 Composite Actions 2-229

2.18.1 Composite Action Specification 2-229
2.18.2 Composite Action Execution 2-234

2.18.3 Composite Action Classes . 2-240

2.19 Read and Write Actions 2-250
2.19.1 Object Actions. 2-251

2.19.2 Attribute Actions . 2-252
2.19.3 Association Actions. 2-253

2.19.4 Variable Actions . 2-258
2.19.5 Other Actions . 2-259

2.19.6 Additional OCL Operations for Read and Write Actions
2-260

2.19.7 Read and Write Action Classes 2-261

2.20 Computation Actions 2-283

2.20.1 Computation actions . 2-283
2.20.2 Computation Classes . 2-285

2.21 Collection Actions 2-291
2.21.1 General Rules for Collection Actions 2-292

2.21.2 Collection Action Classes . 2-293

2.22 Messaging Actions 2-306
2.22.1 Request . 2-307

2.22.2 Asynchronous Invocation . 2-307
2.22.3 Synchronous invocation. 2-308

2.22.4 Request Handling . 2-309
2.22.5 Reply Handling . 2-310

2.22.6 Procedures . 2-310
2.22.7 Performing requests. 2-311

2.22.8 Effect Resolution . 2-312
2.22.9 Operation Lookup . 2-313

2.22.10 Transition Triggering. 2-314
2.22.11 Direct Communication among Executions 2-314

2.22.12 Strong Typing . 2-315
2.22.13 Transmitting messages . 2-315

2.22.14 Return information . 2-315
2.22.15 Messaging Classes. 2-316

2.22.16 Optional Profile for Resolution of Operations and Signals
2-324

2.23 Jump Actions 2-326
viii OMG-Unified Modeling Language, v1.5 September 2002

2.23.1 Jumps . 2-326

2.23.2 Break and Continue Statements 2-328
2.23.3 Exceptions . 2-329

2.23.4 Jumps with Concurrent Executions 2-330
2.23.5 Jump Classes . 2-330

2.23.6 Additional Jump Semantics for Actions Defined
Elsewhere . 2-333

2.23.7 Jump Value Classes . 2-336

3 UML Notation Guide . 3-1

Part 1 - Background

3.1 Introduction 3-5

Part 2 - Diagram Elements

3.2 Graphs and Their Contents 3-6

3.3 Drawing Paths 3-7

3.4 Invisible Hyperlinks and the Role of Tools 3-7

3.5 Background Information 3-8
3.5.1 Presentation Options . 3-8

3.6 String 3-8

3.6.1 Semantics . 3-8
3.6.2 Notation. 3-8

3.6.3 Presentation Options . 3-9
3.6.4 Examples . 3-9

3.6.5 Mapping . 3-9

3.7 Name 3-9

3.7.1 Semantics . 3-9
3.7.2 Notation. 3-9

3.7.3 Example. 3-10
3.7.4 Mapping . 3-10

3.8 Label 3-10

3.8.1 Semantics . 3-10
3.8.2 Notation. 3-10

3.8.3 Presentation Options . 3-11
3.8.4 Example. 3-11

3.9 Keywords 3-11

3.10 Expression 3-11
3.10.1 Semantics . 3-11

3.10.2 Notation. 3-12
3.10.3 Examples . 3-12

3.10.4 Mapping . 3-12
September 2002 OMG-Unified Modeling Language, v1.5 ix

3.10.5 OCL Expressions. 3-12
3.10.6 Selected OCL Notation . 3-13

3.10.7 Examples . 3-13

3.11 Note 3-13
3.11.1 Semantics . 3-13

3.11.2 Notation. 3-13
3.11.3 Presentation Options . 3-13

3.11.4 Example. 3-14
3.11.5 Mapping . 3-14

3.12 Type-Instance Correspondence 3-14

Part 3 - Model Management

3.13 Package 3-16
3.13.1 Semantics . 3-16

3.13.2 Notation. 3-16
3.13.3 Presentation Options . 3-17

3.13.4 Style Guidelines . 3-17
3.13.5 Example. 3-18

3.13.6 Mapping . 3-19

3.14 Subsystem 3-19
3.14.1 Semantics . 3-19

3.14.2 Notation. 3-19
3.14.3 Presentation Options . 3-20

3.14.4 Example. 3-21
3.14.5 Mapping . 3-24

3.15 Model 3-24
3.15.1 Semantics . 3-24

3.15.2 Notation. 3-24
3.15.3 Presentation Options . 3-25

3.15.4 Example. 3-25
3.15.5 Mapping . 3-26

Part 4 - General Extension Mechanisms

3.16 Constraint and Comment 3-26

3.16.1 Semantics . 3-26
3.16.2 Notation. 3-27

3.16.3 Example. 3-28
3.16.4 Mapping . 3-28

3.17 Element Properties 3-29

3.17.1 Semantics . 3-29
3.17.2 Notation. 3-29
x OMG-Unified Modeling Language, v1.5 September 2002

3.17.3 Presentation Options . 3-30

3.17.4 Style Guidelines . 3-31
3.17.5 Example. 3-31

3.17.6 Mapping . 3-31

3.18 Stereotypes 3-31

3.18.1 Semantics . 3-31
3.18.2 Notation. 3-31

3.18.3 Examples . 3-32
3.18.4 Mapping . 3-33

Part 5 - Static Structure Diagrams

3.19 Class Diagram 3-34

3.19.1 Semantics . 3-34
3.19.2 Notation. 3-34

3.19.3 Mapping . 3-34

3.20 Object Diagram 3-35

3.21 Classifier 3-35

3.22 Class 3-35

3.22.1 Semantics . 3-35
3.22.2 Basic Notation . 3-36

3.22.3 Presentation Options . 3-36
3.22.4 Style Guidelines . 3-36

3.22.5 Example. 3-37
3.22.6 Mapping . 3-37

3.23 Name Compartment 3-38
3.23.1 Notation. 3-38

3.23.2 Mapping . 3-38

3.24 List Compartment 3-38
3.24.1 Notation. 3-38

3.24.2 Presentation Options . 3-39
3.24.3 Example. 3-40

3.24.4 Mapping . 3-41

3.25 Attribute 3-41
3.25.1 Semantics . 3-41

3.25.2 Notation. 3-42
3.25.3 Presentation Options . 3-43

3.25.4 Style Guidelines . 3-44
3.25.5 Example. 3-44

3.25.6 Mapping . 3-44

3.26 Operation 3-44
September 2002 OMG-Unified Modeling Language, v1.5 xi

3.26.1 Semantics . 3-44
3.26.2 Notation. 3-44

3.26.3 Presentation Options . 3-46
3.26.4 Style Guidelines . 3-47

3.26.5 Example. 3-47
3.26.6 Mapping . 3-47

3.27 Nested Class Declarations 3-48

3.27.1 Semantics . 3-48
3.27.2 Notation. 3-48

3.27.3 Mapping . 3-48

3.28 Type and Implementation Class 3-49
3.28.1 Semantics . 3-49

3.28.2 Notation. 3-49
3.28.3 Example. 3-50

3.28.4 Mapping . 3-50

3.29 Interfaces 3-50

3.29.1 Semantics . 3-50
3.29.2 Notation. 3-51

3.29.3 Example. 3-51
3.29.4 Mapping . 3-52

3.30 Parameterized Class (Template) 3-52

3.30.1 Semantics . 3-52
3.30.2 Notation. 3-53

3.30.3 Presentation Options . 3-53
3.30.4 Example. 3-54

3.30.5 Mapping . 3-54

3.31 Bound Element 3-54
3.31.1 Semantics . 3-54

3.31.2 Notation. 3-55
3.31.3 Style Guidelines . 3-55

3.31.4 Example. 3-55
3.31.5 Mapping . 3-55

3.32 Utility 3-56

3.32.1 Semantics . 3-56
3.32.2 Notation. 3-56

3.32.3 Example. 3-56
3.32.4 Mapping . 3-56

3.33 Metaclass 3-57
3.33.1 Semantics . 3-57

3.33.2 Notation. 3-57
xii OMG-Unified Modeling Language, v1.5 September 2002

3.33.3 Mapping . 3-57

3.34 Enumeration 3-57
3.34.1 Semantics . 3-57

3.34.2 Notation. 3-57
3.34.3 Mapping . 3-57

3.35 Stereotype Declaration 3-57

3.35.1 Semantics . 3-57
3.35.2 Notation. 3-58

3.35.3 Mapping . 3-61

3.36 Powertype 3-61
3.36.1 Semantics . 3-61

3.36.2 Notation. 3-61
3.36.3 Mapping . 3-62

3.37 Class Pathnames 3-62
3.37.1 Notation. 3-62

3.37.2 Example. 3-62
3.37.3 Mapping . 3-63

3.38 Accessing or Importing a Package 3-63

3.38.1 Semantics . 3-63
3.38.2 Notation. 3-63

3.38.3 Example. 3-64
3.38.4 Mapping . 3-64

3.39 Object 3-64

3.39.1 Semantics . 3-64
3.39.2 Notation. 3-64

3.39.3 Presentation Options . 3-65
3.39.4 Style Guidelines . 3-66

3.39.5 Variations . 3-66
3.39.6 Example. 3-66

3.39.7 Mapping . 3-66

3.40 Composite Object 3-67

3.40.1 Semantics . 3-67
3.40.2 Notation. 3-67

3.40.3 Example. 3-67
3.40.4 Mapping . 3-68

3.41 Association 3-68

3.42 Binary Association 3-68

3.42.1 Semantics . 3-68
3.42.2 Notation. 3-68
September 2002 OMG-Unified Modeling Language, v1.5 xiii

3.42.3 Presentation Options . 3-69
3.42.4 Style Guidelines . 3-69

3.42.5 Options . 3-69
3.42.6 Example. 3-70

3.42.7 Mapping . 3-70

3.43 Association End 3-71
3.43.1 Semantics . 3-71

3.43.2 Notation. 3-71
3.43.3 Presentation Options . 3-73

3.43.4 Style Guidelines . 3-74
3.43.5 Example. 3-74

3.43.6 Mapping . 3-74

3.44 Multiplicity 3-75
3.44.1 Semantics . 3-75

3.44.2 Notation. 3-75
3.44.3 Style Guidelines . 3-75

3.44.4 Example. 3-75
3.44.5 Mapping . 3-76

3.45 Qualifier 3-76
3.45.1 Semantics . 3-76

3.45.2 Notation. 3-76
3.45.3 Presentation Options . 3-77

3.45.4 Style Guidelines . 3-77
3.45.5 Example. 3-77

3.45.6 Mapping . 3-77

3.46 Association Class 3-77
3.46.1 Semantics . 3-77

3.46.2 Notation. 3-78
3.46.3 Presentation Options . 3-78

3.46.4 Style Guidelines . 3-78
3.46.5 Example. 3-78

3.46.6 Mapping . 3-79

3.47 N-ary Association 3-79
3.47.1 Semantics . 3-79

3.47.2 Notation. 3-79
3.47.3 Style Guidelines . 3-79

3.47.4 Example. 3-80
3.47.5 Mapping . 3-80

3.48 Composition 3-81

3.48.1 Semantics . 3-81
xiv OMG-Unified Modeling Language, v1.5 September 2002

3.48.2 Notation. 3-81

3.48.3 Design Guidelines . 3-82
3.48.4 Example. 3-83

3.48.5 Mapping . 3-84

3.49 Link 3-84

3.49.1 Semantics . 3-84
3.49.2 Notation. 3-84

3.49.3 Example. 3-85
3.49.4 Mapping . 3-86

3.50 Generalization 3-86

3.50.1 Semantics . 3-86
3.50.2 Notation. 3-86

3.50.3 Presentation Options . 3-87
3.50.4 Example. 3-88

3.50.5 Mapping . 3-89

3.51 Dependency 3-90
3.51.1 Semantics . 3-90

3.51.2 Notation. 3-90
3.51.3 Presentation Options . 3-91

3.51.4 Example. 3-92
3.51.5 Mapping . 3-93

3.52 Derived Element 3-93
3.52.1 Semantics . 3-93

3.52.2 Notation. 3-93
3.52.3 Style Guidelines . 3-93

3.53 InstanceOf 3-93

3.53.1 Semantics . 3-93
3.53.2 Notation. 3-93

3.53.3 Mapping . 3-93

Part 6 - Use Case Diagrams

3.54 Use Case Diagram 3-94

3.54.1 Semantics . 3-94
3.54.2 Notation. 3-94

3.54.3 Example. 3-95
3.54.4 Mapping . 3-95

3.55 Use Case 3-96

3.55.1 Semantics . 3-96
3.55.2 Notation. 3-96

3.55.3 Presentation Options . 3-96
September 2002 OMG-Unified Modeling Language, v1.5 xv

3.55.4 Style Guidelines . 3-96
3.55.5 Mapping . 3-97

3.56 Actor 3-97

3.56.1 Semantics . 3-97
3.56.2 Notation. 3-97

3.56.3 Presentation Options . 3-97
3.56.4 Style Guidelines . 3-97

3.56.5 Mapping . 3-97

3.57 Use Case Relationships 3-97
3.57.1 Semantics . 3-97

3.57.2 Notation. 3-98
3.57.3 Example. 3-99

3.57.4 Mapping . 3-99

3.58 Actor Relationships 3-99

3.58.1 Semantics . 3-99
3.58.2 Notation. 3-99

3.58.3 Example. 3-100
3.58.4 Mapping . 3-100

Part 7 - Interaction Diagrams

3.59 Collaboration 3-101

3.59.1 Semantics . 3-101

3.60 Sequence Diagram 3-102

3.60.1 Semantics . 3-102
3.60.2 Notation. 3-102

3.60.3 Presentation Options . 3-102
3.60.4 Example. 3-104

3.60.5 Mapping . 3-106

3.61 Object Lifeline 3-108
3.61.1 Semantics . 3-108

3.61.2 Notation. 3-109
3.61.3 Presentation Options . 3-109

3.61.4 Example. 3-109
3.61.5 Mapping . 3-110

3.62 Activation 3-110

3.62.1 Semantics . 3-110
3.62.2 Notation. 3-110

3.62.3 Example. 3-111
3.62.4 Mapping . 3-111

3.63 Message and Stimulus 3-111
xvi OMG-Unified Modeling Language, v1.5 September 2002

3.63.1 Semantics . 3-111

3.63.2 Notation. 3-111
3.63.3 Presentation options . 3-111

3.63.4 Example. 3-113
3.63.5 Mapping . 3-113

3.64 Transition Times 3-113
3.64.1 Semantics . 3-113

3.64.2 Notation. 3-113
3.64.3 Presentation Options . 3-114

3.64.4 Example. 3-114
3.64.5 Mapping . 3-114

Part 8 - Collaboration Diagrams

3.65 Collaboration Diagram 3-114

3.65.1 Semantics . 3-114
3.65.2 Notation. 3-114

3.65.3 Example. 3-116
3.65.4 Mapping . 3-117

3.66 Pattern Structure 3-117
3.66.1 Semantics . 3-117

3.66.2 Notation. 3-118
3.66.3 Mapping . 3-121

3.67 Collaboration Contents 3-121

3.67.1 Semantics . 3-121
3.67.2 Notation. 3-121

3.67.3 Mapping . 3-122

3.68 Interactions 3-123
3.68.1 Semantics . 3-123

3.68.2 Notation. 3-123
3.68.3 Mapping . 3-124

3.68.4 Example. 3-124

3.69 Collaboration Roles 3-124

3.69.1 Semantics . 3-124
3.69.2 Notation. 3-124

3.69.3 Presentation options . 3-125
3.69.4 Example. 3-126

3.69.5 Mapping . 3-126

3.70 Multiobject 3-127
3.70.1 Semantics . 3-127

3.70.2 Notation. 3-127
September 2002 OMG-Unified Modeling Language, v1.5 xvii

3.70.3 Example. 3-128
3.70.4 Mapping . 3-128

3.71 Active object 3-128

3.71.1 Semantics . 3-128
3.71.2 Notation. 3-128

3.71.3 Example. 3-129
3.71.4 Mapping . 3-129

3.72 Message and Stimulus 3-130

3.72.1 Semantics . 3-130
3.72.2 Notation. 3-130

3.72.3 Presentation Options . 3-133
3.72.4 Example. 3-133

3.72.5 Mapping . 3-133

3.73 Creation/Destruction Markers 3-134

3.73.1 Semantics . 3-134
3.73.2 Notation. 3-135

3.73.3 Presentation options . 3-135
3.73.4 Example. 3-135

3.73.5 Mapping . 3-135

Part 9 - Statechart Diagrams

3.74 Statechart Diagram 3-136
3.74.1 Semantics . 3-136

3.74.2 Notation. 3-136
3.74.3 Mapping . 3-137

3.75 State 3-137
3.75.1 Semantics . 3-137

3.75.2 Notation. 3-138
3.75.3 Example. 3-139

3.75.4 Mapping . 3-139

3.76 Composite States 3-140
3.76.1 Semantics . 3-140

3.76.2 Notation. 3-140
3.76.3 Examples . 3-141

3.76.4 Mapping . 3-142

3.77 Events 3-142
3.77.1 Semantics . 3-142

3.77.2 Notation. 3-143
3.77.3 Example. 3-144

3.77.4 Mapping . 3-144
xviii OMG-Unified Modeling Language, v1.5 September 2002

3.78 Simple Transitions 3-145

3.78.1 Semantics . 3-145
3.78.2 Notation. 3-145

3.78.3 Example. 3-146
3.78.4 Mapping . 3-146

3.79 Transitions to and from Concurrent States 3-146
3.79.1 Semantics . 3-146

3.79.2 Notation. 3-146
3.79.3 Example. 3-147

3.79.4 Mapping . 3-147

3.80 Transitions to and from Composite States 3-147
3.80.1 Semantics . 3-147

3.80.2 Notation. 3-147
3.80.3 Presentation Options . 3-148

3.80.4 Example. 3-149
3.80.5 Mapping . 3-150

3.81 Factored Transition Paths 3-150

3.81.1 Semantics . 3-150
3.81.2 Notation. 3-150

3.81.3 Examples . 3-151

3.82 Submachine States 3-152

3.82.1 Semantics . 3-152
3.82.2 Notation. 3-152

3.82.3 Example. 3-153
3.82.4 Mapping . 3-154

3.83 Synch States 3-154

3.83.1 Semantics . 3-154
3.83.2 Notation. 3-154

3.83.3 Example. 3-155
3.83.4 Mapping . 3-155

Part 10 - Activity Diagrams

3.84 Activity Diagram 3-155
3.84.1 Semantics . 3-155

3.84.2 Notation. 3-156
3.84.3 Example. 3-157

3.84.4 Mapping . 3-158

3.85 Action state 3-158
3.85.1 Semantics . 3-158

3.85.2 Notation. 3-158
September 2002 OMG-Unified Modeling Language, v1.5 xix

3.85.3 Presentation options . 3-158
3.85.4 Example. 3-158

3.85.5 Mapping . 3-158

3.86 Subactivity state 3-159
3.86.1 Semantics . 3-159

3.86.2 Notation. 3-159
3.86.3 Example. 3-159

3.86.4 Mapping . 3-159

3.87 Decisions 3-159
3.87.1 Semantics . 3-159

3.87.2 Notation. 3-160
3.87.3 Example. 3-160

3.87.4 Mapping . 3-160

3.88 Call States 3-160

3.88.1 Semantics . 3-160
3.88.2 Notation. 3-161

3.88.3 Example. 3-161
3.88.4 Mapping . 3-161

3.89 Swimlanes 3-161

3.89.1 Semantics . 3-161
3.89.2 Notation. 3-161

3.89.3 Example. 3-162
3.89.4 Mapping . 3-162

3.90 Action-Object Flow Relationships 3-163

3.90.1 Semantics . 3-163
3.90.2 Notation. 3-163

3.90.3 Example. 3-164
3.90.4 Mapping . 3-164

3.91 Control Icons 3-165
3.91.1 Notation. 3-165

3.91.2 Mapping . 3-167

3.92 Synch States 3-168

3.93 Dynamic Invocation 3-168
3.93.1 Semantics . 3-168

3.93.2 Notation. 3-168
3.93.3 Mapping . 3-168

3.94 Conditional Forks 3-169

Part 11 - Implementation Diagrams

3.95 Component Diagram 3-169
xx OMG-Unified Modeling Language, v1.5 September 2002

3.95.1 Semantics . 3-169

3.95.2 Notation. 3-169
3.95.3 Example. 3-170

3.95.4 Mapping . 3-171

3.96 Deployment Diagram 3-171

3.96.1 Semantics . 3-171
3.96.2 Notation. 3-172

3.96.3 Example. 3-172
3.96.4 Mapping . 3-173

3.97 Node 3-173

3.97.1 Semantics . 3-173
3.97.2 Notation. 3-173

3.97.3 Example. 3-173
3.97.4 Mapping . 3-174

3.98 Component 3-174

3.98.1 Semantics . 3-174
3.98.2 Notation. 3-175

3.98.3 Example. 3-175
3.98.4 Mapping . 3-176

4 UML Example Profiles. 4-1

Example 1 - UML Profile for Software Development Processes

4.1 Introduction 4-1

4.2 Summary of Profile 4-2

4.3 Stereotypes and Notation 4-2

4.3.1 Use Case Stereotypes . 4-3
4.3.2 Analysis Stereotypes . 4-4

4.3.3 Design Stereotypes . 4-5
4.3.4 Implementation Stereotypes 4-6

4.3.5 Class Stereotypes. 4-7
4.3.6 Association Stereotypes . 4-8

4.4 Well-Formedness Rules 4-9
4.4.1 Generalization . 4-9

4.4.2 Containment . 4-9

Example 2 - UML Profile for Business Modeling

4.5 Introduction 4-9

4.6 Summary of Profile 4-10

4.7 Stereotypes and Notation 4-10

4.7.1 Use Case Stereotypes . 4-11
September 2002 OMG-Unified Modeling Language, v1.5 xxi

4.7.2 Organization Stereotypes. 4-12
4.7.3 Class Stereotypes. 4-13

4.7.4 Association Stereotypes . 4-15

4.8 Well-Formedness Rules 4-16
4.8.1 Generalization . 4-16

5 UML Model Interchange . 5-1
5.1 Overview 5-1

5.2 Model Interchange Using XMI 5-22

5.3 Model Interchange Using CORBA IDL 5-24

6 Object Constraint Language Specification. 6-1
6.1 Overview 6-1

6.1.1 Why OCL? . 6-2

6.1.2 Where to Use OCL . 6-3

6.2 Introduction 6-3
6.2.1 Legend. 6-3

6.2.2 Example Class Diagram . 6-3

6.3 Relation to the UML Metamodel 6-4
6.3.1 Self . 6-4

6.3.2 Specifying the UML context 6-4
6.3.3 Invariants . 6-5

6.3.4 Pre- and Postconditions . 6-5
6.3.5 Package context . 6-6

6.3.6 General Expressions . 6-7

6.4 Basic Values and Types 6-7

6.4.1 Types from the UML Model 6-7
6.4.2 Enumeration Types . 6-8

6.4.3 Let Expressions and «definition» Constraints 6-8
6.4.4 Type Conformance . 6-9

6.4.5 Re-typing or Casting . 6-9
6.4.6 Precedence Rules. 6-10

6.4.7 Use of Infix Operators . 6-10
6.4.8 Keywords. 6-11

6.4.9 Comment . 6-11

6.4.10 Undefined Values . 6-11

6.5 Objects and Properties 6-11

6.5.1 Properties . 6-12
6.5.2 Properties: Attributes. 6-12

6.5.3 Properties: Operations . 6-12
xxii OMG-Unified Modeling Language, v1.5 September 2002

6.5.4 Properties: Association Ends and Navigation 6-13

6.5.5 Navigation to Association Classes. 6-15
6.5.6 Navigation from Association Classes 6-16

6.5.7 Navigation through Qualified Associations 6-16
6.5.8 Using Pathnames for Packages 6-17

6.5.9 Accessing overridden properties of supertypes 6-17
6.5.10 Predefined properties on All Objects 6-18

6.5.11 Features on Classes Themselves 6-19
6.5.12 Collections. 6-20

6.5.13 Collections of Collections . 6-21
6.5.14 Collection Type Hierarchy and Type Conformance Rules

6-21

6.5.15 Previous Values in Postconditions 6-21

6.6 Collection Operations 6-22
6.6.1 Select and Reject Operations 6-23

6.6.2 Collect Operation . 6-24
6.6.3 ForAll Operation . 6-25

6.6.4 Exists Operation . 6-26
6.6.5 Iterate Operation . 6-27

6.6.6 Iterators in Collection Operations 6-27
6.6.7 Resolving Properties . 6-28

6.7 The Standard OCL Package 6-28

6.8 Predefined OCL Types 6-29
6.8.1 Basic Types . 6-29

6.8.2 Collection-Related Types . 6-36

6.9 Grammar 6-45

A. UML Standard Elements A-1

B. Action Language Examples B-1
B.1 The Action Languages B-1

B.2 Presentation of the Examples B-2

B.3 Control Structures B-3

B.4 Object Manipulation B-6

B.5 Messaging Actions B-19

B.6 Complete Example: The FFT B-26
B.6.1 The Fast Fourier Transform B-27

B.6.2 Illustrative Notation. B-28
B.6.3 Discussion . B-30

B.6.4 Implementation Using Memory Writes B-33
September 2002 OMG-Unified Modeling Language, v1.5 xxiii

C. Glossary C-1
C.1 Notation Conventions C-1

C.2 Glossary Terms C-2

D. Index D-1
xxiv OMG-Unified Modeling Language, v1.5 September 2002

Foreword
The Unified Modeling Language (UML) is a graphical language for visualizing,
specifying, constructing, and documenting the artifacts of a software-intensive system.
The UML offers a standard way to write a system's blueprints, including conceptual
things such as business processes and system functions as well as concrete things such
as programming language statements, database schemas, and reusable software
components.

The UML represents the culmination of best practices in practical object-oriented
modeling. The UML is the product of several years of hard work, in which we focused
on bringing about a unification of the methods most used around the world, the
adoption of good ideas from many quarters of the industry, and, above all, a
concentrated effort to make things simple.

We mean “we” in the most general sense. The three of us started the UML effort at
Rational and were its original chief methodologists, but the final product was a team
effort among many UML partners under the sponsorship of OMG. All partners came
with their own perspectives, areas of concern, and areas of interest; this diversity of
experience and viewpoints has enriched and strengthened the final result. We extend
our personal thanks to everyone who was a part of making the UML a reality. We
would like to thank Rational for giving us the opportunity to work freely so that we
might focus on unification, and we want to recognize all the other companies
representing the UML partners for seeing the importance of the UML to the industry as
a whole and giving their representatives time to work on this project. We must also
thank the OMG for providing the framework under which we could bring together
many diverse opinions to develop a consensus result. We expect that OMG’s ownership
of the UML standard and the public’s free access to it will ensure the widespread use
and advancement of UML technology over the coming years.

In an effort that involved so many companies and individuals with so many agendas,
one would think that the resulting product would be the software equivalent of a camel:
a most dysfunctional-looking animal that appears to have been the work product of an
September 2002 OMG-Unified Modeling Language, v1.5 xxv

ill-formed committee of misfits. The UML most decidedly is not a random collection
of political compromises. If anything, because of the focus we placed upon creating a
complete and formal model, the UML is coherent and has harmony of design.

In this context it is also exciting to point out that the UML was developed alongside,
and with the full collaboration, of the OMG’s Meta-Object Facility (MOF) team. The
MOF, which represents the state of the art in distributed object repository architectures,
is OMG’s adopted technology for modeling and representing metadata (including the
UML metamodel) as CORBA objects. The UML and MOF standards are key building
blocks of OMG's development environment for building and deploying distributed
object systems.

It is a very real sign of maturity of the industry that the UML exists as a standard. At
a time when software is increasingly more complex and more central to the mission of
companies and countries, the UML comes at the right time to help organizations deal
with this complexity. Already, without a lot of the fanfare or hype sometimes
associated with programming languages, the UML is in use in hundreds (if not
thousands) of projects around the world, a sign that it is part of the mainstream of
engineering software.

Grady Booch

Ivar Jacobson

Jim Rumbaugh

Rational Software Corporation
xxvi OMG-Unified Modeling Language, v1.5 September 2002

Preface
About the Object Management Group (OMG)

The Object Management Group, Inc. (OMG) is an international organization supported
by over 800 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

Associated OMG Documents

The CORBA documentation set includes the following:

• CORBA: Common Object Request Broker Architecture and Specification
contains the architecture and specifications for the Object Request Broker.

• CORBAservices: Common Object Services Specification contains specifications
for the object services.

• CORBAfacilities: Common Facilities Architecture contains information about the
design of Common Facilities; it provides the framework for Common Facility
specifications.

• Object Management Architecture Guide defines the OMG’s technical objectives
and terminology and describes the conceptual models upon which OMG standards
are based. It also provides information about the policies and procedures of OMG,
such as how standards are proposed, evaluated, and accepted.
September 2002 OMG-Unified Modeling Language, v1.5 xxvii

OMG collects information for each book in the documentation set by issuing Requests
for Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only
when representatives of the OMG membership accept them as such by vote. To obtain
books in the documentation set, or other OMG publications, refer to the enclosed
subscription card or contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue, Suite 201

Needham, MA 02494

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

OMG’s adoption of the UML specification reduces the degree of confusion within the
industry surrounding modeling languages. It settles unproductive arguments about
method notations and model interchange mechanisms and allows the industry to focus
on higher leverage, more productive activities. Additionally, it enables semantic
interchange between visual modeling tools.

Introduction to OMG Modeling

The OMG Modeling documents describe the OMG standards for modeling distributed
software architectures and systems along with their CORBA Interfaces. There are two
complementary specifications:

• Unified Modeling Language Specification

• Meta-Object Facility Specification

The Unified Modeling Language (UML) Specification defines a graphical language for
visualizing, specifying, constructing, and documenting the artifacts of distributed
object systems. The specification includes the formal definition of a common Object
Analysis and Design (OA&D) metamodel, a graphic notation, and a CORBA IDL
facility that supports model interchange between OA&D tools and metadata
repositories. The UML provides the foundation for specifying and sharing CORBA-
based distributed object models.

The Meta-Object Facility (MOF) Specification defines a set of CORBA IDL interfaces
that can be used to define and manipulate a set of interoperable metamodels and their
corresponding models. These interoperable metamodels include the UML metamodel,
the MOF meta-metamodel, as well as future OMG adopted technologies that will be
specified using metamodels. The MOF provides the infrastructure for implementing
CORBA-based design and reuse repositories. The MOF specifies precise mapping
rules that enable the CORBA interfaces for metamodels to be automatically generated,
thus encouraging consistency in manipulating metadata in all phases of the distributed
application development cycle.
xxviii OMG-Unified Modeling Language, v1.5 September 2002

Since the UML and MOF are based on a four-layer metamodel architecture it is
essential that the metamodels for each facility are architecturally aligned. For a
description of the four layer metamodel architecture, please refer to Section 2.2,
“Meta-data Architectures,” on page 2-1 in the MOF Specification. In order to achieve
architectural alignment considerable effort has been expended so that the UML and
MOF share the same core semantics. This alignment allows the MOF to reuse the
UML notation for visualizing metamodels. In those areas where semantic differences
are required, well-defined mapping rules are provided between the metamodels. The
OMG distributed repository architecture, which integrates UML and MOF with
CORBA is described in “Resolution of Technical Criteria” in the Preface of the MOF
Specification.

As the first adopted technologies specified using a metamodeling approach, the UML
and MOF establish a rigorous foundation for OMG’s metamodel architectures. Future
metamodel standards should reuse their core semantics and emulate their systematic
approach to architecture alignment.

Architectural Alignment of UML, MOF, and CORBA

Introduction

This section explains the architectural alignment of the OA&D Facility (OA&DF)
metamodel and the MOF meta-metamodel, and their relationships to the OMA and
CORBA object models. When discussing specific models, MOF corresponds to the
MOF meta-metamodel also referred to as the MOF Model. The UML is used to refer
to the proposed OA&DF metamodel.

As yet, there is not an MOF meta-metamodel standard or an OA&D metamodel
standard. However, since each of these specifications has been unified, a proactive
approach has been taken towards architectural alignment. Considerable structure
sharing between the two specifications has been accomplished. As the OA&DF and
MOF technologies evolve, additional alignment work will be addressed by standard
OMG processes such as those for Revision Task Forces and subsequent RFPs.

The MOF and OA&DF alignment work has focused on aligning the metamodels and
applying the MOF IDL Mapping for generating the CORBA IDL for both the MOF
and UML models. This was accomplished by defining the MOF and UML models
using the MOF and by generating the IDL interfaces based on the MOF specification.
Note that both the MOF and OADF specifications use the UML notation for
graphically defining the models.

In terms of abstraction levels and the kinds of meta-metaobjects used, the UML and
MOF meta-metamodels are well aligned. There are significant advantages in aligning
the OA&DF meta-metamodel with the MOF meta-metamodel. In the case of the MOF,
meta-metamodel alignment facilitates interoperability between the OA&DF and the
MOF. An example of OA&DF-MOF interoperability is the use of an MOF-compliant
repository to store an OA&DF object model.
September 2002 OMG-Unified Modeling Language, v1.5 xxix

Alignment of the UML, MOF, and CORBA paves the way for future extensibility of
CORBA in key areas such as richer semantics, relationships, and constraints. Likewise
the longer-term benefits to UML and MOF include better recognition and addressing
of distributed computing issues in developing CORBA-compliant systems.

Motivation

The primary reason for aligning the OA&DF metamodel with the MOF meta-
metamodel is to facilitate interoperability between the two facilities using CORBA
IDL. When considering interoperability between the OA&DF and the MOF, it is
important to consider the difference in scope between the facilities. The MOF goal is
to allow interoperability across the application development cycle by supporting the
definition of multiple metamodels, whereas the OA&DF focuses on supporting the
definition of a single OA&D metamodel. An example of OA&DF-MOF
interoperability is the use of an MOF-compliant repository to store and interchange
OA&DF object models.

The key motivation to align the MOF and OA&DF with CORBA is to address the
requirement of aligning with CORBA and between the two facilities. In addition, the
MOF and OA&DF (especially the UML) specifications signify years of modeling and
metamodeling experience that are being integrated. As such, some of the key concepts
in the UML and MOF are potential candidates to evolve the OMG Core object model
and CORBA IDL in the future.

Approach

The UML and MOF are based on a four-layer metamodel architecture, where the MOF
meta-metamodel is the meta-metamodel for the UML metamodel. As a result, the
UML metamodel may be considered an instance-of the MOF meta-metamodel. This is
sometimes referred to as loose metamodeling, where an Mn level model is an instance
of an Mn+1 level model.

Since the MOF and OA&DF have different scopes, and diverge in the area of
relationships, we have not been able to apply strict metamodeling. In strict
metamodeling, every element of an Mn level model is an instance of exactly one
element of Mn+1 level model. Consequently, there is not a strict isomorphic mapping
between all the MOF meta-metamodel elements and the UML meta-metamodel
elements. In principle strict metamodeling is difficult (or sometimes impossible to
accomplish) as the complexity of new concepts (for example patterns and frameworks)
continues to increase. In any case, using a small set of primitive concepts such as those
defined in the MOF it is possible to define arbitrarily complex metamodels.

In spite of this, since the two models were designed to be interoperable, the two
metamodels are structurally quite similar. The following sections compare the core
MOF and UML modeling concepts, and contrast them with the OMA and
CORBA/IDL core object models. The issues related to mapping metaclasses that are
not isomorphic; for example, Association classes are also discussed.
xxx OMG-Unified Modeling Language, v1.5 September 2002

The following tables are comparison tables that summarize the mappings of similar
concepts across the meta-metamodeling layers. Where there is no analog for a concept,
it will be identified and discussed in ”Issues Related to UML-MOF Mapping” on page
xxxii..

Metamodel Comparison

Most of the metaobjects for the UML core metamodel and the MOF core meta-
metamodel can be mapped to each other in a straightforward manner. Similarly, these
metaobjects can also be mapped to the OMA and CORBA core object models in a
direct way.

The following tables compare the core modeling concepts and the data types for these
models.

UML Metamodel MOF Meta-metamodel OMA Core Object Model
CORBA Object Model

CORBA IDL

Association (n-ary) Association (binary)

AssociationClass NA

AssociationEnd AssociationEnd

Attribute Attribute Attribute Attribute

BehavioralFeature BehavioralFeature

Class Class Class Interface (as Class)

Classifier Classifier

Constraint Constraint

DataType DataType Data type Data type

Dependency (class) /dependsOn (association)

Exception Exception Exception

Feature Feature

GeneralizableElement GeneralizableElement

Generalization (class) generalizes (association) Generalization Generalization

Interface Class (as Interface) Interface Interface

ModelElement ModelElement

NA Reference

NA Constant Constant

Namespace Namespace ~ IR Containers

Operation Operation Operation Operation

Package Package Module
September 2002 OMG-Unified Modeling Language, v1.5 xxxi

The MOF supports the full range of CORBA data types as well as additional data types
defined using the MOF primitive types. UML supports a subset of CORBA data types
in its semantic model but mapping to a subset of specific CORBA types is clearly
possible.

The following sections discuss issues related to areas where the mapping between
metamodels is not direct.

Issues Related to UML-MOF Mapping

In general, the mapping from the UML meta-metamodel to the MOF meta-metamodel
is straightforward.

A review of the previous comparison tables indicates that in most cases the mapping
from the UML meta-metamodel to the MOF meta-metamodel is direct. In fact, for
most of the core constructs there is a structural equivalency in the mapping.

The key differences are due to different usage scenarios of MOF and UML. The MOF
needs to be simpler, directly implementable, and provide a set of CORBA interfaces
for manipulating meta objects. The UML is used as a general-purpose modeling

Parameter Parameter Parameter Parameter

StructuralFeature StructuralFeature

Type (stereotype) Class (as Type) Type Interface (as Type)

UML Metamodel MOF Meta-metamodel CORBA Object Model and IDL

AggregationKind AggregationKind

Boolean CORBA Boolean Boolean

Enumeration CORBA Enum Enum

Expression NameType

Integer CORBA Short, Long, Unsigned Short,
Unsigned Long, Double, Octet, Float

Short, Long, Unsigned Short, Unsigned
Long, Double, Octet, Float

Multiplicity MultiplicityType

Name NameType Name

ParameterDirectionKind DirectionKind

ScopeKind ScopeKind

String CORBA String, Char String, Char

VisibilityKind VisibilityKind

UML Metamodel MOF Meta-metamodel OMA Core Object Model
CORBA Object Model

CORBA IDL
xxxii OMG-Unified Modeling Language, v1.5 September 2002

language, with potentially many implementation targets. These differences are
commonly observed in repository, meta-CASE, and modeling-tool implementations.
The key differences are:

• The MOF only supports binary associations while UML supports higher-order (also
referred to as 'N-ary') associations. This tradeoff was made because N-ary
relationships are rarely used in metamodeling and the design goal was to keep the
MOF interfaces simpler. We have anticipated extending the MOF to support higher
order associations in future.

• Associations in the MOF are limited to simple associations and cannot contain
features. Association Classes in UML can contain features (such as attributes). The
MOF has been defined to be structurally extensible to full-blown association classes
in the future by relaxing this constraint. UML Association Classes are modeled as
MOF Classes with well-defined multiplicity constraints to ensure shared lifetime of
features owned by the association.

• The MOF supports the concept of a Reference which allows direct navigation from
one Classifier to another. The UML metamodel uses the Target AssociationEnd’s
'name' property as a ‘pseudo-attribute’ for the same purpose, but navigates to
another classifier through an Association. The concept of reference is widely used
in object repositories, as well as object and object-relational databases and
optimizes navigation across a metamodel.

• Some concepts such as Generalization, Dependency, and Refinement are reified as
classes in UML, but implemented as Associations in the MOF. The MOF does not
require the richness of UML in these areas.

• The MOF supports the full set of CORBA data types, whereas the UML metamodel
does not define data types to this depth. A CORBA-specific implementation of
UML is clearly possible by either creating the additional data types needed or by
providing appropriate mappings.

• The UML has clearly defined the similarities of the key concepts of Class,
Interface, and Type. The MOF and UML both use the Class concept as the most
general of these in their respective models. The MOF specification is focused only
on specification of metamodels and generation of CORBA interfaces; therefore, it
does not deal with implementation concepts such as 'Methods.' UML clearly needs
to support these concepts because UML can be used to model conceptual, logical,
and implementation models. In this sense, the MOF uses the Class concept to
define Types, since MOF Classes do not have any methods, just operations. This is
consistent with the definition of UML Type as a stereotype of Class with a
constraint that Types cannot contain methods. The MOF Class concept is rich
enough to define Interfaces, and in fact the MOF specification itself clearly shows
that an MOF Class can be mapped to multiple CORBA Interfaces.

The previous table shows that the mapping of metadatatypes between the meta-
metamodels is also straightforward. Here also there are more MOF meta-
metaobjects than there are UML meta-metaobjects. The MOF supports the full
range of CORBA data types as well as additional data types defined using the MOF
primitive types. UML supports a subset of CORBA data types in its semantic
model but maps to specific CORBA types in its corresponding interface model.
September 2002 OMG-Unified Modeling Language, v1.5 xxxiii

Relationship to Other Models

Secondary emphasis was placed on the architectural alignment with CASE Data
Interchange Format (CDIF) and ITU-T Recommendations X.901-904 | ISO/IEC 10746,
the Reference Model of Open Distributed Processing (RM-ODP), both of which have
influenced the metamodel architectures. CDIF provided many useful concepts for
specifying robust stream-based interchange formats. Similarly, ODP furnished many
useful ideas for specifying model viewpoints. The document entitled Relationship of the
UML to the RM-ODP (ormsc/2001-01-01) satisfies the OMG policy regarding
compatibility of submitted technology with the architecture for system distribution
defined in RM-ODP.

Document Summary

This document is intended primarily as a precise and self-consistent definition of the
UML’s semantics and notation. The primary audience of this document consists of the
Object Management Group, standards organizations, book authors, trainers, and tool
builders. The authors assume familiarity with object-oriented analysis and design
methods. The document is not written as an introductory text on building object
models for complex systems, although it could be used in conjunction with other
materials or instruction. The document will become more approachable to a broader
audience as additional books, training courses, and tools that apply to UML become
available.

The Unified Modeling Language specification defines compliance to the UML, covers
the architectural alignment with other technologies, and is comprised of the following
topics:

UML Summary (Chapter 1) - provides an introduction to the UML, discussing
motivation and history.

UML Semantics (Chapter 2) - defines the semantics of the Unified Modeling
Language. The UML is layered architecturally and organized by packages. Within each
package, the model elements are defined in the following terms:

1. Abstract syntax UML class diagrams are used to present the UML
metamodel, its concepts (metaclasses), relationships,
and constraints. Definitions of the concepts are
included.

2. Well-formedness rules The rules and constraints on valid models are defined.
The rules are expressed in English prose and in a
precise Object Constraint Language (OCL). OCL is a
specification language that uses logic for specifying
invariant properties of systems comprising sets and
relationships between sets.

3. Semantics The semantics of model usage are described in
English prose.
xxxiv OMG-Unified Modeling Language, v1.5 September 2002

UML Notation Guide (Chapter 3) - specifies the graphic syntax for expressing the
semantics described by the UML metamodel. Consequently, the UML Notation
Guide’s chapter should be read in conjunction with the UML Semantics chapter.

UML Example Profiles (Chapter 4) - shows two example profiles, the UML Profile for
Software Development Processes and the UML Profile for Business Modeling.

UML Model Interchange (Chapter 5) - specifies the how UML models can be
interchanged using XML Metadata Interchange (XMI) and CORBA IDL.

Object Constraint Language Specification (Chapter 6) - defines the Object Constraint
Language (OCL) syntax, semantics, and grammar. All OCL features are described in
terms of concepts defined in the UML Semantics.

In addition, there is an appendix of Standard Elements that defines standard
stereotypes, constraints, and tagged values for UML, and a glossary of terms.

Dependencies Between Chapters

UML Semantics (Chapter 2) can stand on its own, relative to the others, with the
exception of the OCL Specification. The semantics depends upon OCL for the
specification of its well-formedness rules.

The UML Notation Guide and UML Model Interchange both depend on the UML
Semantics. Specifying these separately permits their evolution in the most flexible
way, even though they are not completely independent.

The specifications in the UML Extensions chapter depend on both the notation and
semantics chapters.
September 2002 OMG-Unified Modeling Language, v1.5 xxxv

Compliance to the UML

The UML and corresponding facility interface definition are comprehensive. However,
these specifications are packaged so that subsets of the UML and facility can be
implemented without breaking the integrity of the language. The UML Semantics is
packaged as shown in Figure 1.

Figure 1. UML Class Diagram Showing Package Structure

This packaging shows the semantic dependencies between the UML model elements in
the different packages. The IDL in the facility is packaged almost identically. The
notation is also “packaged” along the lines of diagram type. Compliance of the UML is
thus defined along the lines of semantics, notation, and IDL.

Even if the compliance points are decomposed into more fundamental units, vendors
implementing UML may choose not to fully implement this packaging of definitions,
while still faithfully implementing some of the UML definitions. However, vendors
who want to precisely declare their compliance to UML should refer to the precise
language defined herein, and not loosely say they are “UML compliant.”

Compliance to the UML Semantics

The basic units of compliance are the packages defined in the UML metamodel. The
full metamodel includes the corresponding semantic rigor defined in the UML
Semantics chapter of this specification.

Foundation

Behavioral Elements

Model
Management

Use Cases State MachinesCollaborations

Common Behavior

Activity Graphs

Core

Data Types

Extension
Mec hanisms

Actions
xxxvi OMG-Unified Modeling Language, v1.5 September 2002

The class diagram illustrates the package dependencies, which are also summarized in
the table below.

Complying with a package requires complying with the prerequisite package.

The semantics are defined in an implementation language-independent way. An
implementation of the semantics, without consistent interface and implementation
choices, does not guarantee tool interoperability. See “UML Model Interchange”.

In addition to the above packages, compliance to a given metamodel package must
load or know about the predefined UML standard elements (i.e., values for all
predefined stereotypes, tags, and constraints). These are defined throughout the
semantics and notation documents and summarized in the UML Standard Elements
appendix. The predefined constraint values must be enforced consistent with their
definitions. Having tools know about the standard elements is necessary for the full
language and to avoid the definition of user-defined elements that conflict with the
standard UML elements. Compliance to the UML Standard Elements and UML
Standard Profiles is distinct from the UML Semantics, so not all tools need to know
about the UML Standard Elements and UML Standard Profiles.

For any implementation of UML, it is optional that the tool implements the Object
Constraint Language. A vendor conforming to OCL support must support the
following:

• Validate and store syntactically correct OCL expressions as values for UML data
types.

• Be able to perform a full type check on the object constraint expression. This check
will test whether all features used in the expression are actually defined in the UML
model and used correctly.

All tools conforming to the UML semantics are expected to conform to the following
aspects of the semantics:

Package Prerequisite Packages

DataTypes

Core DataTypes, Extension Mechanisms

Extension Mechanisms Core, DataTypes

Common Behavior Foundation

State Machines Common Behavior, Foundation

Activity Graphs State Machines, Foundation

Collaborations Common Behavior, Foundation

Use Cases Common Behavior, Foundation

Model Management Foundation

Actions Common Behavior, Foundation
September 2002 OMG-Unified Modeling Language, v1.5 xxxvii

• abstract syntax; that is, the concepts, valid relationships, and constraints expressed
in the corresponding class diagrams,

• well-formedness rules, and

• semantics of model usage.

However, vendors are expected to apply some discretion on how strictly the well-
formedness rules are enforced. Tools should be able to report on well-formedness
violations, but not necessarily force all models to be well formed. Incomplete models
are common during certain phases of the development lifecycle, so they should be
permitted.

Compliance to the UML Notation

The UML notation is an essential element of the UML to enable communication
between team members. Compliance to the notation is optional, but the semantics are
not very meaningful without a consistent way of expressing them.

Notation compliance is defined along the lines of the UML Diagrams types: use case,
class, statechart, activity graph, sequence, collaboration, component, and deployment
diagrams.

If the notation is implemented, a tool must enforce the underlying semantics and
maintain consistency between diagrams if the diagrams share the same underlying
model. By this definition, a simple “drawing tool” cannot be compliant to the UML
notation.

There are many optional notation adornments. For example, a richly adorned class icon
may include an embedded stereotype icon, a list of properties (tagged values and
metamodel attributes), constraint expressions, attributes with visibilities indicated, and
operations with full signatures. Complying with class diagram support implies the
ability to support all of the associated adornments.

Compliance to the notation in the UML Standard Profiles is described separately.

Compliance to Model Interchange Using XMI

The UML XMI DTD (document number ad/01-02-16) supports all packages of the
UML Interchange Metamodel, which is a MOF translation of the UML Semantics
Metamodel. See Model Interchange Using XMI (section 5.2). Each package of the
Interchange Metamodel defines a separate compliance option.

Compliance to Model Interchange Using CORBA IDL

A UML CORBAfacility must support the MOF Reflective interfaces. Supporting the
reflective interfaces for the Core package is the most basic level of compliance.Support
for each additional package is a separate compliance option. In addition, support for
each package's specific IDL module defined in UML_1.4_CORBA_IDL.zip (document
number ad/01-02-17) constitutes a separate compliance option.
xxxviii OMG-Unified Modeling Language, v1.5 September 2002

Summary of Compliance Points

Acknowledgements

The UML was crafted through the dedicated efforts of individuals and companies who
find UML strategic to their future. This section acknowledges the efforts of these
individuals who contributed to defining UML.

Compliance Point Valid Options

Foundation no/incomplete, complete, complete including IDL
and/or XMI DTD

Common Behavior no/incomplete, complete, complete including IDL
and/or XMI DTD

State Machines no/incomplete, complete, complete including IDL
and/or XMI DTD

Activity Graphs no/incomplete, complete, complete including IDL
and/or XMI DTD

Collaboration no/incomplete, complete, complete including IDL
and/or XMI DTD

Use Cases no/incomplete, complete, complete including IDL
and/or XMI DTD

Model Management no/incomplete, complete, complete including IDL
and/or XMI DTD

UML Profiles no/incomplete, complete

Use Case diagram no/incomplete, complete

Class diagram no/incomplete, complete

Statechart diagram no/incomplete, complete

Activity Graph diagram no/incomplete, complete

Sequence diagram no/incomplete, complete

Collaboration diagram no/incomplete, complete

Component diagram no/incomplete, complete

Deployment diagram no/incomplete, complete

Model Interchange Using XMI no/incomplete, complete

Model Interchange Using CORBA IDL no/incomplete, complete, reflective interfaces,
package-based interfaces

OCL no/incomplete, complete
September 2002 OMG-Unified Modeling Language, v1.5 xxxix

UML Core Team

The following persons were members of the core development team for the UML
proposal or served on the first or second UML Revision Task Force:

• Colorado State University: Robert France

• Computer Associates: John Clark

• Concept 5 Technologies: Ed Seidewitz

• Data Access Corporation: Tom Digre

• Enea Data: Karin Palmkvist

• Hewlett-Packard Company: Martin Griss

• IBM Corporation: Steve Brodsky, Steve Cook

• I-Logix: Eran Gery, David Harel

• ICON Computing: Desmond D’Souza

• IntelliCorp and James Martin & Co.: James Odell

• Kabira Technologies: Conrad Bock

• Klasse Objecten: Jos Warmer

• MCI Systemhouse: Joaquin Miller

• OAO Technology Solutions: Ed Seidewitz

• ObjecTime Limited: John Hogg, Bran Selic

• Oracle Corporation: Guus Ramackers

• PLATINUM Technology Inc.: Dilhar DeSilva

• Rational Software: Grady Booch, Ed Eykholt, Ivar Jacobson, Gunnar Overgaard,
Jim Rumbaugh

• SAP: Oliver Wiegert

• SOFTEAM: Philippe Desfray

• Sterling Software: John Cheesman, Keith Short

• Sun Microsystems: Peter Walker

• Telelogic: Cris Kobryn, Morgan Björkander

• Taskon: Trygve Reenskaug

• Unisys Corporation: Sridhar Iyengar, GK Khalsa, Don Baisley

UML 1.1 Semantics Task Force

During the final submission phase for UML 1.1, a team was formed to focus on
improving the formality of the UML 1.0 semantics, as well as incorporating additional
ideas from the partners. Under the leadership of Cris Kobryn, this team was very
instrumental in reconciling diverse viewpoints into a consistent set of semantics, as
expressed in the revised UML Semantics. Other members of this team were Dilhar
DeSilva, Martin Griss, Sridhar Iyengar, Eran Gery, James Odell, Gunnar Overgaard,
Karin Palmkvist, Guus Ramackers, Bran Selic, and Jos Warmer. Grady Booch, Ivar
Jacobson, and Jim Rumbaugh also provided their expertise to the team.
xl OMG-Unified Modeling Language, v1.5 September 2002

UML Revision Task Force

After the adoption of the UML 1.1 proposal by the OMG membership in November,
1997, the OMG chartered a revision task force (RTF) to deal with bugs,
inconsistencies, and other problems that could be handled without greatly expanding
the scope of the original proposal. The RTF accepted public comments submitted to the
OMG after adoption of the proposal. This document containing UML version 1.3 is the
result of the work of the UML RTF. The results have been issued in several
preliminary versions with minor changes expected in the final version. If you have a
preliminary version of the specification, you can obtain an updated version from the
OMG web site at www.omg.org.

Contributors and Supporters

We also acknowledge the contributions, influence, and support of the following
individuals.

Jim Amsden, Hernan Astudillo, Colin Atkinson, Dave Bernstein, Philip A. Bernstein,
Michael Blaha, Mike Bradley, Ray Buhr, Gary Cernosek, James Cerrato, Brian Cook,
Magnus Christerson, Dai Clegg, Peter Coad, Derek Coleman, Ward Cunningham, Raj
Datta, Mike Devlin, Philippe Desfray, Bruce Douglass, Nathan Dykman, Staffan
Ehnebom, Maria Ericsson, Johannes Ernst, Don Firesmith, Martin Fowler, Adam
Frankl, Eric Gamma, Dipayan Gangopadhyay, Garth Gullekson, Rick Hargrove, Tim
Harrison, Richard Helm, Brian Henderson-Sellers, Michael Hirsch, Bob Hodges,
Glenn Hollowell, Yves Holvoet, Jon Hopkins, John Hsia, Anders Ivner, Ralph Johnson,
Stuart Kent, Anneke Kleppe, Philippe Kruchten, Paul Kyzivat, Martin Lang, Grant
Larsen, Reed Letsinger, Mary Loomis, Jeff MacKay, Bev Macmaster, Robert Martin,
Terrie McDaniel, Jim McGee, Bertrand Meyer, Mike Meier, Randy Messer, Greg
Meyers, Fred Mol, Birger Moller-Pedersen, Luis Montero, Paul Moskowitz, Andy
Moss, Jan Pachl, Paul Patrick, Woody Pidcock, Bill Premerlani, Jeff Price, Jerri Pries,
Terry Quatrani, Mats Rahm, George Reich, Rich Reitman, Rudolf M. Riess, Erick
Rivas, Kenny Rubin, Bernhard Rumpe, Jim Rye, Danny Sabbah, Tom Schultz, Gregson
Siu, Jeff Sutherland, Dan Tasker, Dave Tropeano, Andy Trice, Dan Uhlar, John
Vlissides, Larry Wall, Paul Ward, Diane White, Oliver Wiegert, Alan Wills, Rebecca
Wirfs-Brock, Bryan Wood, Ed Yourdon, and Steve Zeigler.
September 2002 OMG-Unified Modeling Language, v1.5 xli

References

[Bock/Odell 94] C. Bock and J. Odell, “A Foundation For Composition,” Journal
of Object-Oriented Programming, October 1994.

[Booch et al. 99] Grady Booch, James Rumbaugh, and Ivar Jacobson, The Unified
Modeling Language User Guide, Addison Wesley, 1999.

[Cook 94] S. Cook and J. Daniels, Designing Object Systems: Object-
oriented Modeling with Syntropy, Prentice-Hall Object-Oriented
Series, 1994.

[D’Souza 99] D. D’Souza and A. Wills, Objects, Components and
Frameworks with UML: The Catalysis Approach, Addison-
Wesley, 1999.

[Fowler 97] M. Fowler with K. Scott, UML Distilled: Applying the Standard
Object Modeling Language, Addison-Wesley, 1997.

[Griss 96] M. Griss, “Domain Engineering And Variability In The Reuse-
Driven Software Engineering Business,” Object Magazine.
December 1996.

[Harel 87] D. Harel, “Statecharts: A Visual Formalism for Complex
Systems,” Science of Computer Programming 8, (1987), pp.
231-274.

[Harel 96a] D. Harel and E. Gery, “Executable Object Modeling with
Statecharts,” Proc. 18th Int. Conf. Soft. Eng., Berlin, IEEE
Press, March, 1996, pp. 246-257.

[Harel 96b] D. Harel and A. Naamad, “The STATEMATE Semantics of
Statecharts,” ACM Trans. Soft. Eng. Method 5:4, October 1996.

[Jacobson et al. 99] Ivar Jacobson, Grady Booch, and James Rumbaugh, The Unified
Software Development Process, Addison Wesley, 1999.

[Malan 96] R. Malan, D. Coleman, R. Letsinger et al, “The Next Generation
of Fusion,” Fusion Newsletter, October 1996.

[Martin/Odell 95] J. Martin and J. Odell, Object-Oriented Methods, A Foundation,
Prentice Hall, 1995

[Ramackers 95] Ramackers, G. and Clegg, D., “Object Business Modelling,
requirements and approach” in Sutherland, J. and Patel, D.
(eds.), Proceedings of the OOPSLA95 Workshop on Business
Object Design and Implementation, Springer Verlag, publication
pending.

[Ramackers 96] Ramackers, G. and Clegg, D., “Extended Use Cases and
Business Objects for BPR,” ObjectWorld UK ‘96, London, June
18-21, 1996.

[Rumbaugh et al. 99] Jim Rumbaugh, Ivar Jacobson, and Grady Booch, The Unified
Modeling Language Reference Manual, Addison Wesley, 1999.
xlii OMG-Unified Modeling Language, v1.5 September 2002

[Selic et al. 94] B. Selic, G. Gullekson, and P. Ward, Real-Time Object-Oriented
Modeling, John Wiley & Sons, 1994.

[Warmer et al. 99] J. Warmer and A. Kleppe, The Object Constraint Language:
Precise Modeling with UML, Addison-Wesley, 1999.

[UML Web Sites] OMG UML Resource Page: www.omg.org/uml
OMG UML RTF: www.celigent.com/omg/umlrtf
September 2002 OMG-Unified Modeling Language, v1.5 xliii

xliv OMG-Unified Modeling Language, v1.5 September 2002

UML Summary 1
The UML Summary provides an introduction to the UML, discussing its motivation
and history.

Contents

This chapter contains the following topics.

1.1 Overview

The Unified Modeling Language (UML) is a language for specifying, visualizing,
constructing, and documenting the artifacts of software systems, as well as for business
modeling and other non-software systems. The UML represents a collection of the best
engineering practices that have proven successful in the modeling of large and complex
systems.

Topic Page

“Overview” 1-1

“Primary Artifacts of the UML” 1-2

“Motivation to Define the UML” 1-3

“Goals of the UML” 1-4

“Scope of the UML” 1-6

“UML - Past, Present, and Future” 1-11
September 2002 OMG-Unified Modeling Language, v1.5 1-1

1

1.2 Primary Artifacts of the UML

What are the primary artifacts of the UML? This can be answered from two different
perspectives: the UML definition itself and how it is used to produce project artifacts.

1.2.1 UML-defining Artifacts

To aid the understanding of the artifacts that constitute the Unified Modeling Language
itself, this document consists of chapters describing UML Semantics, UML Notation
Guide, and UML Standard Profiles.

1.2.2 Development Project Artifacts

The choice of what models and diagrams one creates has a profound influence upon
how a problem is attacked and how a corresponding solution is shaped. Abstraction,
the focus on relevant details while ignoring others, is a key to learning and
communicating. Because of this:

• Every complex system is best approached through a small set of nearly independent
views of a model. No single view is sufficient.

• Every model may be expressed at different levels of fidelity.

• The best models are connected to reality.

 In terms of the views of a model, the UML defines the following graphical diagrams:

• use case diagram

• class diagram

• behavior diagrams:

• statechart diagram

• activity diagram

• interaction diagrams:

• sequence diagram

• collaboration diagram

• implementation diagrams:

• component diagram

• deployment diagram

Although other names are sometimes given to these diagrams, this list constitutes the
canonical diagram names.

These diagrams provide multiple perspectives of the system under analysis or
development. The underlying model integrates these perspectives so that a self-
consistent system can be analyzed and built. These diagrams, along with supporting
documentation, are the primary artifacts that a modeler sees, although the UML and
supporting tools will provide for a number of derivative views. These diagrams are
further described in the UML Notation Guide (Chapter 3 of this specification).
1-2 OMG-UML , v1.5 Primary Artifacts of the UML September 2002

1

A frequently asked question has been: Why doesn’t UML support data-flow diagrams?
Simply put, data-flow and other diagram types that were not included in the UML do
not fit as cleanly into a consistent object-oriented paradigm. Activity diagrams and
collaboration diagrams accomplish much of what people want from DFDs, and then
some. Activity diagrams are also useful for modeling workflow.

1.3 Motivation to Define the UML

This section describes several factors motivating the UML and includes why modeling
is essential. It highlights a few key trends in the software industry and describes the
issues caused by divergence of modeling approaches.

1.3.1 Why We Model

Developing a model for an industrial-strength software system prior to its construction
or renovation is as essential as having a blueprint for large building. Good models are
essential for communication among project teams and to assure architectural
soundness. We build models of complex systems because we cannot comprehend any
such system in its entirety. As the complexity of systems increase, so does the
importance of good modeling techniques. There are many additional factors of a
project’s success, but having a rigorous modeling language standard is one essential
factor. A modeling language must include:

• Model elements — fundamental modeling concepts and semantics

• Notation — visual rendering of model elements

• Guidelines — idioms of usage within the trade

In the face of increasingly complex systems, visualization and modeling become
essential. The UML is a well-defined and widely accepted response to that need. It is
the visual modeling language of choice for building object-oriented and component-
based systems.

1.3.2 Industry Trends in Software

As the strategic value of software increases for many companies, the industry looks for
techniques to automate the production of software. We look for techniques to improve
quality and reduce cost and time-to-market. These techniques include component
technology, visual programming, patterns, and frameworks. We also seek techniques
to manage the complexity of systems as they increase in scope and scale. In particular,
we recognize the need to solve recurring architectural problems, such as physical
distribution, concurrency, replication, security, load balancing, and fault tolerance.
Development for the worldwide web makes some things simpler, but exacerbates these
architectural problems.

Complexity will vary by application domain and process phase. One of the key
motivations in the minds of the UML developers was to create a set of semantics and
notation that adequately addresses all scales of architectural complexity, across all
domains.
September 2002 OMG-UML , v1.5 Motivation to Define the UML 1-3

1

1.3.3 Prior to Industry Convergence

Prior to the UML, there was no clear leading modeling language. Users had to choose
from among many similar modeling languages with minor differences in overall
expressive power. Most of the modeling languages shared a set of commonly accepted
concepts that are expressed slightly differently in various languages. This lack of
agreement discouraged new users from entering the object technology market and from
doing object modeling, without greatly expanding the power of modeling. Users
longed for the industry to adopt one, or a very few, broadly supported modeling
languages suitable for general-purpose usage.

Some vendors were discouraged from entering the object modeling area because of the
need to support many similar, but slightly different, modeling languages. In particular,
the supply of add-on tools has been depressed because small vendors cannot afford to
support many different formats from many different front-end modeling tools. It is
important to the entire object industry to encourage broadly based tools and vendors,
as well as niche products that cater to the needs of specialized groups.

The perpetual cost of using and supporting many modeling languages motivated many
companies producing or using object technology to endorse and support the
development of the UML.

While the UML does not guarantee project success, it does improve many things. For
example, it significantly lowers the perpetual cost of training and retooling when
changing between projects or organizations. It provides the opportunity for new
integration between tools, processes, and domains. But most importantly, it enables
developers to focus on delivering business value and gives them a paradigm to
accomplish this.

1.4 Goals of the UML

The primary design goals of the UML are as follows:

• Provide users with a ready-to-use, expressive visual modeling language to develop
and exchange meaningful models.

• Furnish extensibility and specialization mechanisms to extend the core concepts.

• Support specifications that are independent of particular programming languages
and development processes.

• Provide a formal basis for understanding the modeling language.

• Encourage the growth of the object tools market.

• Support higher-level development concepts such as components, collaborations,
frameworks and patterns.

• Integrate best practices.

These goals are discussed in detail below.
1-4 OMG-UML , v1.5 Goals of the UML September 2002

1

Provide users with a ready-to-use, expressive visual modeling language to
develop and exchange meaningful models

It is important that the Object Analysis and Design (OA&D) standard supports a
modeling language that can be used “out of the box” to do normal general-purpose
modeling tasks. If the standard merely provides a meta-meta-description that requires
tailoring to a particular set of modeling concepts, then it will not achieve the purpose
of allowing users to exchange models without losing information or without imposing
excessive work to map their models to a very abstract form. The UML consolidates a
set of core modeling concepts that are generally accepted across many current methods
and modeling tools. These concepts are needed in many or most large applications,
although not every concept is needed in every part of every application. Specifying a
meta-meta-level format for the concepts is not sufficient for model users, because the
concepts must be made concrete for real modeling to occur. If the concepts in different
application areas were substantially different, then such an approach might work, but
the core concepts needed by most application areas are similar and should be supported
directly by the standard without the need for another layer.

Furnish extensibility and specialization mechanisms to extend the core
concepts

OMG expects that the UML will be tailored as new needs are discovered and for
specific domains. At the same time, we do not want to force the common core concepts
to be redefined or re-implemented for each tailored area. Therefore, we believe that the
extension mechanisms should support deviations from the common case, rather than
being required to implement the core modeling concepts themselves. The core concepts
should not be changed more than necessary. Users need to be able to

• build models using core concepts without using extension mechanisms for most
normal applications,

• add new concepts and notations for issues not covered by the core,

• choose among variant interpretations of existing concepts, when there is no clear
consensus, and

• specialize the concepts, notations, and constraints for particular application
domains.

Support specifications that are independent of particular programming
languages and development processes

The UML must and can support all reasonable programming languages. It also must
and can support various methods and processes of building models. The UML can
support multiple programming languages and development methods without excessive
difficulty.

Provide a formal basis for understanding the modeling language

Because users will use formality to help understand the language, it must be both
precise and approachable; a lack of either dimension damages its usefulness. The
formalisms must not require excessive levels of indirection or layering, use of low-
level mathematical notations distant from the modeling domain, such as set-theoretic
notation, or operational definitions that are equivalent to programming an
September 2002 OMG-UML , v1.5 Goals of the UML 1-5

1

implementation. The UML provides a formal definition of the static format of the
model using a metamodel expressed in UML class diagrams. This is a popular and
widely accepted formal approach for specifying the format of a model and directly
leads to the implementation of interchange formats. UML expresses well-formedness
constraints in precise natural language plus Object Constraint Language expressions.
UML expresses the operational meaning of most constructs in precise natural
language. The fully formal approach taken to specify languages such as Algol-68 was
not approachable enough for most practical usage.

Encourage the growth of the object tools market

By enabling vendors to support a standard modeling language used by most users and
tools, the industry benefits. While vendors still can add value in their tool
implementations, enabling interoperability is essential. Interoperability requires that
models can be exchanged among users and tools without loss of information. This can
only occur if the tools agree on the format and meaning of all of the relevant concepts.
Using a higher meta-level is no solution unless the mapping to the user-level concepts
is included in the standard.

Support higher-level development concepts such as components,
collaborations, frameworks, and patterns

Clearly defined semantics of these concepts is essential to reap the full benefit of
object-orientation and reuse. Defining these within the holistic context of a modeling
language is a unique contribution of the UML.

Integrate best practices

A key motivation behind the development of the UML has been to integrate the best
practices in the industry, encompassing widely varying views based on levels of
abstraction, domains, architectures, life cycle stages, implementation technologies, etc.
The UML is indeed such an integration of best practices.

1.5 Scope of the UML

The Unified Modeling Language (UML) is a language for specifying, constructing,
visualizing, and documenting the artifacts of a software-intensive system.

First and foremost, the Unified Modeling Language fuses the concepts of Booch,
OMT, and OOSE. The result is a single, common, and widely usable modeling
language for users of these and other methods.

Second, the Unified Modeling Language pushes the envelope of what can be done with
existing methods. As an example, the UML authors targeted the modeling of
concurrent, distributed systems to assure the UML adequately addresses these domains.

Third, the Unified Modeling Language focuses on a standard modeling language, not a
standard process. Although the UML must be applied in the context of a process, it is
our experience that different organizations and problem domains require different
processes. (For example, the development process for shrink-wrapped software is an
interesting one, but building shrink-wrapped software is vastly different from building
1-6 OMG-UML , v1.5 Scope of the UML September 2002

1

hard-real-time avionics systems upon which lives depend.) Therefore, the efforts
concentrated first on a common metamodel (which unifies semantics) and second on a
common notation (which provides a human rendering of these semantics). The UML
authors promote a development process that is use-case driven, architecture centric,
and iterative and incremental.

The UML specifies a modeling language that incorporates the object-oriented
community’s consensus on core modeling concepts. It allows deviations to be
expressed in terms of its extension mechanisms. The Unified Modeling Language
provides the following:

• Semantics and notation to address a wide variety of contemporary modeling issues
in a direct and economical fashion.

• Semantics to address certain expected future modeling issues, specifically related to
component technology, distributed computing, frameworks, and executability.

• Extensibility mechanisms so individual projects can extend the metamodel for their
application at low cost. We don’t want users to directly change the UML
metamodel.

• Extensibility mechanisms so that future modeling approaches could be grown on
top of the UML.

• Semantics to facilitate model interchange among a variety of tools.

• Semantics to specify the interface to repositories for the sharing and storage of
model artifacts.

1.5.1 Outside the Scope of the UML

1.5.1.1 Programming Languages

The UML, a visual modeling language, is not intended to be a visual programming
language, in the sense of having all the necessary visual and semantic support to
replace programming languages. The UML is a language for visualizing, specifying,
constructing, and documenting the artifacts of a software-intensive system, but it does
draw the line as you move toward code. For example, complex branches and joins are
better expressed in a textual programming language. The UML does have a tight
mapping to a family of object languages so that you can get the best of both worlds.

1.5.1.2 Tools

Standardizing a language is necessarily the foundation for tools and process. Tools and
their interoperability are very dependent on a solid semantic and notation definition,
such as the UML provides. The UML defines a semantic metamodel, not a tool
interface, storage, or run-time model, although these should be fairly close to one
another.
September 2002 OMG-UML , v1.5 Scope of the UML 1-7

1

The UML documents do include some tips to tool vendors on implementation choices,
but do not address everything needed. For example, they don’t address topics like
diagram coloring, user navigation, animation, storage/implementation models, or other
features.

1.5.1.3 Process

Many organizations will use the UML as a common language for its project artifacts,
but will use the same UML diagram types in the context of different processes. The
UML is intentionally process independent, and defining a standard process was not a
goal of the UML or OMG’s RFP.

The UML authors do recognize the importance of process. The presence of a well-
defined and well-managed process is often a key discriminator between
hyperproductive projects and unsuccessful ones. The reliance upon heroic
programming is not a sustainable business practice. A process

• provides guidance as to the order of a team’s activities,

• specifies what artifacts should be developed,

• directs the tasks of individual developers and the team as a whole, and

• offers criteria for monitoring and measuring a project’s products and activities.

Processes by their very nature must be tailored to the organization, culture, and
problem domain at hand. What works in one context (shrink-wrapped software
development, for example) would be a disaster in another (hard-real-time, human-rated
systems, for example). The selection of a particular process will vary greatly,
depending on such things as problem domain, implementation technology, and skills of
the team.

Booch, OMT, OOSE, and many other methods have well-defined processes, and the
UML can support most methods. There has been some convergence on development
process practices, but there is not yet consensus for standardization. What will likely
result is general agreement on best practices and potentially the embracing of a process
framework, within which individual processes can be instantiated. Although the UML
does not mandate a process, its developers have recognized the value of a use-case
driven, architecture-centric, iterative, and incremental process, so were careful to
enable (but not require) this with the UML.

1.5.2 Comparing UML to Other Modeling Languages

It should be made clear that the Unified Modeling Language is not a radical departure
from Booch, OMT, or OOSE, but rather the legitimate successor to all three. This
means that if you are a Booch, OMT, or OOSE user today, your training, experience,
and tools will be preserved, because the Unified Modeling Language is a natural
evolutionary step. The UML will be equally easy to adopt for users of many other
methods, but their authors must decide for themselves whether to embrace the UML
concepts and notation underneath their methods.
1-8 OMG-UML , v1.5 Scope of the UML September 2002

1

The Unified Modeling Language is more expressive yet cleaner and more uniform than
Booch, OMT, OOSE, and other methods. This means that there is value in moving to
the Unified Modeling Language, because it will allow projects to model things they
could not have done before. Users of most other methods and modeling languages will
gain value by moving to the UML, since it removes the unnecessary differences in
notation and terminology that obscure the underlying similarities of most of these
approaches.

With respect to other visual modeling languages, including entity-relationship
modeling, BPR flow charts, and state-driven languages, the UML should provide
improved expressiveness and holistic integrity.

Users of existing methods will experience slight changes in notation, but this should
not take much relearning and will bring a clarification of the underlying semantics. If
the unification goals have been achieved, UML will be an obvious choice when
beginning new projects, especially as the availability of tools, books, and training
becomes widespread. Many visual modeling tools support existing notations, such as
Booch, OMT, OOSE, or others, as views of an underlying model; when these tools add
support for UML (as some already have) users will enjoy the benefit of switching their
current models to the UML notation without loss of information.

Existing users of any object method can expect a fairly quick learning curve to achieve
the same expressiveness as they previously knew. One can quickly learn and use the
basics productively. More advanced techniques, such as the use of stereotypes and
properties, will require some study since they enable very expressive and precise
models needed only when the problem at hand requires them.

1.5.3 Features of the UML

The goals of the unification efforts were to keep it simple, to cast away elements of
existing Booch, OMT, and OOSE that didn’t work in practice, to add elements from
other methods that were more effective, and to invent new only when an existing
solution was not available. Because the UML authors were in effect designing a
language (albeit a graphical one), they had to strike a proper balance between
minimalism (everything is text and boxes) and over-engineering (having an icon for
every conceivable modeling element). To that end, they were very careful about adding
new things, because they didn’t want to make the UML unnecessarily complex. Along
the way, however, some things were found that were advantageous to add because they
have proven useful in practice in other modeling.

There are several new concepts that are included in UML, including

• extensibility mechanisms (stereotypes, tagged values, and constraints),

• threads and processes,

• distribution and concurrency (e.g., for modeling ActiveX/DCOM and CORBA),

• patterns/collaborations,

• activity diagrams (for business process modeling),

• refinement (to handle relationships between levels of abstraction),
September 2002 OMG-UML , v1.5 Scope of the UML 1-9

1

• interfaces and components, and

• a constraint language.

Many of these ideas were present in various individual methods and theories but UML
brings them together into a coherent whole. In addition to these major changes, there
are many other localized improvements over the Booch, OMT, and OOSE semantics
and notation.

The UML is an evolution from Booch, OMT, OOSE, other object-oriented methods,
and many other sources. These various sources incorporated many different elements
from many authors, including non-OO influences. The UML notation is a melding of
graphical syntax from various sources, with a number of symbols removed (because
they were confusing, superfluous, or little used) and with a few new symbols added.
The ideas in the UML come from the community of ideas developed by many different
people in the object-oriented field. The UML developers did not invent most of these
ideas; rather, their role was to select and integrate the best ideas from object modeling
and computer-science practices. The actual genealogy of the notation and underlying
detailed semantics is complicated, so it is discussed here only to provide context, not to
represent precise history.

Use-case diagrams are similar in appearance to those in OOSE.

Class diagrams are a melding of OMT, Booch, class diagrams of most other object
methods. Stereotypes and their corresponding icons can be defined for various
diagrams to support other modeling styles. Stereotypes, constraints, and taggedValues
are concepts added in UML that did not previously exist in the major modeling
languages.

Statechart diagrams are substantially based on the statecharts of David Harel with
minor modifications. Activity graph diagrams, which share much of the same
underlying semantics, are similar to the work flow diagrams developed by many
sources including many pre-object sources.

Sequence diagrams were found in a variety of object methods under a variety of names
(interaction, message trace, and event trace) and date to pre-object days. Collaboration
diagrams were adapted from Booch (object diagram), Fusion (object interaction
graph), and a number of other sources.

Collaborations are now first-class modeling entities, and often form the basis of
patterns.

The implementation diagrams (component and deployment diagrams) are derived from
Booch’s module and process diagrams, but they are now component-centered, rather
than module-centered and are far better interconnected.

Stereotypes are one of the extension mechanisms and extend the semantics of the
metamodel. User-defined icons can be associated with given stereotypes for tailoring
the UML to specific processes.
1-10 OMG-UML , v1.5 Scope of the UML September 2002

1

Object Constraint Language is used by UML to specify the semantics and is provided
as a language for expressions during modeling. OCL is an expression language having
its root in the Syntropy method and has been influenced by expression languages in
other methods like Catalysis. The informal navigation from OMT has the same intent,
where OCL is formalized and more extensive.

Each of these concepts has further predecessors and many other influences. We realize
that any brief list of influences is incomplete and we recognize that the UML is the
product of a long history of ideas in the computer science and software engineering
area.

1.6 UML - Past, Present, and Future

The UML was developed by Rational Software and its partners. Many companies are
incorporating the UML as a standard into their development process and products,
which cover disciplines such as business modeling, requirements management, analysis
& design, programming, and testing.

1.6.1 UML 0.8 - 0.91

1.6.1.1 Precursors to UML

Identifiable object-oriented modeling languages began to appear between mid-1970
and the late 1980s as various methodologists experimented with different approaches to
object-oriented analysis and design. Several other techniques influenced these
languages, including Entity-Relationship modeling, the Specification & Description
Language (SDL, circa 1976, CCITT), and other techniques. The number of identified
modeling languages increased from less than 10 to more than 50 during the period
between 1989-1994. Many users of object methods had trouble finding complete
satisfaction in any one modeling language, fueling the “method wars.” By the mid-
1990s, new iterations of these methods began to appear, most notably Booch’93, the
continued evolution of OMT, and Fusion. These methods began to incorporate each
other’s techniques, and a few clearly prominent methods emerged, including the
OOSE, OMT-2, and Booch’93 methods. Each of these was a complete method, and
was recognized as having certain strengths. In simple terms, OOSE was a use-case
oriented approach that provided excellent support business engineering and
requirements analysis. OMT-2 was especially expressive for analysis and data-intensive
information systems. Booch’93 was particularly expressive during design and
construction phases of projects and popular for engineering-intensive applications.

1.6.1.2 Booch, Rumbaugh, and Jacobson Join Forces

The development of UML began in October of 1994 when Grady Booch and Jim
Rumbaugh of Rational Software Corporation began their work on unifying the Booch
and OMT (Object Modeling Technique) methods. Given that the Booch and OMT
methods were already independently growing together and were collectively
recognized as leading object-oriented methods worldwide, Booch and Rumbaugh
joined forces to forge a complete unification of their work. A draft version 0.8 of the
September 2002 OMG-UML , v1.5 UML - Past, Present, and Future 1-11

1

Unified Method, as it was then called, was released in October of 1995. In the Fall of
1995, Ivar Jacobson and his Objectory company joined Rational and this unification
effort, merging in the OOSE (Object-Oriented Software Engineering) method. The
Objectory name is now used within Rational primarily to describe its UML-compliant
process, the Rational Unified Process.

As the primary authors of the Booch, OMT, and OOSE methods, Grady Booch, Jim
Rumbaugh, and Ivar Jacobson were motivated to create a unified modeling language
for three reasons. First, these methods were already evolving toward each other
independently. It made sense to continue that evolution together rather than apart,
eliminating the potential for any unnecessary and gratuitous differences that would
further confuse users. Second, by unifying the semantics and notation, they could
bring some stability to the object-oriented marketplace, allowing projects to settle on
one mature modeling language and letting tool builders focus on delivering more
useful features. Third, they expected that their collaboration would yield
improvements in all three earlier methods, helping them to capture lessons learned and
to address problems that none of their methods previously handled well.

As they began their unification, they established four goals to focus their efforts:

1. Enable the modeling of systems (and not just software) using object-oriented
concepts

2. Establish an explicit coupling to conceptual as well as executable artifacts

3. Address the issues of scale inherent in complex, mission-critical systems

4. Create a modeling language usable by both humans and machines

Devising a notation for use in object-oriented analysis and design is not unlike
designing a programming language. There are tradeoffs. First, one must bound the
problem: Should the notation encompass requirement specification? (Yes, partially.)
Should the notation extend to the level of a visual programming language? (No.)
Second, one must strike a balance between expressiveness and simplicity: Too simple a
notation will limit the breadth of problems that can be solved; too complex a notation
will overwhelm the mortal developer. In the case of unifying existing methods, one
must also be sensitive to the installed base: Make too many changes, and you will
confuse existing users. Resist advancing the notation, and you will miss the
opportunity of engaging a much broader set of users. The UML definition strives to
make the best tradeoffs in each of these areas.

The efforts of Booch, Rumbaugh, and Jacobson resulted in the release of the UML 0.9
and 0.91 documents in June and October of 1996. During 1996, the UML authors
invited and received feedback from the general community. They incorporated this
feedback, but it was clear that additional focused attention was still required.

1.6.2 UML Partners

During 1996, it became clear that several organizations saw UML as strategic to their
business. A Request for Proposal (RFP) issued by the Object Management Group
(OMG) provided the catalyst for these organizations to join forces around producing a
1-12 OMG-UML , v1.5 UML - Past, Present, and Future September 2002

1

joint RFP response. Rational established the UML Partners consortium with several
organizations willing to dedicate resources to work toward a strong UML definition.
Those contributing most to the UML definition included: Digital Equipment Corp., HP,
i-Logix, IntelliCorp, IBM, ICON Computing, MCI Systemhouse, Microsoft, Oracle,
Rational Software, TI, and Unisys. This collaboration produced UML, a modeling
language that was well defined, expressive, powerful, and generally applicable.

In January 1997 IBM & ObjecTime; Platinum Technology; Ptech; Taskon & Reich
Technologies; and Softeam also submitted separate RFP responses to the OMG. These
companies joined the UML partners to contribute their ideas, and together the partners
produced the revised UML 1.1 response. The focus of the UML 1.1 release was to
improve the clarity of the UML 1.0 semantics and to incorporate contributions from
the new partners.

This document is based on the UML 1.1 release and is the result of a collaborative
team effort. The UML Partners have worked hard as a team to define UML. While
each partner came in with their own perspective and areas of interest, the result has
benefited from each of them and from the diversity of their experiences. The UML
Partners contributed a variety of expert perspectives, including, but not limited to, the
following: OMG and RM-ODP technology perspectives, business modeling, constraint
language, state machine semantics, types, interfaces, components, collaborations,
refinement, frameworks, distribution, and metamodel.

1.6.3 UML - Present and Future

The UML is nonproprietary and open to all. It addresses the needs of user and
scientific communities, as established by experience with the underlying methods on
which it is based. Many methodologists, organizations, and tool vendors have
committed to use it. Since the UML builds upon similar semantics and notation from
Booch, OMT, OOSE, and other leading methods and has incorporated input from the
UML partners and feedback from the general public, widespread adoption of the UML
should be straightforward.

There are two aspects of "unified" that the UML achieves: First, it effectively ends
many of the differences, often inconsequential, between the modeling languages of
previous methods. Secondly, and perhaps more importantly, it unifies the perspectives
among many different kinds of systems (business versus software), development
phases (requirements analysis, design, and implementation), and internal concepts.

1.6.3.1 Standardization of the UML

Many organizations have already endorsed the UML as their organization’s standard,
since it is based on the modeling languages of leading object methods. The UML is
ready for widespread use. This document is suitable as the primary source for authors
writing books and training materials, as well as developers implementing visual
modeling tools. Additional collateral, such as articles, training courses, examples, and
books, will soon make the UML very approachable for a wide audience.
September 2002 OMG-UML , v1.5 UML - Past, Present, and Future 1-13

1

The Unified Modeling Language v. 1.1 specification which was added to the list of
OMG Adopted Technologies in November 1997. Since then the OMG has assumed
responsibility for the further development of the UML standard.

1.6.3.2 Revision of the UML

After adoption of the UML 1.1 specification by the OMG membership in November
1997, the OMG chartered a revision task force (RTF) to accept comments from the
general public and to make revisions to the specifications to handle bugs,
inconsistencies, ambiguities, and minor omissions that could be handled without a
major change in scope from the original specification. The members of the RTF were
drawn from the original proposers with a few additional persons. The RTF issued
several preliminary reports with the final report containing UML 1.3 scheduled for the
second quarter of 1999. It contained a number of changes to the UML metamodel,
semantics, and notation, but in the big picture this version should be considered a
minor upgrade to the original specification. More substantive changes and expansion in
scope requires the full OMG specification and adoption process.

1.6.3.3 Industrialization

Many organizations and vendors worldwide have already embraced the UML. The
number of endorsing organizations is expected to grow significantly over time. These
organizations will continue to encourage the use of the Unified Modeling Language by
making the definition readily available and by encouraging other methodologists, tool
vendors, training organizations, and authors to adopt the UML.

The real measure of the UML’s success is its use on successful projects and the
increasing demand for supporting tools, books, training, and mentoring.

1.6.3.4 Future UML Evolution

Although the UML defines a precise language, it is not a barrier to future
improvements in modeling concepts. We have addressed many leading-edge
techniques, but expect additional techniques to influence future versions of the UML.
Many advanced techniques can be defined using UML as a base. The UML can be
extended without redefining the UML core.

The UML, in its current form, is expected to be the basis for many tools, including
those for visual modeling, simulation, and development environments. As interesting
tool integrations are developed, implementation standards based on the UML will
become increasingly available.

The UML has integrated many disparate ideas, so this integration will accelerate the
use of object-orientation. Component-based development is an approach worth
mentioning. It is synergistic with traditional object-oriented techniques. While reuse
based on components is becoming increasingly widespread, this does not mean that
component-based techniques will replace object-oriented techniques. There are only
subtle differences between the semantics of components and classes.
1-14 OMG-UML , v1.5 UML - Past, Present, and Future September 2002

UML Semantics 2
Contents

This chapter contains the following sections.

Section Title Page

Part 1 - Background

“Introduction” 2-2

“Language Architecture” 2-4

“Language Formalism” 2-7

Part 2 - Foundation

“Foundation Package” 2-11

“Core” 2-12

“Extension Mechanisms” 2-77

“Data Types” 2-89

Part 3 - Behavioral Elements

“Behavioral Elements Package” 2-97

“Common Behavior” 2-97

“Collaborations” 2-114

“Use Cases” 2-132

“UML Semantics” 2-143

“Activity Graphs” 2-172

“Actions” 2-183
September 2002 OMG-Unified Modeling Language, v1.5 2-1

2 UML Semantics
Part 1 - Background

2.1 Introduction

2.1.1 Purpose and Scope

The primary audience for this detailed description consists of the OMG, other
standards organizations, tool builders, metamodelers, methodologists, and expert
modelers. The authors assume familiarity with metamodeling and advanced object
modeling. Readers looking for an introduction to the UML or object modeling should
consider another source.

Although the document is meant for advanced readers, it is also meant to be easily
understood by its intended audience. Consequently, it is structured and written to
increase readability. The structure of the document, like the language, builds on
previous concepts to refine and extend the semantics. In addition, the document is
written in a ‘semi-formal’ style that combines natural and formal languages in a
complementary manner.

This section specifies semantics for structural and behavioral object models. Structural
models (also known as static models) emphasize the structure of objects in a system,
including their classes, interfaces, attributes and relations. Behavioral models (also
known as dynamic models) emphasize the behavior of objects in a system, including
their methods, interactions, collaborations, and state histories.

Part 4 - General Mechanisms

“Model Management” 2-184

Part 5- Actions

“Action Package” 2-202

“Actions Overview” 2-202

“Action Conventions” 2-210

“Action Foundation” 2-214

“Composite Actions” 2-229

“Read and Write Actions” 2-250

“Computation Actions” 2-283

“Collection Actions” 2-291

“Messaging Actions” 2-306

“Jump Actions” 2-326

Section Title Page
2-2 OMG-UML , v1.5 Introduction September 2002

2 UML Semantics
This section provides complete semantics for all modeling notations described in the
UML Notation Guide (Chapter 3). This includes support for a wide range of diagram
techniques: class diagram, object diagram, use case diagram, sequence diagram,
collaboration diagram, state diagram, activity diagram, and deployment diagram. The
UML Notation Guide includes a summary of the semantics sections that are relevant to
each diagram technique.

2.1.2 Approach

This section emphasizes language architecture and formal rigor. The architecture of the
UML is based on a four-layer metamodel structure, which consists of the following
layers: user objects, model, metamodel, and meta-metamodel. This document is
primarily concerned with the metamodel layer, which is an instance of the meta-
metamodel layer. For example, Class in the metamodel is an instance of MetaClass in
the meta-metamodel. The metamodel architecture of UML is discussed further in
Section 2.2, “Language Architecture,” on page 2-4.

The UML metamodel is a logical model and not a physical (or implementation) model.
The advantage of a logical metamodel is that it emphasizes declarative semantics, and
suppresses implementation details. Implementations that use the logical metamodel
must conform to its semantics, and must be able to import and export full as well as
partial models. However, tool vendors may construct the logical metamodel in various
ways, so they can tune their implementations for reliability and performance. The
disadvantage of a logical model is that it lacks the imperative semantics required for
accurate and efficient implementation. Consequently, the metamodel is accompanied
with implementation notes for tool builders.

UML is also structured within the metamodel layer. The language is decomposed into
several logical packages: Foundation, Behavioral Elements, and Model Management.
These packages in turn are decomposed into subpackages. For example, the Foundation
package consists of the Core, Extension Mechanisms, and Data Types subpackages.
The structure of the language is fully described in Section 2.2, “Language
Architecture,” on page 2-4.

The metamodel is described in a semi-formal manner using these views:

• Abstract syntax

• Well-formedness rules

• Semantics

The abstract syntax is provided as a model described in a subset of UML, consisting of
a UML class diagram and a supporting natural language description. (In this way the
UML bootstraps itself in a manner similar to how a compiler is used to compile itself.)
The well-formedness rules are provided using a formal language (Object Constraint
Language) and natural language (English). Finally, the semantics are described
primarily in natural language, but may include some additional notation, depending on
the part of the model being described. The adaptation of formal techniques to specify
the language is fully described in Section 2.3, “Language Formalism,” on page 2-7.
September 2002 OMG-UML , v1.5 Introduction 2-3

2 UML Semantics
In summary, the UML metamodel is described in a combination of graphic notation,
natural language, and formal language. We recognize that there are theoretical limits to
what one can express about a metamodel using the metamodel itself. However, our
experience suggests that this combination strikes a reasonable balance between
expressiveness and readability.

2.2 Language Architecture

2.2.1 Four-Layer Metamodel Architecture

The UML metamodel is defined as one of the layers of a four-layer metamodeling
architecture. This architecture is a proven infrastructure for defining the precise
semantics required by complex models. There are several other advantages associated
with this approach:

• It refines semantic constructs by recursively applying them to successive
metalayers.

• It provides an architectural basis for defining future UML metamodel extensions.

• It furnishes an architectural basis for aligning the UML metamodel with other
standards based on a four-layer metamodeling architecture, in particular the OMG
Meta-Object Facility (MOF).

The generally accepted framework for metamodeling is based on an architecture with
four layers:

• meta-metamodel

• metamodel

• model

• user objects

The functions of these layers are summarized in the following table.

Table 2-1 Four Layer Metamodeling Architecture

Layer Description Example

meta-metamodel The infrastructure for a
metamodeling architecture.
Defines the language for
specifying metamodels.

MetaClass, MetaAttribute,
MetaOperation
2-4 OMG-UML , v1.5 Language Architecture September 2002

2 UML Semantics
The meta-metamodeling layer forms the foundation for the metamodeling architecture.
The primary responsibility of this layer is to define the language for specifying a
metamodel. A meta-metamodel defines a model at a higher level of abstraction than a
metamodel, and is typically more compact than the metamodel that it describes. A
meta-metamodel can define multiple metamodels, and there can be multiple meta-
metamodels associated with each metamodel.

While it is generally desirable that related metamodels and meta-metamodels share
common design philosophies and constructs, this is not a strict rule. Each layer needs
to maintain its own design integrity. Examples of meta-metaobjects in the meta-
metamodeling layer are: MetaClass, MetaAttribute, and MetaOperation.

A metamodel is an instance of a meta-metamodel. The primary responsibility of the
metamodel layer is to define a language for specifying models. Metamodels are
typically more elaborate than the meta-metamodels that describe them, especially when
they define dynamic semantics. Examples of metaobjects in the metamodeling layer
are: Class, Attribute, Operation, and Component.

A model is an instance of a metamodel. The primary responsibility of the model layer
is to define a language that describes an information domain. Examples of objects in
the modeling layer are: StockShare, askPrice, sellLimitOrder, and StockQuoteServer.

User objects (a.k.a. user data) are an instance of a model. The primary responsibility of
the user objects layer is to describe a specific information domain. Examples of objects
in the user objects layer are: <Acme_Software_Share_98789>, 654.56,
sell_limit_order, and <Stock_Quote_Svr_32123>.

2.2.1.1 Architectural Alignment with the MOF Meta-Metamodel

Both the UML and the MOF are based on a four-layer metamodel architecture, where
the MOF meta-metamodel is the meta-metamodel for the UML metamodel. Since the
MOF and UML have different scopes and differ in their abstraction levels (the UML
metamodel tends to be more of a logical model than the MOF meta-metamodel), they
are related by loose metamodeling rather than strict metamodeling.1 As a result, the
UML metamodel is an instance of the MOF meta-metamodel.

metamodel An instance of a meta-
metamodel. Defines the
language for specifying a
model.

Class, Attribute, Operation,
Component

model An instance of a metamodel.
Defines a language to describe
an information domain.

StockShare, askPrice,
sellLimitOrder,
StockQuoteServer

user objects (user data) An instance of a model. Defines
a specific information domain.

<Acme_SW_Share_98789>,
654.56, sell_limit_order,
<Stock_Quote_Svr_32123>

Table 2-1 Four Layer Metamodeling Architecture

Layer Description Example
September 2002 OMG-UML , v1.5 Language Architecture 2-5

2 UML Semantics
Consequently, there is not a strict isomorphic instance-of mapping between all the
MOF meta-metamodel elements and the UML metamodel elements. In spite of this,
since the two models were designed to be interoperable, the UML Core package
metamodel and the MOF meta-metamodel are structurally quite similar.

2.2.2 Package Structure

The complexity of the UML metamodel is managed by organizing it into logical
packages. These packages group metaclasses that show strong cohesion with each
other and loose coupling with metaclasses in other packages. The metamodel is
decomposed into the top-level packages shown in Figure 2-1.

Figure 2-1 Top-Level Packages

The Foundation and Behavioral Elements packages are further decomposed as shown
in Figure 2-2 and Figure 2-3.

1.In loose (or “non-strict”) metamodeling a Mn level model is an instance of a Mn+1 level
model. In strict metamodeling, every element of a Mn level model is an instance of exactly
one element of Mn+1 level model.
2-6 OMG-UML , v1.5 Language Architecture September 2002

2 UML Semantics
Figure 2-2 Foundation Packages

Figure 2-3 Behavioral Elements Packages

The functions and contents of these packages are described in “Part 3 - Behavioral
Elements” on page 2-97.

2.3 Language Formalism

This section contains a description of the techniques used to describe UML. The
specification adapts formal techniques to improve precision while maintaining
readability. The technique describes the UML metamodel in three views using both
text and graphic presentations. The benefits of adapting formal techniques include:

• the correctness of the description is improved,

Core

Data Types

Extension
Mechanisms

Use Cases

(from Behavioral Elements)
State Machines

(from Behavioral Elements)

Collaborations
(from Behavioral Elements)

Common Behavior
(from Behavioral Elements)

Activity Graphs

(from Behavioral Elements)

Actions
(from Behavioral Elements)
September 2002 OMG-UML , v1.5 Language Formalism 2-7

2 UML Semantics
• ambiguities and inconsistencies are reduced,

• the architecture of the metamodel is validated by a complementary technique, and

• the readability of the description is increased.

It is important to note that the current description is not a completely formal
specification of the language because to do so would have added significant
complexity without clear benefit. In addition, the state of the practice in formal
specifications does not yet address some of the more difficult language issues that
UML introduces.

The structure of the language is nevertheless given a precise specification, which is
required for tool interoperability. The dynamic semantics are described using natural
language, although in a precise way so they can easily be understood. Currently, the
dynamic semantics are not considered essential for the development of tools; however,
this will probably change in the future.

2.3.1 Levels of Formalism

A common technique for specification of languages is to first define the syntax of the
language and then to describe its static and dynamic semantics. The syntax defines
what constructs exist in the language and how the constructs are built up in terms of
other constructs. Sometimes, especially if the language has a graphic syntax, it is
important to define the syntax in a notation independent way, that is, to define the
abstract syntax of the language. The concrete syntax is then defined by mapping the
notation onto the abstract syntax. The syntax is described in the Abstract Syntax
sections.

The static semantics of a language define how an instance of a construct should be
connected to other instances to be meaningful, and the dynamic semantics define the
meaning of a well-formed construct. The meaning of a description written in the
language is defined only if the description is well formed, that is, if it fulfills the rules
defined in the static semantics. The static semantics are found in sections headed Well-
Formedness Rules. The dynamic semantics are described under the heading Semantics.
In some cases, parts of the static semantics are also explained in the Semantics section
for completeness.

The specification uses a combination of languages - a subset of UML, an object
constraint language, and precise natural language to describe the abstract syntax and
semantics of the full UML. The description is self-contained; no other sources of
information are needed to read the document2. Although this is a metacircular
description3, understanding this document is practical since only a small subset of
UML constructs are needed to describe its semantics.

2. Although a comprehension of the UML’s four-layer metamodel architecture and its
 underlying meta-metamodel is helpful, it is not essential to understand the UML semantics.
2-8 OMG-UML , v1.5 Language Formalism September 2002

2 UML Semantics
In constructing the UML metamodel different techniques have been used to specify
language constructs, using some of the capabilities of UML. The main language
constructs are reified into metaclasses in the metamodel. Other constructs, in essence
being variants of other ones, are defined as stereotypes of metaclasses in the
metamodel. This mechanism allows the semantics of the variant construct to be
significantly different from the base metaclass. Another more “lightweight” way of
defining variants is to use metaattributes. As an example, the aggregation construct is
specified by an attribute of the metaclass AssociationEnd, which is used to indicate if
an association is an ordinary aggregate, a composite aggregate, or a common
association.

2.3.2 Package Specification Structure

This section provides information for each package in the UML metamodel. Each
package has one or more of the following subsections.

2.3.2.1 Abstract Syntax

The abstract syntax is presented in a UML class diagram showing the metaclasses
defining the constructs and their relationships. The diagram also presents some of the
well-formedness rules, mainly the multiplicity requirements of the relationships, and
whether or not the instances of a particular sub-construct must be ordered. Finally, a
short informal description in natural language describing each construct is supplied.
The first paragraph of each of these descriptions is a general presentation of the
construct that sets the context, while the following paragraphs give the informal
definition of the metaclass specifying the construct in UML. For each metaclass, its
attributes are enumerated together with a short explanation. Furthermore, the opposite
role names of associations connected to the metaclass are also listed in the same way.

2.3.2.2 Well-Formedness Rules

The static semantics of UML metaclasses, except for multiplicity and ordering
constraints, are defined as a set of invariants of an instance of the metaclass. (Note that
a metaclass is not required to have any invariants.) These invariants have to be satisfied
for the construct to be meaningful. The rules thus specify constraints over attributes
and associations defined in the metamodel. Each invariant is defined by an OCL
expression together with an informal explanation of the expression. In many cases,
additional operations on the metaclasses are needed for the OCL expressions. These
are then defined in a separate subsection after the well-formedness rules for the
construct, using the same approach as the abstract syntax: an informal explanation
followed by the OCL expression defining the operation.

3. In order to understand the description of the UML semantics, you must understand some
UML semantics.
September 2002 OMG-UML , v1.5 Language Formalism 2-9

2 UML Semantics
The statement ‘No extra well-formedness rules’ means that all current static semantics
are expressed in the superclasses together with the multiplicity and type information
expressed in the diagrams.

2.3.2.3 Semantics

The meanings of the constructs are defined using natural language. The constructs are
grouped into logical chunks that are defined together. Since only concrete metaclasses
have a true meaning in the language, only these are described in this section.

2.3.2.4 Standard Elements

Stereotypes of the metaclasses defined previously in the section are listed, with an
informal definition in natural language. Well-formedness rules, if any, for the
stereotypes are also defined in the same manner as in the Well-Formedness Rules
subsection.

Other kinds of standard elements (constraints and tagged-values) are listed, and are
defined in the Standard Elements appendix.

2.3.2.5 Notes

This subsection may contain rationales for metamodeling decisions, pragmatics for the
use of the constructs, and examples all written in natural language.

2.3.3 Use of a Constraint Language

The specification uses the Object Constraint Language (OCL), as defined in Chapter 6,
“Object Constraint Language Specification” for expressing well-formedness rules. The
following conventions are used to promote readability:

• Self - which can be omitted as a reference to the metaclass defining the context of
the invariant, has been kept for clarity.

• In expressions where a collection is iterated, an iterator is used for clarity, even
when formally unnecessary. The type of the iterator is usually omitted, but included
when it adds to understanding.

• The ‘collect’ operation is left implicit where this is practical.

2.3.4 Use of Natural Language

We strove to be precise in our use of natural language, in this case English. For
example, the description of UML semantics includes phrases such as “X provides the
ability to…” and “X is a Y.” In each of these cases, the usual English meaning is
assumed, although a deeply formal description would demand a specification of the
semantics of even these simple phrases.

The following general rules apply:
2-10 OMG-UML , v1.5 Language Formalism September 2002

2 UML Semantics
• When referring to an instance of some metaclass, we often omit the word
“instance.” For example, instead of saying “a Class instance” or “an Association
instance,” we just say “a Class” or “an Association.” By prefixing it with an “a” or
“an,” assume that we mean “an instance of.” In the same way, by saying something
like “Elements” we mean “a set (or the set) of instances of the metaclass Element.”

• Every time a word coinciding with the name of some construct in UML is used, that
construct is referenced.

• Terms including one of the prefixes sub, super, or meta are written as one word (for
example, metamodel, subclass).

2.3.5 Naming Conventions and Typography

In the description of UML, the following conventions have been used:

• When referring to constructs in UML, not their representation in the metamodel,
normal text is used.

• Metaclass names that consist of appended nouns/adjectives, initial embedded
capitals are used (for example, ‘ModelElement,’ ‘StructuralFeature’).

• Names of metaassociations/association classes are written in the same manner as
metaclasses (for example, ‘ElementReference’).

• Initial embedded capital is used for names that consist of appended nouns/adjectives
(for example, ‘ownedElement,’ ‘allContents’).

• Boolean metaattribute names always start with ‘is’ (for example, ‘isAbstract’).

• Enumeration types always end with “Kind” (for example, ‘AggregationKind’).

• While referring to metaclasses, metaassociations, metaattributes, etc. in the text, the
exact names as they appear in the model are always used.

• Names of stereotypes are delimited by guillemets and begin with lowercase (for
example, «type»).

Part 2 - Foundation
2UML Semantics
Part 2 - Foundation

2.4 Foundation Package

The Foundation package is the language infrastructure that specifies the static structure of
models. The Foundation package is decomposed into the following subpackages: Core,
Extension Mechanisms, and Data Types. Figure 2-1 illustrates the Foundation Packages. The
Core package specifies the basic concepts required for an elementary metamodel and defines an
architectural backbone for attaching additional language constructs, such as metaclasses,
metaassociations, and metaattributes. The Extension Mechanisms package specifies how model
elements are customized and extended with new semantics. The Data Types package defines
basic data structures for the language.
September 2002 OMG-UML , v1.5 Foundation Package 2-11

2 UML Semantics
Figure 2-1 Foundation Packages

2.5 Core

2.5.1 Overview

The Core package is the most fundamental of the subpackages that compose the UML
Foundation package. It defines the basic abstract and concrete metamodel constructs needed for
the development of object models. Abstract constructs are not instantiable and are commonly
used to reify key constructs, share structure, and organize the UML metamodel. Concrete
metamodel constructs are instantiable and reflect the modeling constructs used by object
modelers (cf. metamodelers). Abstract constructs defined in the Core include ModelElement,
GeneralizableElement, and Classifier. Concrete constructs specified in the Core include Class,
Attribute, Operation, and Association.

The Core package specifies the core constructs required for a basic metamodel and defines an
architectural backbone (“skeleton”) for attaching additional language constructs such as
metaclasses, metaassociations, and metaattributes. Although the Core package contains
sufficient semantics to define the remainder of UML, it is not the UML meta-metamodel. It is
the underlying base for the Foundation package, which in turn serves as the infrastructure for
the rest of language. In other packages, the Core is extended by adding metaclasses to the
backbone using generalizations and associations.

The following sections describe the abstract syntax, well-formedness rules, and semantics of the
Core package.

2.5.2 Abstract Syntax

The abstract syntax for the Core package is expressed in graphic notation in the following
figures. Figure 2-2 on page 2-13 shows the model elements that form the structural backbone of
the metamodel. Figure 2-3 on page 2-14 shows the model elements that define relationships.

Core

Data Types

Extension
Mechanisms
2-12 OMG-UML , v1.5 Core September 2002

2 UML Semantics
Figure 2-4 on page 2-15 shows the model elements that define dependencies. Figure 2-5 on
page 2-16 shows the various kinds of classifiers. Figure 2-6 on page 2-17 shows auxiliary
elements for template parameters, presentation elements, and comments.

Figure 2-2 Core Package - Backbone

Element

GeneralizableElement

isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean

Attribute
initialValue : Expression

Method
body : ProcedureExpression

Operation
concurrency : CallConcurrencyKind
isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean
specification : String

*1 *

+specification

1

ElementOwnership
visibility : VisibilityKind
isSpecification : Boolean

Namespace Constraint
body : BooleanExpression

ModelElement

name : Name

0..1

*

+namespace
0..1

+ownedElement
*

*

*

+constraint

*

+constrainedElement

* {ordered}

BehavioralFeature
isQuery : Boolean

Feature

ownerScope : ScopeKind
visibility : VisibilityKind

StructuralFeature

multiplicity : Multiplicity
changeability : ChangeableKind
targetScope : ScopeKind
ordering : OrderingKind

Parameter
defaultValue : Expression
kind : ParameterDirectionKind

0..1

*

0..1

+parameter*

{ordered}

Classifier

*

0..1

+feature*

{ordered}

+owner

0..1

*

1

+typedFeature*

+type1

*

1

+typedParameter*

+type1
September 2002 OMG-UML , v1.5 Core 2-13

2 UML Semantics
Figure 2-3 Core Package - Relationships

{ordered}

AssociationClass

Class
isActive:Boolean

Relationship

Flow

ModelElement

name : Name

*

*

+sourceFlow

*

+source

*

*

*

+targetFlow

*

+target *

Association

Attribute
initialValue: Expression

AssociationEnd
isNavigable: Boolean
ordering :OrderingKind
aggregation:AggregationKind
targetScope:ScopeKind
multiplicity:Multiplicity
changeability:ChangeableKind
visibility:VisibilityKind

2..* 1

+connection

2..* 1

* 0..1

+qualifier

*
{ordered}

+associationEnd

0..1

GeneralizableElement

isRoot :Boolean
isLeaf :Boolean
isAbstract : Boolean

Classifier

1 *

+participant

1

+association

*

**

+specifiedEnd

*

+specification

*

Generalization
discriminator :Name * 1

+generalization

*

+child

1

1*

+parent

1

+specialization

*

0..1

*

+powertype 0..1

+powertypeRange *
2-14 OMG-UML , v1.5 Core September 2002

2 UML Semantics
Figure 2-4 Core Package - Dependencies

Usage

Permi ssion
Abstraction

mappi ng : MappingExpression

Dependency

Binding

ModelElement

name : Name 1..* *

+supplier

1..*

+supplierDependency

*

1..* *

+client

1..*

+clientDependency

*

Relationship
September 2002 OMG-UML , v1.5 Core 2-15

2 UML Semantics
Figure 2-5 Core Package - Classifiers

EnumerationLiteral

Classifier

Class

isActive : Boolean

DataType

Interface

ElementResidence

visibility : VisibilityKind

Primitive Enumeration

1 1..*

+enumeration

1

+literal

1..*

{ordered}

Node

ModelElement

name : Name

ArtifactComponent

*

*+deploymentLocation

* +deployedComponent

*

*

*

+container*

+resident
*

*

* +implementation

*+implementationLocation

*

ProgrammingLanguageDataType

expression : TypeExpression
2-16 OMG-UML , v1.5 Core September 2002

2 UML Semantics
Figure 2-6 Core Package - Auxiliary elements

Abstraction

An abstraction is a Dependency relationship that relates two elements or sets of elements that
represent the same concept at different levels of abstraction or from different viewpoints.

In the metamodel, an Abstraction is a Dependency in which there is a mapping between the
supplier and the client. Depending on the specific stereotype of Abstraction, the mapping may
be formal or informal, and it may be unidirectional or bidirectional.

If an Abstraction element has more than one client element, the supplier element maps into the
set of client elements as a group. For example, an analysis-level class might be split into several
design-level classes. The situation is similar if there is more than one supplier element.

The UML standard stereotyped classes of Abstraction are Derivation, Realization, Refinement,
and Trace. (These are the names for the Abstraction class with the stereotypes «derive»,
«realize», «refine», and «trace», respectively.)

Element

PresentationElement

TemplateParameter

Comment

body:String

ModelElement
name:Name

**

+presentation

*

+subject

*

0..1
*

+template

0..1

+templateParameter

*

{ordered}

0..1

*

+defaultElement0..1

*

*

*

*

+annotatedElement*

Binding

TemplateArgument

* 1*

+modelElement

1

1

1..*

+binding1

+argument 1..*

{ordered}
September 2002 OMG-UML , v1.5 Core 2-17

2 UML Semantics
Attributes

Stereotypes

Artifact

An Artifact represents a physical piece of information that is used or produced by a software
development process. Examples of Artifacts include models, source files, scripts, and binary
executable files. An Artifact may constitute the implementation of a deployable component.

mapping A MappingExpression that states the abstraction relationship between the
supplier and the client. In some cases, such as Derivation, it is usually
formal and unidirectional; in other cases, such as Trace, it is usually
informal and bidirectional. The mapping attribute is optional and may be
omitted if the precise relationship between the elements is not specified.

«derive» Class (Name for the stereotyped class is Derivation.) Specifies a derivation
relationship among model elements that are usually, but not
necessarily, of the same type. A derived dependency specifies that the
client may be computed from the supplier. The mapping specifies the
computation. The client may be implemented for design reasons, such
as efficiency, even though it is logically redundant.

«realize» Class (Name for the stereotyped class is Realization.) Specifies a realization
relationship between a specification model element or elements (the
supplier) and a model element or elements that implement it (the
client). The implementation model element is required to support all
of the operations or received signals that the specification model
element declares. The implementation model element must make or
inherit its own declarations of the operations and signal receptions.
The mapping specifies the relationship between the two. The mapping
may or may not be computable. Realization can be used to model
stepwise refinement, optimizations, transformations, templates, model
synthesis, framework composition, etc.

«refine» Class (Name for the stereotyped class is Refinement.) Specifies refinement
relationship between model elements at different semantic levels,
such as analysis and design.
The mapping specifies the relationship between the two elements or
sets of elements. The mapping may or may not be computable, and it
may be unidirectional or bidirectional. Refinement can be used to
model transformations from analysis to design and other such
changes.

«trace» Class (Name for the stereotyped class is Trace.) Specifies a trace
relationship between model elements or sets of model elements that
represent the same concept in different models. Traces are mainly
used for tracking requirements and changes across models. Since
model changes can occur in both directions, the directionality of the
dependency can often be ignored. The mapping specifies the
relationship between the two, but it is rarely computable and is
usually informal.
2-18 OMG-UML , v1.5 Core September 2002

2 UML Semantics
In the metamodel, an Artifact is a Classifier with an optional aggregation association to one or
more Components. As a Classifer, Artifacts may have Features that represent properties of the
Artifact, e.g., a “read-only” attribute or a “check in” operation.

It should be noted that sometimes Artifacts may need to be linked to Classifiers directly,
without introducing a ‘Component’. For instance, in the context of code generation, the
resulting Artifacts (source code files) are never deployed as Components. In that case, a
«derive» Dependency can be used between the Classifier(s) and the generated Artifact.

The standard stereotypes of Artifact are «file», the subclasses of «file» («executable», «source»,
«library», and «document»), and «table». These stereotypes can be further subclassed into
implementation and platform specific stereotypes (e.g., «jarFile» for Java archives).

Associations

Stereotypes

Association

An association defines a semantic relationship between classifiers. The instances of an
association are a set of tuples relating instances of the classifiers. Each tuple value may appear
at most once.

In the metamodel, an Association is a declaration of a semantic relationship between
Classifiers, such as Classes. An Association has at least two AssociationEnds. Each end is
connected to a Classifier - the same Classifier may be connected to more than one
AssociationEnd in the same Association. The Association represents a set of connections
among instances of the Classifiers. An instance of an Association is a Link, which is a tuple of
Instances drawn from the corresponding Classifiers.

implementation
Location

The deployable Component(s) that are implemented by this Artifact.

«document» Class Denotes a generic file that is not a «source» file or «executable».
Subclass of «file».

«executable» Class Denotes a program file that can be executed on a computer system.
Subclass of «file».

«file» Class Denotes a physical file in the context of the system developed.

«library» Class Denotes a static or dynamic library file. Subclass of «file».

«source» Class Denotes a source file that can be compiled into an executable file.
Subclass of «file».

«table» Class Denotes a database table.
September 2002 OMG-UML , v1.5 Core 2-19

2 UML Semantics
Attributes

Associations

Stereotypes

Standard Constraints

Tagged Values

Inherited Features

Association is a GeneralizableElement. The following elements are inherited by a child
Association.

name The name of the Association which, in combination with its associated
Classifiers, must be unique within the enclosing namespace (usually a
Package).

connection An Association consists of at least two AssociationEnds, each of which
represents a connection of the association to a Classifier. Each
AssociationEnd specifies a set of properties that must be fulfilled for the
relationship to be valid. The bulk of the structure of an Association is
defined by its AssociationEnds. The classifiers belonging to the
association are related to the AssociationEnds by the participant rolename
association.

implicit
Class

The «implicit» stereotype is applied to an association, specifying that the
association is not manifest, but rather is only conceptual.

xor
Association

The {xor} constraint is applied to a set of associations, specifying that
over that set, exactly one is manifest for each associated instance. Xor is
an exclusive or (not inclusive or) constraint.

persistence
Association

Persistence denotes the permanence of the state of the association,
marking it as transitory (its state is destroyed when the instance is
destroyed) or persistent (its state is not destroyed when the instance is
destroyed).

connection The child must have the same number of ends as the parent. Each
participant class must be a descendant of the participant class in the same
position in the parent. If the Association is an AssociationClass, its class
properties (attributes, operations, etc.) are inherited. Various other
properties are subject to change in the child. This specification is likely to
be further clarified in UML 2.0.
2-20 OMG-UML , v1.5 Core September 2002

2 UML Semantics
Non-Inherited Features

AssociationClass

An association class is an association that is also a class. It not only connects a set of classifiers
but also defines a set of features that belong to the relationship itself and not any of the
classifiers.

Inherited Features

AssociationClass inherits features as specified in both Class and Association.

In the metamodel, an AssociationClass is a declaration of a semantic relationship between
Classifiers, which has a set of features of its own. AssociationClass is a subclass of both
Association and Class (i.e., each AssociationClass is both an Association and a Class);
therefore, an AssociationClass has both AssociationEnds and Features.

AssociationEnd

An association end is an endpoint of an association, which connects the association to a
classifier. Each association end is part of one association. The association-ends of each
association are ordered.

In the metamodel, an AssociationEnd is part of an Association and specifies the connection of
an Association to a Classifier. It has a name and defines a set of properties of the connection
(e.g., which Classifier the Instances must conform to, their multiplicity, and if they may be
reached from another Instance via this connection).

In the following descriptions when referring to an association end for a binary association, the
source end is the other end. The target end is the one whose properties are being discussed.

isRoot
isLeaf
isAbstract

Not inheritable by their very nature, but they define the generalization
structure.

name Each model element has a unique name.
September 2002 OMG-UML , v1.5 Core 2-21

2 UML Semantics
Attributes

aggregation When placed on one end (the “target” end), specifies whether the
class on the target end is an aggregation with respect to the class
on the other end (the “source”end). Only one end can be an
aggregation. Possibilities are:

• none - The target class is not an aggregate.

• aggregate - The target class is an aggregate; therefore, the
source class is a part and must have the aggregation value of
none. The part may be contained in other aggregates.

• composite - The target class is a composite; therefore, the
source class is a part and must have the aggregation value of
none. The part is strongly owned by the composite and may not
be part of any other composite.

changeability Specifies whether or not links may be created or destroyed after
the initialization of objects at the opposte ends. Possibilities are:

• changeable - No restrictions on creation and destruction of
links.

• frozen - No links may be destroyed after the objects at the
opposite ends have been initialized, and no new links may be
created after the objects that would participate in the new link
at the opposite ends have been initialized.

• addOnly - No link may be destroyed after the objects at the
opposite ends have been initialized. Links may be created
anytime.

ordering When placed on a target end, specifies whether the set of links
from the source instance to the target instance is ordered. The
ordering must be determined and maintained by Operations that
add links. It represents additional information not inherent in the
objects or links themselves. Possibilities are:

• unordered - The links form a set with no inherent ordering.
• ordered - A set of ordered links can be scanned in order.
• Other possibilities (such as sorted) may be defined later by

declaring additional keywords. As with user-defined
stereotypes, this would be a private extension supported by
particular editing tools.
2-22 OMG-UML , v1.5 Core September 2002

2 UML Semantics
isNavigable When placed on a target end, specifies whether traversal from a
source instance to its associated target instances is possible.
Specification of each direction across the Association is
independent. A value of true means that the association can be
navigated by the source class and the target rolename can be used
in navigation expressions.

multiplicity When placed on a target end, specifies the number of target
instances that may be associated with a single source instance
across the given Association.

name (Inherited from ModelElement) The rolename of the end. When
placed on a target end, provides a name for traversing from a
source instance across the association to the target instance or set
of target instances. It represents a pseudo-attribute of the source
classifier (i.e., it may be used in the same way as an Attribute) and
must be unique with respect to Attributes and other pseudo-
attributes of the source Classifier.

targetScope Specifies whether the target value is an instance or a classifier.
Possibilities are:
• instance. An instance value is part of each link. This is the

default.
• classifier. A classifier itself is part of each link. Normally this

would be fixed at modeling time and need not be stored
separately at run time.

visibility Specifies the visibility of the association end from the viewpoint
of the classifier on the other end. Possibilities are:

• public - Other classifiers may navigate the association and use
the rolename in expressions, similar to the use of a public
attribute.

• protected - Descendants of the source classifier may navigate
the association and use the rolename in expressions, similar to
the use of a protected attribute.

• private - Only the source classifier may navigate the
association and use the rolename in expressions, similar to the
use of a private attribute.

• package - Classifiers in the same package (or a nested
subpackage, to any level) as the association declaration may
navigate the association and use the rolename in expressions.
September 2002 OMG-UML , v1.5 Core 2-23

2 UML Semantics
Associations

Stereotypes

Attribute

An attribute is a named slot within a classifier that describes a range of values that instances of
the classifier may hold.

In the metamodel, an Attribute is a named piece of the declared state of a Classifier, particularly
the range of values that Instances of the Classifier may hold.

qualifier An optional list of qualifier Attributes for the end. If the list is
empty, then the Association is not qualified.

specification Designates zero or more Classifiers that specify the Operations
that may be applied to an Instance accessed by the
AssociationEnd across the Association. These determine the
minimum interface that must be realized by the actual Classifier
attached to the end to support the intent of the Association. May
be an Interface or another Classifier. These classifiers do not
indicate the classes of the participants in a link, merely the
operations that may be applied when traversing a link.

participant Designates the Classifier participating in the Association at the
given end. A link of the Association contains a reference to an
instance of the class (including a descendant of the given class or
a class that realizes a given interface) in the given position in the
link.

(unnamed
composite end)

Designates the Association that owns the AssociationEnd.

«association»
Class

Specifies a real association (default and redundant, but may be included
for emphasis).

«global»
Class

Specifies that the target is a global value that is known to all elements
rather than an actual association.

«local»
Class

Specifies that the relationship represents a local variable within a
procedure rather than an actual association.

«parameter»
Class

Specifies that the relationship represents an operation, method, or
procedure parameter rather than an actual association.

«self»
Class

Specifies that the relationship represents a reference to the object that
owns an operation or action rather than an actual association.
2-24 OMG-UML , v1.5 Core September 2002

2 UML Semantics
Attributes

Associations

BehavioralFeature

A behavioral feature refers to a dynamic feature of a model element, such as an operation or
method.

In the metamodel, a BehavioralFeature specifies a behavioral aspect of a Classifier. All different
kinds of behavioral aspects of a Classifier, such as Operation and Method, are subclasses of
BehavioralFeature. BehavioralFeature is an abstract metaclass.

initialValue An Expression specifying the value of the attribute upon
initialization. It is meant to be evaluated at the time the object is
initialized. (Note that an explicit constructor may supersede an
initial value.)

associationEnd Designates the optional AssociationEnd that owns a qualifier
attribute. Note that an attribute may be part of an AssociationEnd
(in which case it is a qualifier) or part of a Classifier (by
inheritance from Feature, in which case it is a feature) but not
both. If the value is empty, the attribute is not a qualifier attribute.
September 2002 OMG-UML , v1.5 Core 2-25

2 UML Semantics
Attributes

Associations

Stereotypes

Binding

A binding is a relationship between a template (as supplier) and a model element generated
from the template (as client). It includes a list of arguments that match the template parameters.
The template is a form that is cloned and modified by substitution to yield an implicit model
fragment that behaves as if it were a direct part of the model. A Binding must have one supplier
and one client; unlike a general Dependency, the supplier and client may not be sets.

In the metamodel, a Binding is a Dependency where the supplier is the template and the client
is the instantiation of the template that performs the substitution of parameters of a template. A
Binding has a list of arguments that replace the parameters of the supplier to yield the client.
The client is fully specified by the binding of the supplier’s parameters and does not add any
information of its own. An element may participate as a supplier in multiple Binding
relationships to different clients. An element may participate in only one Binding relationship
as a client.

isQuery Specifies whether an execution of the Feature leaves the state of
the system unchanged. True indicates that the state is unchanged;
false indicates that side-effects may occur.

name (Inherited from ModelElement) The name of the Feature. The
entire signature of the Feature (name and parameter list) must be
unique within its containing Classifier.

parameter An ordered list of Parameters for the Operation. To call the
Operation, the caller must supply a list of values compatible with
the types of the Parameters.

«create»
Class

Specifies that the designated feature creates an instance of the
classifier to which the feature is attached. May be promoted to the
Classifier containing the feature.

«destroy»
Class

Specifies that the designated feature destroys an instance of the
classifier to which the feature is attached. May be promoted to the
classifier containing the feature.
2-26 OMG-UML , v1.5 Core September 2002

2 UML Semantics
Associations

Class

A class is a description of a set of objects that share the same attributes, operations, methods,
relationships, and semantics. A class may use a set of interfaces to specify collections of
operations it provides to its environment.

In the metamodel, a Class describes a set of Objects sharing a collection of Features, including
Operations, Attributes and Methods, that are common to the set of Objects. Furthermore, a
Class may realize zero or more Interfaces; this means that its full descriptor (see “Inheritance”
on page 2-74 for the definition) must contain every Operation from every realized Interface (it
may contain additional operations as well).

A Class defines the data structure of Objects, although some Classes may be abstract (i.e., no
Objects can be created directly from them). Each Object instantiated from a Class contains its
own set of values corresponding to the StructuralFeatures declared in the full descriptor.
Objects do not contain values corresponding to BehavioralFeatures or class-scope Attributes; all
Objects of a Class share the definitions of the BehavioralFeatures from the Class, and they all
have access to the single value stored for each class-scope attribute.

argument An ordered list of arguments. Each argument is a TemplateArgument
element. The model element attached to the TemplateArgument by the
modelElement association replaces the corresponding supplier parameter
in the supplier definition, and the result represents the definition of the
client as if it had been defined directly.
September 2002 OMG-UML , v1.5 Core 2-27

2 UML Semantics
Attributes

Stereotypes

isActive Specifies whether an Object of the Class maintains its own thread
of control. If true, then an Object has its own thread of control and
runs concurrently with other active Objects. Such a class is
informally called an active class. If false, then Operations run in
the address space and under the control of the active Object that
controls the caller. Such a class is informally called a passive
class.

«auxiliary»
Class

Specifies a class that supports another more central or fundamental
class, typically by implementing secondary logic or control flow. The
class that the auxiliary supports may be defined explicitly using a
Focus class or implicitly by a dependency relationship. Auxiliary
classes are typically used together with Focus classes, and are
particularly useful for specifying the secondary business logic or
control flow of components during design. See also: «focus».
2-28 OMG-UML , v1.5 Core September 2002

2 UML Semantics
Inherited Features

Class is a GeneralizableElement. The following elements are inherited by a child classifier, in
addition to those specified under its parent, Classifier.

Classifier

A classifier is an element that describes behavioral and structural features; it comes in several
specific forms, including class, data type, interface, component, artifact, and others that are
defined in other metamodel packages.

In the metamodel, a Classifier declares a collection of Features, such as Attributes, Methods,
and Operations. It has a name, which is unique in the Namespace enclosing the Classifier.
Classifier is an abstract metaclass.

«focus»
Class

Specifies a class that defines the core logic or control flow for one or
more auxiliary classes that support it. Support classes may be defined
explicitly using Auxiliary classes or implicitly by dependency
relationships. Focus classes are typically used together with one or
more Auxiliary classes, and are particularly useful for specifying the
core business logic or control flow of components during design. See
also: «auxiliary».

«implementation»
Class

Specifies the implementation of a class in some programming
language (e.g., C++, Smalltalk, Java) in which an instance may not
have more than one class. This is in contrast to Class, for which an
instance may have multiple classes at one time and may gain or lose
classes over time, and an object (a child of instance) may dynamically
have multiple classes.

An Implementation class is said to realize a Type if it provides all of
the operations defined for the Type with the same behavior as
specified for the Type's operations. An Implementation Class may
realize a number of different Types. Note that the physical attributes
and associations of the Implementation class do not have to be the
same as those of any Type it realizes and that the Implementation
Class may provide methods for its operations in terms of its physical
attributes and associations. See also: «type».

«type»
Class

Specifies a domain of objects together with the operations applicable
to the objects, without defining the physical implementation of those
objects. A type may not contain any methods, maintain its own thread
of control, or be nested. However, it may have attributes and
associations. The associations of a Type are defined solely for the
purpose of specifying the behavior of the type's operations and do not
represent the implementation of state data.

Although an object may have at most one Implementation Class, it
may conform to multiple different Types. See also: «implementation».

isActive The child may be active when the parent is passive, but not vice versa. In
most cases, they are the same.
September 2002 OMG-UML , v1.5 Core 2-29

2 UML Semantics
Classifier is a child of GeneralizableElement and Namespace. As a GeneralizableElement, it
may inherit Features and participation in Associations (in addition to things inherited as a
ModelElement). It also inherits ownership of StateMachines, Collaborations, etc.

As a Namespace, a Classifier may declare other Classifiers nested in its scope. Nested
Classifiers may be accessed by other Classifiers only if the nested Classifiers have adequate
visibility. There are no data value or state consequences of nested Classifiers, i.e., it is not an
aggregation or composition.
2-30 OMG-UML , v1.5 Core September 2002

2 UML Semantics
Associations

Stereotypes

Tagged Values

Inherited Features

Classifier is a GeneralizableElement. The following elements are inherited by a child classifier.

feature An ordered list of Features, like Attribute, Operation, Method,
owned by the Classifier.

association Denotes the AssociationEnd of an Association in which the
Classifier participates at the given end. This is the inverse of the
participant association from AssociationEnd. A link of the
association contains a reference to an instance of the class in the
given position.

powertypeRange Designates zero or more Generalizations for which the Classifier
is a powertype. If the cardinality is zero, then the Classifier is not
a powertype; if the cardinality is greater than zero, then the
Classifier is a powertype over the set of Generalizations
designated by the association, and the child elements of the
Generalizations are the instances of the Classifier as a powertype.
A Classifier that is a powertype can be marked with the
«powertype» stereotype.

specifiedEnd Indicates an AssociationEnd for which the given Classifier
specifies operations that may be applied to instances obtained by
traversing the association from the other end. (This relationship
does not define the structure of the association, merely operations
that may be applied on traversing it.)

«metaclass» Class Specifies that the instances of the classifier are classes.

«powertype» Class Specifies that the classifier is a metaclass whose instances are siblings
marked by the same discriminator. For example, the metaclass
TreeSpecies might be a power type for the subclasses of Tree that
represent different species, such as AppleTree, BananaTree and
CherryTree.

«process» Class Specifies a classifier that represents a heavy-weight flow of control.

«thread» Class Specifies a classifier that represents a flow of control.

«utility» Class Specifies a classifier that has no instances, but rather denotes a named
collection of non-member attributes and operations, all of which are
class-scoped.

persistence Persistence denotes the permanence of the state of the classifier,
marking it as transitory (its state is destroyed when the instance is
destroyed) or persistent (its state is not destroyed when the instance is
destroyed).

semantics Classifier Semantics is the specification of the meaning of the classifier.
September 2002 OMG-UML , v1.5 Core 2-31

2 UML Semantics
Note that inheritance makes the inherited elements part of the (virtual) full descriptor of the
classifier, but it does not change its actual data structure. See the explanation for the meaning of
each kind of inheritance.

Non-Inherited Features

The following elements are not inherited by a child classifier:

Comment

A comment is an annotation attached to a model element or a set of model elements. It has no
semantic force but may contain information useful to the modeler.

associationEnd The child class inherits participation in all associations of its parent, subjet
to all the same properties.

constraint Constraints on the parent apply to the child.

feature Attributes of the parent are part of the full descriptor of the child and may
not be declared again or overridden.
Operations of the parent are part of the full descriptor of the child but may
be overridden; a redeclaration may change its hierarchy location (isRoot,
isLeaf, isAbstract) but may not change its specification or parameter
structure. The concurrency level may be loosened (e.g., from guarded to
concurrent). An overriding operation may link to a different Method. An
overriding operation can have isQuery=true when the parent had a false
value, but not vice versa (in other words, once a side-effect, always a side-
effect).
Methods of the parent are part of the full descriptor of the child but may
be overridden. An overriding method can set the isQuery status, change its
hierarchy structure, but may not change its parameter structure. It may link
to a different operation that overrides the operation of the parent method.

generalization
specialization

These are implicitly inherited, in the sense that they define ancestors and
descendants, but not explicitly inherited, as they are the arcs in the
generalization graph. They establish the generalization structure itself as a
directed graph, into which the child classifier fits.

ownedElement The namespace of the parent is available to the child, except for private
access.

isRoot
isLeaf
isAbstract

By their very nature, these are not inherited

name Each classifier has its own unique name

parameter Template structure is not inherited. Each classifier must declare its own
templace structure, if any. A nontemplate can be child of a template and
vice versa.

powertypeRange A powertype corresponds to a particular node in the generalization
hierarchy, so it is not inherited.
2-32 OMG-UML , v1.5 Core September 2002

2 UML Semantics
Attributes

Associations

Stereotypes

Component

A component represents a modular, deployable, and replaceable part of a system that
encapsulates implementation and exposes a set of interfaces.

A component is typically specified by one or more classifiers that reside on the component. A
subset of these classifiers explicitly define the component’s external interfaces. A component
conforms to the interfaces that it exposes, where the interfaces represent services provided by
elements that reside on the component. A component may be implemented by one or more
artifacts, such as binary, executable, or script files. A component may be deployed on a node.

Components may be specified in both design models (e.g., using static structure diagrams) and
in implementation models (e.g., using implementation diagrams). When they are specified as
part of a design model components need not be allocated to nodes, nor do they need to have any
associated implementation artifacts.

In the metamodel, a Component is a child of Classifier. It does not have its own Features, but
instead acts as a container for other Classifiers that have Features. A Component is specified by
the Interfaces is exposes and the Classifiers that reside on it. The visibility attribute of the
ElementResidence association defines whether a resident element is visible outside the
Component: an external Interface of a Component has visibility value ‘public’. A Component
may be implemented by one or more Artifacts, and may be deployed on a Node.

body A string that is the comment.

annotatedElement A ModelElement or set of ModelElements described by the
Comment.

«requirement»
Class

Specifies a desired feature, property, or behavior of an element as part
of a system.

«responsibility»
Class

Specifies a contract or an obligation of an element in its relationship
to other elements.
September 2002 OMG-UML , v1.5 Core 2-33

2 UML Semantics
Associations

Inherited Features

The following elements are inherited by a child Component, in addition to those specified under
Classifier.

Non-Inherited Features

Constraint

A constraint is a semantic condition or restriction expressed in text.

In the metamodel, a Constraint is a BooleanExpression on an associated ModelElement(s)
which must be true for the model to be well formed. This restriction can be stated in natural
language, or in different kinds of languages with a well-defined semantics. Certain Constraints
are predefined in the UML, others may be user defined. Note that a Constraint is an assertion,
not an executable mechanism. It indicates a restriction that must be enforced by correct design
of a system.

deploymentLocation The set of Nodes the Component is residing on.

resident (Association class ElementResidence) The set of model elements
that specify the component. The visibility attribute shows the
external visibility of the element outside the component: an
external Interface of a Component has visibility = ‘public’ for its
ElementResidence association.

implementation The set of Artifacts that implement the Component. For a
Component, these Artifacts are generally «executable».

(none)

deploymentLocation The set of locations may differ. Often it is more restrictive on the child.

resident The set of resident elements may differ. Often it is more restrictive on the
child and contains additional elements.

implementation The set of Artifacts that implement the child Component will usually
differ.
2-34 OMG-UML , v1.5 Core September 2002

2 UML Semantics
Attributes

Associations

Stereotypes

DataType

A data type is a type whose values have no identity (i.e., they are pure values). Data types
include primitive built-in types (such as integer and string) as well as definable enumeration
types (such as the predefined enumeration type boolean whose literals are false and true).

In the metamodel, a DataType defines a special kind of Classifier in which Operations are all
pure functions (i.e., they can return DataValues but they cannot change DataValues, because
they have no identity). For example, an “add” operation on a number with another number as an
argument yields a third number as a result; the target and argument are unchanged.

Inherited Features

DataType inherits features as specified in Classifier.

Dependency

A term of convenience for a Relationship other than Association, Generalization, Flow, or
metarelationship (such as the relationship between a Classifier and one of its Instances).

body A BooleanExpression that must be true when evaluated for an
instance of a system to be well-formed.

constrainedElement A ModelElement or list of ModelElements affected by the
Constraint. If the constrained element is a Stereotype, then the
constraint applies to all ModelElements that use the stereotype.

«invariant»
Class

Specifies a constraint that must be attached to a set of classifiers or
relationships. It indicates that the conditions of the constraint must
hold over time (for the time period of concern in the particular
containing element) for the classifiers or relationships and their
instances.

«postcondition»
Class

Specifies a constraint that must be attached to an operation, and
denotes that the conditions of the constraint must hold after the
invocation of the operation.

«precondition»
Class

Specifies a constraint that must be attached to an operation, and
denotes that the conditions of the constraint must hold for the
invocation of the operation.

«stateInvariant» Class Specifies a constraint that must be attached to a state vertex in a state
machine that has a classifier for a context. The stereotype indicates
that the constraint holds for instances of the classifier when an
instance is in that state.
September 2002 OMG-UML , v1.5 Core 2-35

2 UML Semantics
A dependency states that the implementation or functioning of one or more elements requires
the presence of one or more other elements.

In the metamodel, a Dependency is a directed relationship from a client (or clients) to a supplier
(or suppliers) stating that the client is dependent on the supplier (i.e., the client element requires
the presence and knowledge of the supplier element).

The kinds of Dependency are Abstraction, Binding, Permission, and Usage. Various stereotypes
of those elements are predefined.

Associations

Element

An element is an atomic constituent of a model.

In the metamodel, an Element is the top metaclass in the metaclass hierarchy. It has two
subclasses: ModelElement and PresentationElement. Element is an abstract metaclass.

Tagged Values

ElementOwnership

Element ownership defines the visibility of a ModelElement contained in a Namespace.

In the metamodel, ElementOwnership reifies the relationship between ModelElement and
Namespace denoting the ownership of a ModelElement by a Namespace and its visibility
outside the Namespace. See “ModelElement” on page 2-46.

client The element that is affected by the supplier element. In some
cases (such as a Trace Abstraction) the direction is unimportant
and serves only to distinguish the two elements.

supplier Inverse of client. Designates the element that is unaffected by a
change. In a two-way relationship (such as some Refinement
Abstractions) this would be the more general element. In an
undirected situation, such as a Trace Abstraction, the choice of
client and supplier may be irrelevant.

documentation
Element

Documentation is a comment, description, or explanation of
the element to which it is attached.
2-36 OMG-UML , v1.5 Core September 2002

2 UML Semantics
Attributes

ElementResidence

Association class between Component and ModelElement that defines the set of
ModelElements that specify a Component. See Component::resident. Shows that the component
supports the element. The visibility attribute of ElementResidence defines the visibility of a
resident element outside the component: an external Interface of a Component has visibility =
‘public’ for its ElementResidence association.

isSpecification Specifies whether the ownedElement is part of the specification
for the containing namespace (in cases where specification is
distinguished from the realization). Otherwise the ownedElement
is part of the realization. In cases in which the distinction is not
made, the value is false by default.

visibility Specifies whether the ModelElement can be seen and referenced
by other ModelElements. Possibilities:

• public - Any outside ModelElement can see the ModelElement.
• protected - Any descendent of the ModelElement can see the

ModelElement.
• private - Only the ModelElement itself, or elements nested

within it can see the ModelElement.
• package - ModelElements declared in the same package (or a

nested subpackage, to any level) as the given ModelElement
can see the ModelElement.

Note that use of an element in another Package may also be
subject to access or import of its Package as described in Model
Management; see Permission.
September 2002 OMG-UML , v1.5 Core 2-37

2 UML Semantics
Attributes

Enumeration

In the metamodel, Enumeration defines a kind of DataType whose range is a list of predefined
values, called enumeration literals.

Enumeration literals can be copied, stored as values, and passed as arguments. They are ordered
within their enumeration datatype. An enumeration literal can be compared for an exact match
or to a range within its enumeration datatype. There is no other algebra defined on them (e.g.,
they cannot be added or subtracted).

The run-time instances of a Primitive dataype are Values. Each such value corresponds to
exactly one EnumerationLiteral defined as part of the Enumeration type itself.

An Enumeration may have operations, but they must be pure functions (this is the rule for all
DataType elements).

Associations

EnumerationLiteral

An EnumerationLiteral defines an element of the run-time extension of an Enumeration data
type. It has no relevant substructure, that is, it is atomic. The enumeration literals of a particular
Enumeration datatype are ordered.

It has a name (inherited from ModelElement) that can be used to identify it within its
enumeration dataype.

visibility Specifies whether a ModelElement that resides in a Component is
visible externally. Possible values for ElementResidence visibility
are:

• public - Any resident ModelElement with public visibility is
part of the Component’s external Interface and can be used by
other elements, if they have permission to access or import the
Component.

• private - The ModelElement is internal to the Component and
cannot be used by external elements.

• protected - The ModelElement is only visible to Descendant
Components.

Note: the visibility values ‘package’ does not apply to Element
Residence visibility. The Component and its residents have
ElementOwnership associations with visibility values to the
Package that contains them.

literal An ordered set of EnumationLiteral elements, each specifying a
possible value of an instance of the enumeration element.
2-38 OMG-UML , v1.5 Core September 2002

2 UML Semantics
Note that an EnumerationLiteral is a ModelElement and may appear in (M1) models to define
the structure of an Enumeration. In a run-time (M0) system, enumeration literals are DataValues
in many-to-one correpondence to EnumerationLiterals that they represent. (This is a subtle but
necessary distinction between M1 and M0 entities.)

The run-time values corresponding to enumeration literals can be compared for equality and for
relative ordering or inclusion in a range of enumeration literals.

Associations

Feature

A feature is a property, like operation or attribute, which is encapsulated within a Classifier.

In the metamodel, a Feature declares a behavioral or structural characteristic of an Instance of a
Classifier or of the Classifier itself. Feature is an abstract metaclass.

enumeration The enumeration classifier of which this enumeration literal is an
instance.
September 2002 OMG-UML , v1.5 Core 2-39

2 UML Semantics
Attributes

Associations

Flow

A flow is a relationship between two versions of an object or between an object and a copy of
it.

In the metamodel, a Flow is a child of Relationship. A Flow is a directed relationship from a
source or sources to a target or targets.

name (Inherited from ModelElement) The name used to identify the
Feature within the Classifier or Instance. It must be unique across
inheritance of names from ancestors including names of outgoing
AssociationEnd. (See more specific rules for the exact details.
Attributes, discriminators, and opposite association ends must
have unique names in the set of inherited names. There may be
multiple declarations of the same operation. Multiple operations
may have the same name but different signatures; see the rules for
precise details.)

ownerScope Specifies whether Feature appears in each Instance of the
Classifier or whether there is just a single instance of the Feature
for the entire Classifier. Possibilities are:

• instance - Each Instance of the Classifier holds its own value
for the Feature.

• classifier - There is just one value of the Feature for the entire
Classifier.

visibility Specifies whether the Feature can be used by other Classifiers.
Visibilities of nested Classifiers combine so that the most
restrictive visibility is the result. Possibilities:

• public - Any outside Classifier with visibility to the Classifier
can use the Feature.

• protected - Any descendent of the Classifier can use the
Feature.

• private - Only the Classifier itself can use the Feature.
• package - Any Classifier declared in the same package (or a

nested subpackage, to any level) as the owner of the Feature
can use the Feature.

owner The Classifier declaring the Feature. Note that an Attribute may
be owned by a Classifier (in which case it is a feature) or an
AssociationEnd (in which case it is a qualifier) but not both.
2-40 OMG-UML , v1.5 Core September 2002

2 UML Semantics
Predefined stereotypes of Flow are «become» and «copy». Become relates one version of an
object to another with a different value, state, or location. Copy relates an object to another
object that starts as a copy of it.

Stereotypes

GeneralizableElement

A generalizable element is a model element that may participate in a generalization
relationship.

In the metamodel, a GeneralizableElement can be a generalization of other
GeneralizableElements (i.e., all Features defined in and all ModelElements contained in the
ancestors are also present in the GeneralizableElement). GeneralizableElement is an abstract
metaclass.

«become»
Class

Specifies a Flow relationship, source and target of which represent the
same instance at different points in time, but each with potentially
different values, state instance, and roles. A Become flow relationship
from A to B means that instance A becomes B with possibly new
values, state instance, and roles at a different moment in time/space.

«copy»
Class

Specifies a Flow relationship, the source and target of which are
different instances, but each with the same values, state instance, and
roles (but a distinct identity). A Copy flow relationship from A to B
means that B is an exact copy of A. Future changes in A are not
necessarily reflected in B.
September 2002 OMG-UML , v1.5 Core 2-41

2 UML Semantics
Attributes

Associations

Inherited Features

The following elements are inherited by a child GenerizableElement.

isAbstract Specifies whether the GeneralizableElement may not have a direct
instance. True indicates that an instance of the
GeneralizableElement must be an instance of a child of the
GeneralizableElement. False indicates that there may an instance
of the GeneralizableElement that is not an instance of a child. An
abstract GeneralizableElement is not instantiable since it does not
contain all necessary information. That is, it may not have a direct
instance. It may have an indirect instance, and a model at a higher
level of abstraction may include instances of an abstract type, with
the understanding that in a fully expanded concrete snapshot, such
instances would have concrete types that are descendants of the
abstract types.

isLeaf Specifies whether the GeneralizableElement is a
GeneralizableElement with no descendents. True indicates that it
may not have descendents, false indicates that it may have
descendents (whether or not it actually has any descendents at the
moment).

isRoot Specifies whether the GeneralizableElement is a root
GeneralizableElement with no ancestors. True indicates that it
may not have ancestors, false indicates that it may have ancestors
(whether or not it actually has any ancestors at the moment).

generalization Designates a Generalization whose parent GeneralizableElement
is the immediate ancestor of the current GeneralizableElement.

specialization Designates a Generalization whose child GeneralizableElement is
the immediate descendent of the current GeneralizableElement.

constraint All constraints on the parent apply to the child.
2-42 OMG-UML , v1.5 Core September 2002

2 UML Semantics
Non-Inherited Features

Generalization

A generalization is a taxonomic relationship between a more general element and a more
specific element. The more specific element is fully consistent with the more general element
(it has all of its properties, members, and relationships) and may contain additional information.

In the metamodel, a Generalization is a directed inheritance relationship, uniting a
GeneralizableElement with a more general GeneralizableElement in a hierarchy. Generalization
is a subtyping relationship (i.e., an Instance of the more general GeneralizableElement may be
substituted by an Instance of the more specific GeneralizableElement). See Inheritance for the
consequences of Generalization relationships.

isRoot
isLeaf
isAbstract

Not inheritable by their very nature, but they define the generalization
structure. IsRoot may be true only if there are no parents. IsLeaf may be
true only if there are no children.

name Each model element has a unique name.
September 2002 OMG-UML , v1.5 Core 2-43

2 UML Semantics
Attributes

Associations

Stereotypes

discriminator Designates the partition to which the Generalization link belongs.
All of the Generalization links that share a given parent
GeneralizableElement are divided into disjoint sets (that is,
partitions) by their discriminator names. Each partition (a set of
links sharing a discriminator name) represents an orthogonal
dimension of specialization of the parent GeneralizableElement.
The discriminator need not be unique. The empty string is also
considered as a partition name, therefore all Generalization links
have a discriminator. If the set of Generalization links that have
the same parent all have the same name, then the children in the
Generalization links are GeneralizableElements that specialize the
parent, and an instance of any of them is a legal instance of the
parent. Otherwise an indirect instance of the parent must be a
(direct or indirect) instance of at least one element from each of
the partitions.

child Designates a GeneralizableElement that is the specialized version
of the parent GeneralizableElement.

parent Designates a GeneralizableElement that is the generalized version
of the child GeneralizableElement.

powertype Designates a Classifier that serves as a powertype for the child
element along the dimension of generalization expressed by the
Generalization. The child element is therefore an instance of the
powertype element.

«implementation»
Class

Specifies that the child inherits the implementation of the parent
(its attributes, operations and methods) but does not make public
the supplier’s interfaces nor guarantee to support them, thereby
violating substitutability. This is private inheritance and is usually
used only for programming implementation purposes.
2-44 OMG-UML , v1.5 Core September 2002

2 UML Semantics
Standard Constraints

Interface

An interface is a named set of operations that characterize the behavior of an element.

In the metamodel, an Interface contains a set of Operations that together define a service
offered by a Classifier realizing the Interface. A Classifier may offer several services, which
means that it may realize several Interfaces, and several Classifiers may realize the same
Interface.

Interfaces are GeneralizableElements.

Interfaces may not have Attributes, Associations, or Methods. An Interface may participate in
an Association provided the Interface cannot see the Association; that is, a Classifier (other than
an Interface) may have an Association to an Interface that is navigable from the Classifier but
not from the Interface.

Inherited Features

Interface inherits features as specified in Classifier.

complete
Generalization

Specifies a constraint applied to a set of generalizations with the same
discriminator and the same parent, indicating that any instance of the
parent must be an instance of at least one child within the set of
generalizations. If a parent has a single discriminator, the set of its child
generalizations being complete implies that the parent is abstract. The
connotation of declaring a set of generalizations complete is that all of
the children with the given discriminator have been declared and that
additional ones are not expected (in other words, the set of
generalizations is closed), and designs may assume with some
confidence that the set of children is fixed. If a new child is nevertheless
added in the future, existing models may be adversely affected and may
require modification.

disjoint
Generalization

Specifies a constraint applied to a set of generalizations, indicating that
instance of the parent may be an instance of no more than one of the
given children within the set of generalizations. This is the default
semantics of generalization.

incomplete
Generalization

Specifies a constraint applied to a set of generalizations with the same
discriminator, indicating that an instance of the parent need not be an
instance of a child within the set (but there is no guarantee that such an
instance will actually exist). Being incomplete implies that the parent is
concrete. The connotation of declaring a set of generalizations
incomplete is that all of the children with the given discriminator have
not necessarily been declared and that additional ones are might be
added, therefore users should not count on the set of children being
fixed.

overlapping
Generalization

Specifies a constraint applied to a set of generalizations, indicating that
an instance of one child may be simultaneously an instance of another
child in the set (but there is no guarantee that such an instance will
actually exist).
September 2002 OMG-UML , v1.5 Core 2-45

2 UML Semantics
Method

A method is the implementation of an operation. It specifies the algorithm or procedure that
effects the results of an operation.

In the metamodel, a Method is a declaration of a named piece of behavior in a Classifier and
realizes one (directly) or a set (indirectly) of Operations of the Classifier.

There may be at most one method for a particular classifier (as owner of the method) and
operation (as specification of the method) pairing.

Attributes

Associations

ModelElement

A model element is an element that is an abstraction drawn from the system being modeled.
Contrast with view element, which is an element whose purpose is to provide a presentation of
information for human comprehension.

In the metamodel, a ModelElement is a named entity in a Model. It is the base for all modeling
metaclasses in the UML (even though it is not displayed explicitly as such on diagrams for
ElementOwnership, ElementResidence, ElementImport, TemplateParameter,
TemplateArgument, and Argument). All other modeling metaclasses are either direct or indirect
subclasses of ModelElement.

Each ModelElement can be regarded as a template. A template has a set of templateParameters
that denotes which of the parts of a ModelElement are the template parameters. A
ModelElement is a template when there is at least one template parameter. If it is not a
template, a ModelElement cannot have template parameters. However, such embedded
parameters are not usually complete and need not satisfy well-formedness rules. It is the
arguments supplied when the template is instantiated that must be well-formed.

Partially instantiated templates are allowed. This is the case when there are arguments provided
for some, but not all templateParameters. A partially instantiated template is still a template,
since it still has parameters.

body The implementation of the Method as a ProcedureExpression.

specification Designates an Operation that the Method implements. The
Operation must be owned by the Classifier that owns the Method
or be inherited by it. The signatures of the Operation and Method
must match.
2-46 OMG-UML , v1.5 Core September 2002

2 UML Semantics
Attributes

Associations

Note that if a ModelElement has at least one templateParameter, then it is a template, otherwise
it is an ordinary element.

name An identifier for the ModelElement within its containing
Namespace.

asArgument Indicates zero or more TemplateArgument for which the model
element is an argument in a tempate binding.

clientDependency Inverse of client. Designates a set of Dependency in which the
ModelElement is a client.

constraint A set of Constraints affecting the element.

implementationLocation The component that an implemented model element resides in.

namespace Designates the Namespace that contains the ModelElement. Every
ModelElement except a root element must belong to exactly one
Namespace or else be a composite part of another ModelElement
(which is a kind of virtual namespace). The pathname of
Namespace or ModelElement names starting from the root
package provides a unique designation for every ModelElement.
The association attribute visibility specifies the visibility of the
element outside its namespace (see ElementOwnership).

presentation A set of PresentationElements that present a view of the
ModelElement.

supplierDependency Inverse of supplier. Designates a set of Dependency in which the
ModelElement is a supplier.

templateParameter (association class TemplateParameter) A composite aggregation
ordered list of parameters. Each parameter is a dummy
ModelElement designated as a placeholder for a real
ModelElement to be substituted during a binding of the template
(see Binding). The real model element must be of the same kind
(or a descendant kind) as the dummy ModelElement. The
properties of the dummy ModelElement are ignored, except the
name of the dummy element is used as the name of the template
parameter. The association class TemplateParameter may be
associated with a default ModelElement of the same kind as the
dummy ModelElement. In the case of a Binding that does not
supply an argument corresponding to the parameter, the value of
the default ModelElement is used. If a Binding lacks an argument
and there is no default ModelElement, the construct is invalid.
Note that the template parameter element lacks structure. For
example, a parameter that is a Class lacks Features; they are found
in the actual argument.
September 2002 OMG-UML , v1.5 Core 2-47

2 UML Semantics
Tagged Values

Inherited Features

ModelElement is not a GeneralizableElement but some of its descendants are. The following
elements are inherited by children of elements that are GeneralizableElements.

Non-Inherited Features

Namespace

A namespace is a part of a model that contains a set of ModelElements each of whose names
designates a unique element within the namespace.

In the metamodel, a Namespace is a ModelElement that can own other ModelElements, like
Associations and Classifiers. The name of each owned ModelElement must be unique within
the Namespace. Moreover, each contained ModelElement is owned by at most one Namespace.
The concrete subclasses of Namespace have additional constraints on which kind of elements
may be contained. Namespace is an abstract metaclass.

derived ModelElement A true value indicates that the model element can be completely
derived from other model elements and is therefore logically
redundant. In an analysis model, the element may be included to
define a useful name or concept. In a design model, the usual
intent is that the element should exist in the implementation to
avoid the need for recomputation.

constraint The child is subject to all constraints of the parent.

presentation The child is, by default, presented the same as the parent, but the
presentation may be overridden.

stereotype If a model element is classified by a stereotype, then its children are also
classified by the stereotype. They may use the tags defined on the
stereotype and they are subject to constraints imposed by the stereotype.

taggedValue If a tag is defined to apply to a model element (for example, because it is
classified by a stereotype defining the tag), then the tag applies to children
of the model element..

clientDependency
supplierDependency

A general inheritance rule is not possible

deploymentLocation The set of locations may differ. Often it is more restrictive on the child.

implementationLocation The child may be implemented differently from the parent.

name Each model element has its own name. Names are not inherited.

namespace The child and the parent may be in different namespaces.

templateParameter A parent and child may have different template structure
2-48 OMG-UML , v1.5 Core September 2002

2 UML Semantics
Note that explicit parts of a model element, such as the features of a Classifier, are not modeled
as owned elements in a namespace. A namespace is used for unstructured contents such as the
contents of a package or a class declared inside the scope of another class.

Associations

Node

A node is a run-time physical object that represents a computational resource, generally having
at least a memory and often processing capability as well, and upon which components may be
deployed.

In the metamodel, a Node is a subclass of Classifier. It is associated with a set of Components
that are deployed on the Node.

Associations

Inherited Features

The following elements are inherited by a child Node, in addition to those specified under
Classifier.

Non-Inherited Features

Operation

An operation is a service that can be requested from an object to effect behavior. An operation
has a signature, which describes the actual parameters that are possible (including possible
return values).

In the metamodel, an Operation is a BehavioralFeature that can be applied to the Instances of
the Classifier that contains the Operation.

ownedElement (association class ElementOwnership) A set of ModelElements
owned by the Namespace. Its visibility attribute states whether the
element is visible outside the namespace.

deployedComponent The set of Components deployed on the Node.

(none)

resident The set of resident elements may differ. Often it is more restrictive on the
child.
September 2002 OMG-UML , v1.5 Core 2-49

2 UML Semantics
Attributes

Tagged Values

Parameter

A parameter is an unbound variable that can be changed, passed, or returned. A parameter may

concurrency Specifies the semantics of concurrent calls to the same passive
instance (i.e., an Instance originating from a Classifier with
isActive=false). Active instances control access to their own
Operations so this property is usually (although not required in
UML) set to sequential. Possibilities include:

• sequential - Callers must coordinate so that only one call to an
Instance (on any sequential Operation) may be outstanding at
once. If simultaneous calls occur, then the semantics and
integrity of the system cannot be guaranteed.

• guarded - Multiple calls from concurrent threads may occur
simultaneously to one Instance (on any guarded Operation), but
only one is allowed to commence. The others are blocked until
the performance of the first Operation is complete. It is the
responsibility of the system designer to ensure that deadlocks
do not occur due to simultaneous blocks. Guarded Operations
must perform correctly (or block themselves) in the case of a
simultaneous sequential Operation or guarded semantics cannot
be claimed.

• concurrent - Multiple calls from concurrent threads may occur
simultaneously to one Instance (on any concurrent Operation).
All of them may proceed concurrently with correct semantics.
Concurrent Operations must perform correctly in the case of a
simultaneous sequential or guarded Operation or concurrent
semantics cannot be claimed.

isAbstract If true, then the operation does not have an implementation, and
one must be supplied by a descendant. If false, the operation must
have an implementation in the class or inherited from an ancestor.

isLeaf If true, then the implementation of the operation may not be
overriden by a descendant class. If false, then the implementation
of the operation may be overridden by a descendant class (but it
need not be overridden).

isRoot If true, then the class must not inherit a declaration of the same
operation. If false, then the class may (but need not) inherit a
declaration of the same operation. (But the declaration must
match in any case; a class may not modify an inherited operation
declaration.)

semantics
Operation

Semantics is the specification of the meaning of the operation.
2-50 OMG-UML , v1.5 Core September 2002

2 UML Semantics
include a name, type, and direction of communication. Parameters are used in the specification
of operations, messages and events, templates, etc.

In the metamodel, a Parameter is a declaration of an argument to be passed to, or returned from,
an Operation, a Signal, etc.

Attributes

Associations

Permission

Permission is a kind of dependency. It grants a model element permission to access elements in
another namespace.

In the metamodel, Permission in a Dependency between a client ModelElement and a supplier
ModelElement. The client receives permission to reference the supplier’s contents. The supplier
must be a Namespace.

The predefined stereotypes of Permission are access, import, and friend.

In the case of the access and import stereotypes, the client is granted permission to reference
elements in the supplier namespace with public visibility. In the case of the import stereotype,
the public names in the supplier namespace are added to the client namespace. An element may
also access any protected contents of an ancestor namespace. An element may also access any
contents (public, protected, private, or package) of its own namespace or a containing
namespace.

In the case of the friend stereotype, the client is granted permission to reference elements in the
supplier namespace, regardless of visibility.

defaultValue An Expression whose evaluation yields a value to be used when
no argument is supplied for the Parameter.

kind Specifies what kind of a Parameter is required. Possibilities are:

• in - An input Parameter (may not be modified).

• out - An output Parameter (may be modified to communicate
information to the caller).

• inout - An input Parameter that may be modified.

• return -A return value of a call.

name (Inherited from ModelElement) The name of the Parameter, which
must be unique within its containing Parameter list.

type Designates a Classifier to which an argument value must conform.
September 2002 OMG-UML , v1.5 Core 2-51

2 UML Semantics
Stereotypes

PresentationElement

A presentation element is a textual or graphical presentation of one or more model elements.

In the metamodel, a PresentationElement is an Element which presents a set of ModelElements
to a reader. It is the base for all metaclasses used for presentation. All other metaclasses with
this purpose are either direct or indirect subclasses of PresentationElement.
PresentationElement is an abstract metaclass. The subclasses of this class are proper to a
graphic editor tool and are not specified here. It is a stub for their future definition.

Primitive

A Primitive defines a predefined DataType, without any relevant UML substructure (i.e., it has
no UML parts). A primitive datatype may have an algebra and operations defined outside of
UML, for example, mathematically. Primitive datatypes used in UML itself include Integer,
UnlimitedInteger, and String.

The run-time instances of a Primitive dataype are DataValues. The values are in many-to-one
correspondence to mathemetical elements defined outside of UML (for example, the various
integers).

ProgrammingLanguageDataType

A data type is a type whose values have no identity (i.e., they are pure values). A programming
language data type is a data type specified according to the semantics of a particular
programming language, using constructs available in that language. There are a wide variety of
programming languages and many of them include type constructs not included as UML
classifiers. In some cases, it is important to represent those constructs such that their exact form
in the programming language is available. The ProgrammingLanguagedData type captures such
programming language types in a language-dependent fashion. They are represented by the
name of the language and a string characterizing them, subject to interpretation by the particular
language. Because they are dependent on particular languages, they are not portable among

«access»
Class

Access is a stereotyped permission dependency between two
namespaces, denoting that the public contents of the target namespace
are accessible to the namespace of the source package.

«friend»
Class

Friend is a stereotyped permission dependency whose source is a
model element, such as an operation, class, or package, and whose
target is a model element in a different package, such as an operation,
class or package. A friend relationship grants the source access to the
target regardless of the declared visibility. It extends the visibility of
the supplier so that the client can see into the supplier.

«import»
Class

Import is a stereotyped permission dependency between two
namespaces, denoting that the public contents of the target package
are added to the namespace of the source package.
2-52 OMG-UML , v1.5 Core September 2002

2 UML Semantics
languages (except by agreement among the languages) and they do not map into other UML
classifiers. Their semantics is therefore opaque within UML except by special interpretation by
a profile intended for the particular language.

Note that many or most programming language types can be directly represented using other
UML classifiers, and such representation makes available deeper semantic analysis.

A ProgrammingLanguageDataType may omit its name. Two ProgrammingLanguageDataType
elements without names are not considered equivalent.

Attributes

Inherited Features

ProgrammingLanguageDataType is meant to define language-dependent constructs for which
inheritance properties are undefined in UML.

Relationship

A relationship is a connection among model elements.

In the metamodel, Relationship is a term of convenience without any specific semantics. It is
abstract.

Children of Relationship are Association, Dependency, Flow, and Generalization.

StructuralFeature

A structural feature refers to a static feature of a model element, such as an attribute.

In the metamodel, a StructuralFeature declares a structural aspect of an Instance of a Classifier,
such as an Attribute. For example, it specifies the multiplicity and changeability of the
StructuralFeature. StructuralFeature is an abstract metaclass.

expression An expression for the ProgrammingLanguageDataType expressed
in its particular programming language.
September 2002 OMG-UML , v1.5 Core 2-53

2 UML Semantics
Attributes

Associations

changeability Whether the value may be modified after the object is initialized.
Possibilities are:

• changeable - No restrictions on modification.

• frozen - No values may be added or removed after the object is
initialized.

• addOnly - Values may be added anytime. No values may be
removed after the object is initialized.

multiplicity The possible number of data values for the feature that may be
held by an instance. The cardinality of the set of values is an
implicit part of the feature. In the common case in which the
multiplicity is 1..1, then the feature is a scalar (i.e., it holds
exactly one value).

ordering Specifies whether the set of instances is ordered. The ordering
must be determined and maintained by Operations that add values
to the feature. This property is only relevant if the multiplicity is
greater than one. Possibilities are:
• unordered - The instances form a set with no inherent ordering.
• ordered - A set of ordered instances can be scanned in order.
• Other possibilities (such as sorted) may be defined later by

declaring additional keywords. As with user-defined
stereotypes, this would be a private extension supported by
particular editing tools.

targetScope Specifies whether the targets are ordinary Instances or are
Classifiers. Possibilities are:

• instance - Each value contains a reference to an Instance of the
target Classifier. This is the setting for a normal Attribute.

• classifier - Each value contains a reference to the target
Classifier itself. This represents a way to store meta-
information.

type Designates the classifier whose instances are values of the feature.
Must be a Class, Interface, or DataType. The actual type may be a
descendant of the declared type or (for an Interface) a Class that
realizes the declared type.
2-54 OMG-UML , v1.5 Core September 2002

2 UML Semantics
Tagged Values

TemplateArgument

Reifies the relationship between a Binding and one of its arguments (a ModelElement).

Associations

TemplateParameter

Defines the relationship between a template (a ModelElement) and its parameter (a
ModelElement). A ModelElement with at least one templateParameter association is a template
(by definition).

In the metamodel, TemplateParameter reifies the relationship between a ModelElement that is a
template and a ModelElement that is a dummy placeholder for a template argument. See
ModelElement on page 2-46, association templateParameter, for details.

Associations

Usage

A usage is a relationship in which one element requires another element (or set of elements) for
its full implementation or operation. The relationship is not a mere historical artifact, but an
ongoing need; therefore, two elements related by usage must be in the same model.

In the metamodel, a Usage is a Dependency in which the client requires the presence of the
supplier. How the client uses the supplier, such as a class calling an operation of another class,
a method having an argument of another class, and a method from a class instantiating another
class, is defined in the description of the particular Usage stereotype.

Various stereotypes of Usage are predefined, but the set is open-ended and may be added to.

persistence
Attribute

Persistence denotes the permanence of the state of the feature,
marking it as transitory (its state is destroyed when the instance is
destroyed) or persistent (its state is not destroyed when the instance
is destroyed).

binding The Binding that owns the template argument.

modelElement The actual argument for the subject Binding.

defaultElement An optional default value ModelElement. In case of a Binding of
the template ModelElement in the reified TemplateParameter class
association, the defaultElement is used as the argument of the
bound element if no argument is supplied for the corresponding
template parameter. If no argument is supplied and there is no
default value, the model is ill formed.
September 2002 OMG-UML , v1.5 Core 2-55

2 UML Semantics
Stereotypes

2.5.3 Well-Formedness Rules

The following well-formedness rules apply to the Core package.

Association

[1] The AssociationEnds must have a unique name within the Association.

self.allConnections->forAll(r1, r2 | r1.name = r2.name implies r1 = r2)

[2] At most one AssociationEnd may be an aggregation or composition.

self.allConnections->select(aggregation <#none)->size <= 1

[3] If an Association has three or more AssociationEnds, then no AssociationEnd
 may be an aggregation or composition.

self.allConnections->size >=3 implies
self.allConnections->forall(aggregation = #none)

[4] The connected Classifiers of the AssociationEnds should be included in the Namespace of
the Association, or be Classifiers with public visibility in other Namespaces to which the
Namespace of the Association has "access" Permissions.

self.allConnections->forAll(r | self.namespace.allContents->includes
(r.participant)) or

self.allConnections->forAll(r | self.namespace.allContents->excludes
(r.participant) implies

self.namespace.clientDependency->exists (d |

d.oclIsTypeOf(Permission) and

d.stereotype.name = 'access' and

d.supplier.oclAsType(Namespace).ownedElement->select (e |

«call»
Class

Call is a stereotyped usage dependency whose source is an operation
and whose target is an operation. The relationship may also be
subsumed to the class containing an operation, with the meaning that
there exists an operation in the class to which the dependency applies.
A call dependency specifies that the source operation or an operation
in the source class invokes the target operation or an operation in the
target class. A call dependency may connect a source operation to any
target operation that is within scope including, but not limited to,
operations of the enclosing classifier and operations of other visible
classifiers.

«create»
Class

Create is a stereotyped usage dependency denoting that the client
classifier creates instances of the supplier classifier.

«instantiate»
Class

A stereotyped usage dependency among classifiers indicating that
operations on the client create instances of the supplier.

«send»
Class

Send is a stereotyped usage dependency whose source is an operation
and whose target is a signal, specifying that the source sends the
target signal.
2-56 OMG-UML , v1.5 Core September 2002

2 UML Semantics
e.elementOwnership.visibility =
#public)->includes (r.participant) or

d.supplier.oclAsType(GeneralizableElement).

allParents.oclAsType(Namespace).ownedElement->select (e |

e. elementOwnership.visibility =

#public)->includes (r.participant) or

d.supplier.oclAsType(Package).allImportedElements->select (e |

e. elementImport.visibility =

#public) ->includes (r.participant)))

Additional operations

[1] The operation allConnections results in the set of all AssociationEnds of the
 Association.

allConnections : Set(AssociationEnd);

allConnections = self.connection

AssociationClass

[1] The names of the AssociationEnds and the StructuralFeatures do not overlap.

self.allConnections->forAll(ar |

self.allFeatures->forAll(f |

f.oclIsKindOf(StructuralFeature) implies ar.name <> f.name))

[2] An AssociationClass cannot be defined between itself and something else.

self.allConnections->forAll(ar | ar.participant <> self)

Additional operations

[1] The operation allConnections results in the set of all AssociationEnds of the
 AssociationClass, including all connections defined by its parent (transitive
 closure).

allConnections : Set(AssociationEnd);

allConnections = self.connection->union(self.parent->select

(s | s.oclIsKindOf(Association))->collect (a : Association |

a.allConnections))->asSet

AssociationEnd

[1] The Classifier of an AssociationEnd cannot be an Interface or a DataType if the association
is navigable away from that end.

(self.participant.oclIsKindOf (Interface) or
self.participant.oclIsKingOf (DataType)) implies

self.association.connection->select
(ae | ae <> self)->forAll(ae | ae.isNavigable = #false)
September 2002 OMG-UML , v1.5 Core 2-57

2 UML Semantics
 [2] An Instance may not belong by composition to more than one composite
 Instance.

self.aggregation = #composite implies self.multiplicity.upperbound = 1

Additional operations

[1] The operation upperbound returns the maximum upperbound value across all potential
ranges of a multiplicity.

upperbound() : UnlimitedInteger;

upperbound =

self.range->exists(r : MultiplicityRange | r.upper = result) and

self.range->forall(r : MultiplicityRange | r.upper <= result)

Attribute

[1] Qualifier attributes have multiplicity of 1..1.

self.associationEnd->notEmpty() implies self.multiplicity.is(1,1)

BehavioralFeature

[1] All Parameters should have a unique name.

self.parameter->forAll(p1, p2 | p1.name = p2.name implies p1 = p2)

[2] The type of the Parameters should be included in the Namespace of the Classifier.

self.parameter->forAll(p |

self.owner.namespace.allContents->includes (p.type))

Additional operations

[1] The operation hasSameSignature checks if the argument has the same signature
 as the instance itself.

hasSameSignature (b : BehavioralFeature) : Boolean;

hasSameSignature (b) =

(self.name = b.name) and

(self.parameter->size = b.parameter->size) and

Sequence{ 1..(self.parameter->size) }->forAll(index : Integer |

b.parameter->at(index).type =

self.parameter->at(index).type and

b.parameter->at(index).kind =

self.parameter->at(index).kind

)

[2] The operation matchesSignature checks if the argument has a signature that would clash
with the signature of the instance itself (and therefore must be unique). Mismatches in
kind or any differences in return parameters do not cause a mismatch:

matchesSignature (b : BehavioralFeature) : Boolean;
2-58 OMG-UML , v1.5 Core September 2002

2 UML Semantics
matchesSignature (b) =

(self.name = b.name) and

(self.parameter->size = b.parameter->size) and

Sequence{ 1..(self.parameter->size) }->forAll(index : Integer |

b.parameter->at(index).type =

self.parameter->at(index).type or

(b.parameter->at(index).kind = return and

self.parameter->at(index).kind = return)

)

Binding

[1] The client ModelElement must conform to the type of the supplier ModelElement in a
 Binding.

self.client.oclIsKindOf(self.supplier)

[2] Each argument ModelElement of the supplier must have the same type (or a descendant
of the type) of the corresponding supplier parameter ModelElement in a
 Binding.

let range : Set(Integer) = [1..self.arguments->size()] in
range->forAll(index |

arguments->at(index).oclIsKindOf(
supplier.templateParameter->at(index).oclType

[3] The number of arguments must equal the number of parameters.

self.arguments->size() = self.supplier.templateParameter->size()

[3] A Binding has one client and one supplier.

(self.client->size = 1) and (self.supplier->size = 1)

[4] A ModelElement may participate in at most one Binding as a client.

Binding.allInstances->forAll

 [b1, b2 | (b1 <> b2) implies (b1.client <> b2.client)]

Class

[1] If a Class is concrete, all the Operations of the Class should have a realizing
 Method in the full descriptor.

not self.isAbstract implies self.allOperations->forAll (op |

self.allMethods->exists (m | m.specification->includes(op)))

[2] A Class can only contain Classes, Associations, Generalizations, UseCases,
 Constraints, Dependencies, Collaborations, DataTypes, and Interfaces as a
Namespace.

self.allContents->forAll->(c |
September 2002 OMG-UML , v1.5 Core 2-59

2 UML Semantics
c.oclIsKindOf(Class) or

c.oclIsKindOf(Association) or

c.oclIsKindOf(Generalization) or

c.oclIsKindOf(UseCase) or

c.oclIsKindOf(Constraint) or

c.oclIsKindOf(Dependency) or

c.oclIsKindOf(Collaboration) or

c.oclIsKindOf(DataType) or

c.oclIsKindOf(Interface)

Classifier

[1] No BehavioralFeature of the same kind may match the same signature in a
 Classifier.

self.feature->forAll(f, g |

(

(

(f.oclIsKindOf(Operation) and g.oclIsKindOf(Operation)) or

(f.oclIsKindOf(Method) and g.oclIsKindOf(Method)) or

(f.oclIsKindOf(Reception) and g.oclIsKindOf(Reception))

) and

f.oclAsType(BehavioralFeature).matchesSignature(g)

)

implies f = g)

[2] No Attributes may have the same name within a Classifier.

self.feature->select (a | a.oclIsKindOf (Attribute))->forAll (p, q |

p.name = q.name implies p = q)

[3] No opposite AssociationEnds may have the same name within a Classifier.

self.allOppositeAssociationEnds->forAll (p, q | p.name = q.name implies p = q)

[4] The name of an Attribute may not be the same as the name of an opposite
 AssociationEnd or a ModelElement contained in the Classifier.

self.feature->select (a | a.oclIsKindOf (Attribute))->forAll (a |

not self.allOppositeAssociationEnds->union (self.allContents)->collect
(q |

q.name)->includes (a.name))

[5] The name of an opposite AssociationEnd may not be the same as the name of an
 Attribute or a ModelElement contained in the Classifier.

self.oppositeAssociationEnds->forAll (o |

not self.allAttributes->union (self.allContents)->collect (q |

q.name)->includes (o.name))
2-60 OMG-UML , v1.5 Core September 2002

2 UML Semantics
[6] For each Operation in an specification realized by the Classifier, the Classifier must have a
 matching Operation.

self.specification.allOperations->forAll (interOp |

self.allOperations->exists(op | op.hasMatchingSignature (interOp)))

[7] All of the generalizations in the range of a powertype have the same discriminator.

self.powertypeRange->forAll
(g1, g2 | g1.discriminator = g2.discriminator)

[8] Discriminator names must be distinct from attribute names and opposite AssociationEnd
names.

self.allDiscriminators->intersection (self.allAttributes.name->union
(self.allOppositeAssociationEnds.name))->isEmpty

Additional operations

[1] The operation allFeatures results in a Set containing all Features of the Classifier
 itself and all its inherited Features.

allFeatures : Set(Feature);

allFeatures = self.feature->union(

self.parent.oclAsType(Classifier).allFeatures)

[2] The operation allOperations results in a Set containing all Operations of the
 Classifier itself and all its inherited Operations.

allOperations : Set(Operation);

allOperations = self.allFeatures->select(f | f.oclIsKindOf(Operation))

[3] The operation allMethods results in a Set containing all Methods of the Classifier
 itself and all its inherited Methods.

allMethods : set(Method);

allMethods = self.allFeatures->select(f | f.oclIsKindOf(Method))

[4] The operation allAttributes results in a Set containing all Attributes of the
 Classifier itself and all its inherited Attributes.

allAttributes : set(Attribute);

allAttributes = self.allFeatures->select(f | f.oclIsKindOf(Attribute))

[5] The operation associations results in a Set containing all Associations of the
 Classifier itself.

associations : set(Association);

associations = self.association.association->asSet

[6] The operation allAssociations results in a Set containing all Associations of the
 Classifier itself and all its inherited Associations.

allAssociations : set(Association);

allAssociations = self.associations->union (

self.parent.oclAsType(Classifier).allAssociations)
September 2002 OMG-UML , v1.5 Core 2-61

2 UML Semantics
[7] The operation oppositeAssociationEnds results in a set of all AssociationEnds
 that are opposite to the Classifier.

oppositeAssociationEnds : Set (AssociationEnd);

oppositeAssociationEnds =

self.associations->select (a | a.connection->select (ae |

ae.participant = self).size = 1)->collect (a |

a.connection->

select (ae | ae.participant <> self))->union (

self.associations->select (a | a.connection->select (ae |

ae.participant = self).size > 1)->collect (a |

a.connection))

[8] The operation allOppositeAssociationEnds results in a set of all AssociationEnds,
 including the inherited ones, that are opposite to the Classifier.

allOppositeAssociationEnds : Set (AssociationEnd);

allOppositeAssociationEnds = self.oppositeAssociationEnds->union (

self.parent.allOppositeAssociationEnds)

[9] The operation specification yields the set of Classifiers that the current Classifier realizes.

specification: Set(Classifier)

specification = self.clientDependency->
select(d |

d.oclIsKindOf(Abstraction)
and d.stereotype.name = "realization"
and d.supplier.oclIsKindOf(Classifier))

.supplier.oclAsType(Classifier)

[10] The operation allContents returns a Set containing all ModelElements contained
 in the Classifier together with the contents inherited from its
 parents.

allContents : Set(ModelElement);

allContents = self.contents->union(

self.parent.allContents->select(e |

e.elementOwnership.visibility = #public or

e.elementOwnership.visibility = #protected))

[11] The operation allDiscriminators results in a Set containing all Discriminators of the Gen-
eralizations from which the Classifier is descended
 itself and all its inherited Features.

allDiscriminators : Set(Name);

allDiscriminators = self.generalization.discriminator->union(

self.parent.oclAsType(Classifier).allDiscriminators)

Comment

No extra well-formedness rules.
2-62 OMG-UML , v1.5 Core September 2002

2 UML Semantics
Component

[1] A Component may only contain other Components in its namespace.

self.allContents-forAll(c | c.oclIsKindOf(Component))

[2] A Component does not have any Features.

self.feature->isEmpty

[3] A Component may only have as residents DataTypes, Interfaces, Classes, Associations,
Dependencies, Constraints, Signals, DataValues and Objects.

self.allResidentElements->forAll(re |

re.oclIsKindOf(DataType) or

re.oclIsKindOf(Interface) or

re.oclIsKindOf(Class) or

re.oclIsKindOf(Association) or

re.oclIsKindOf(Dependency) or

re.oclIsKindOf(Constraint) or

re.oclIsKindOf(Signal) or

re.oclIsKindOf(DataValue) or

re.oclIsKindOf(Object))

Additional operations

[1] The operation allResidentElements results in a Set containing all ModelElements resident
in a Component or one of its ancestors.

allResidentElements : set(ModelElement)

allResidentElements = self.resident->union(

self.parent.oclAsType(Component).allResidentElements->select(re |

re.elementResidence.visibility = #public or

re.elementResidence.visibility = #protected))

Constraint

[1] A Constraint cannot be applied to itself.

not self.constrainedElement->includes (self)

DataType

[1] A DataType can only contain Operations, which all must be queries.

self.allFeatures->forAll(f |

f.oclIsKindOf(Operation) and
f.oclAsType(Operation).isQuery)

[2] A DataType cannot contain any other ModelElements.

self.allContents->isEmpty
September 2002 OMG-UML , v1.5 Core 2-63

2 UML Semantics
Dependency

No extra well-formedness rules.

Element

No extra well-formedness rules.

ElementOwnership

No additional well-formedness rules.

ElementResidence

No additional well-formedness rules.

Enumeration

No additional well-formedness rules.

EnumerationLiteral

No additional well-formedness rules.

Feature

No extra well-formedness rules.

GeneralizableElement

[1] A root cannot have any Generalizations.

self.isRoot implies self.generalization->isEmpty

[2] No GeneralizableElement can have a parent Generalization to an element
 which is a leaf.

self.parent->forAll(s | not s.isLeaf)

[3] Circular inheritance is not allowed.

not self.allParents->includes(self)

[4] The parent must be included in the Namespace of the GeneralizableElement.

self.generalization->forAll(g |

self.namespace.allContents->includes(g.parent))

[5] A GeneralizableElement may only be a child of GeneralizableElement of the
 same kind.

self.generalization.parent->forAll(p | self.oclIsKindOf(p))
2-64 OMG-UML , v1.5 Core September 2002

2 UML Semantics
Additional Operations

[1] The operation parent returns a Set containing all direct parents.

parent : Set(GeneralizableElement);

parent = self.generalization.parent

[2] The operation allParents returns a Set containing all the Generalizable
 Elements inherited by this GeneralizableElement (the transitive closure),
 excluding the GeneralizableElement itself.

allParents : Set(GeneralizableElement);

allParents = self.parent->union(self.parent.allParents)

Generalization

No extra well-formedness rules.

ImplementationClass (stereotype of Class)

[1] All direct instances of an implementation class must not have any other Classifiers that are
implementation classes.

self.instance.forall(i | i.classifier.forall(c |

c.stereotype.name = "implementationClass" implies c = self))

[2] A parent of an implementation class must be an implementation class.

self.parent->forAll(stereotype.name="implementationClass")

Interface

[1] An Interface can only contain Operations.

self.allFeatures->forAll(f |

f.oclIsKindOf(Operation) or f.oclIsKindOf(Reception))

[2] An Interface cannot contain any ModelElements.

self.allContents->isEmpty

[3] All Features defined in an Interface are public.

self.allFeatures->forAll (f | f.visibility = #public)

Method

[1] If the realized Operation is a query, then so is the Method.

self.specification->isQuery implies self.isQuery

[2] The signature of the Method should be the same as the signature of the realized
 Operation.

self.hasSameSignature (self. specification)

[3] The visibility of the Method should be the same as for the realized Operation.
September 2002 OMG-UML , v1.5 Core 2-65

2 UML Semantics
self.visibility = self.specification.visibility

[4] The realized Operation must be a feature (possibly inherited) of the same Classifier as the
Method.

self.owner.allOperations->includes(self.specification)

[5] If the realized Operation has been overridden one or more times in the ancestors of the
owner of the Method, then the Method must realize the latest overriding (that is, all other
Operations with the same signature must be owned by ancestors of the owner of the real-
ized Operation).

self.specification.owner.allOperations->includesAll(
(self.owner.allOperations->select(op |

self.hasSameSignature(op)))

[6] There may be at most one method for a given classifier (as owner of the method) and oper-
ation (as specification of the method) pair.

self.owner.allMethods->select(operation = self.operation)->size = 1

ModelElement

That part of the model owned by a template is not subject to all well-formedness rules. A tem-
plate is not directly usable in a well-formed model. The results of binding a template are
subject to well-formedness rules.

(not expressed in OCL)

Additional operations

[1] The operation supplier results in a Set containing all direct suppliers of the
 ModelElement.

supplier : Set(ModelElement);

supplier = self.clientDependency.supplier

[2] The operation allSuppliers results in a Set containing all the ModelElements that
 are suppliers of this ModelElement, including the suppliers of these Model
 Elements. This is the transitive closure.

allSuppliers : Set(ModelElement);

allSuppliers = self.supplier->union(self.supplier.allSuppliers)

[3] The operation “model” results in the set of Models to which the ModelElement belongs.

model : Set(Model);

model = self.namespace->union(self.namespace.allSurroundingNamespaces)

->select(ns|

ns.oclIsKindOf (Model))

[4] A ModelElement is a template when it has parameters.

isTemplate : Boolean;

isTemplate = (self.templateParameter->notEmpty)

[5] A ModelElement is an instantiated template when it is related to a template by a
 Binding relationship.
2-66 OMG-UML , v1.5 Core September 2002

2 UML Semantics
isInstantiated : Boolean;

isInstantiated = self.clientDependency->select(
oclIsKindOf(Binding))->notEmpty

 [6] The templateArguments are the arguments of an instantiated template, which
 substitute for template parameters.

templateArguments : Set(ModelElement);

templateArguments = self.clientDependency->

select(oclIsKindOf(Binding)).oclAsType(Binding).argument

Namespace

[1] If a contained element, which is not an Association or Generalization has a name,
 then the name must be unique in the Namespace.

self.allContents->forAll(me1, me2 : ModelElement |

(not me1.oclIsKindOf (Association) and not me2.oclIsKindOf
(Association) and

me1.name <> ‘’ and me2.name <> ‘’ and me1.name = me2.name

) implies

me1 = me2)

[2] All Associations must have a unique combination of name and associated
 Classifiers in the Namespace.

self.allContents -> select(oclIsKindOf(Association))->
forAll(a1, a2 |

a1.name = a2.name and
a1.connection.participant = a2.connection.participant
implies a1 = a2)

Additional operations

[1] The operation contents results in a Set containing all ModelElements contained by the
Namespace.

contents : Set(ModelElement)

contents = self.ownedElement -> union(self.namespace, contents)

[2] The operation allContents results in a Set containing all ModelElements contained
 by the Namespace.

allContents : Set(ModelElement);

allContents = self.contents

[3] The operation allVisibleElements results in a Set containing all ModelElements
 visible outside of the Namespace.

allVisibleElements : Set(ModelElement)

allVisibleElements = self.allContents -> select(e |

e.elementOwnership.visibility = #public)

[4] The operation allSurroundingNamespaces results in a Set containing all
 surrounding Namespaces.
September 2002 OMG-UML , v1.5 Core 2-67

2 UML Semantics
allSurroundingNamespaces : Set(Namespace)

allSurroundingNamespaces =

self.namespace->union(self.namespace.allSurroundingNamespaces)

Node

No extra well-formedness rules.

Operation

No additional well-formedness rules.

Parameter

No additional well-formedness rules.

PresentationElement

No extra well-formedness rules.

Primitive

No additional well-formedness rules.

StructuralFeature

[1] The connected type should be included in the owner’s Namespace.

self.owner.namespace.allContents->includes(self.type)

[2] The type of a StructuralFeature must be a Class, DataType or Interface.

self.type.oclIsKindOf(Class) or
self.type.oclIsKindOf(DataType) or
self.type.oclIsKindOf(Interface)

Trace

A trace is an Abstraction with the «trace» stereotype. These are the additional constraints due to
the stereotype.

[1] The client ModelElements of a Trace must all be from the same Model.

self.client->forAll(e1, e2 | e1.model = e2.model)

[2] The supplier ModelElements of a Trace must all be from the same Model.

self.supplier->forAll(e1, e2 | e1.model = e2.model)

[3] The client and supplier ModelElements must be from two different Models.

self.client.model <> self.supplier.model
2-68 OMG-UML , v1.5 Core September 2002

2 UML Semantics
[4] The client and supplier ModelElements must all be from models of the same system.

self.client.model.intersection(self.supplier.model) <> Set{}

Type (stereotype of Class)

[1] A Type may not have any Methods.

not self.feature->exists(oclIsKindOf(Method))

[2] The parent of a type must be a type.

self.parent->forAll(stereotype.name = "type")

Usage

No extra well-formedness rules.

2.5.4 Detailed Semantics

This section provides a description of the dynamic semantics of the elements in the Core. It is
structured based on the major constructs in the core, such as interface, class, and association.

Association

An association declares a connection (link) between instances of the associated classifiers (e.g.,
classes). It consists of at least two association ends, each specifying a connected classifier and
a set of properties which must be fulfilled for the relationship to be valid. The multiplicity
property of an association end specifies how many instances of the classifier at a given end (the
one bearing the multiplicity value) may be associated with a single instance at each of the other
ends, with single qualifier values at all qualified ends. A multiplicity is a range of nonnegative
integers. When multiplicity is enforced is a semantic variation point. For example,
implementations might allow violations of minimum multiplicity during object initialization.

The association end also states whether or not a link may be traversed towards the object on
that end from the objects on the other ends of the link (isNavigable). Navigability does not
apply to getting an end object from a link object, that is, a link of an association class, because
once a link object is obtained, the navigation has already taken place.

The visibility of an association end specifies whether procedures and actions owned by other
classifiers can navigate links of the association. Navigation is constrained by the visibility of
the end being read. The options are relative to the classifiers at the other ends of the association.
The association end may limit navigation of links to procedures and actions owned by all
classifiers (public), classifiers at the other ends and their children (protected), classifiers at the
other ends and not their children (private), or classifiers in the same package, or a nested
subpackage, to any level (package). Visibility does not apply to getting an end object from a
link object, that is, a link of an association class, because once a link object is visible to a
procedure or action, all its ends are visible.

An association end also specifies whether or not links may be created or destroyed after the
initialization of objects at the opposte ends. The association end may state
September 2002 OMG-UML , v1.5 Core 2-69

2 UML Semantics
• that no constraints exist (changeable),

• that a link may not be destroyed after the objects at the opposite ends have been initialized,
and that new links may not be created after the objects that would participate in the new link
at the opposite ends have been initialized (frozen), or,

• that a link may not be destroyed after the objects at the opposite ends have been initialized
(addOnly).

Note that the semantics of frozen requires that objects participating in links with two or more
frozen ends cannot have links created unless all the linked objects are being initialized.
Changeability constraints affect when links may be created or destroyed, not whether links
themselves are mutable. Links are not mutable once they are created, except that they can be
destroyed and reordered. Qualifier values, end objects, and link classifier, if any, of a link cannot
be changed once a link is created. Changeability constraints also do not affect the modifiability
of the objects that are attached to the links, or the classifiers participating in the association.

The ordering attribute of association end states that if the instances related to a single instance
at each of the other ends, with single qualifier values at all qualified ends, have an ordering that
must be preserved, the order of insertion of new links must be specified by operations that add
or modify links. Note that sorting is a performance optimization and is not an example of a
logically ordered association, because the ordering information in a sort does not add any
information.

In UML, Associations can be of three different kinds: 1) ordinary association, 2) composite
aggregate, and 3) shareable aggregate. Since the aggregate construct can have several different
meanings depending on the application area, UML gives a more precise meaning to two of
these constructs (i.e., association and composite aggregate) and leaves the shareable aggregate
more loosely defined in between.

An association may represent an aggregation (i.e., a whole/part relationship). In this case, the
association-end attached to the whole element is designated, and the other association-end of
the association represents the parts of the aggregation. Only binary associations may be
aggregations. Composite aggregation is a strong form of aggregation which requires that a part
instance be included in at most one composite at a time and that the composite object has sole
responsibility for the disposition of its parts. This means that the composite object is
responsible for the creation and destruction of the parts. In implementation terms, it is
responsible for their memory allocation. If a composite object is destroyed, it must destroy all
of its parts. It may remove a part and give it to another composite object, which then assumes
responsibility for it. If the multiplicity from a part to composite is zero-to-one, the composite
may remove the part and the part may assume responsibility for itself, otherwise it may not live
apart from a composite.

A consequence of these rules is that a composite implies propagation semantics (i.e., some of
the dynamic semantics of the whole is propagated to its parts). For example, if the whole is
copied or destroyed, then so are the parts as well (because a part may belong to at most one
composite).
2-70 OMG-UML , v1.5 Core September 2002

2 UML Semantics
A classifier on the composite end of an association may have parts that are classifiers and
associations. At the instance level, an instance of a part element is considered “part of” the
instance of a composite element. If an association is part of a composite and it connects two
classes that are also part of the same composite, then a link of the association will connect
objects that are part of the same composite object of which the link is part.

A shareable aggregation denotes weak ownership (i.e., the part may be included in several
aggregates) and its owner may also change over time. However, the semantics of a shareable
aggregation does not imply deletion of the parts when an aggregate referencing it is deleted.
Both kinds of aggregations define a transitive, antisymmetric relationship (i.e., the instances
form a directed, non-cyclic graph). Composition instances form a strict tree (or rather a forest).

A qualifier declares a partition of the set of associated instances with respect to an instance at
the qualified end (the qualified instance is at the end to which the qualifier is attached). A
qualifier instance comprises one value for each qualifier attribute. Given a qualified object and
a qualifier instance, the number of objects at the other end of the association is constrained by
the declared multiplicity. In the common case in which the multiplicity is 0..1, the qualifier
value is unique with respect to the qualified object, and designates at most one associated
object. In the general case of multiplicity 0..*, the set of associated instances is partitioned into
subsets, each selected by a given qualifier instance. In the case of multiplicity 1 or 0..1, the
qualifier has both semantic and implementation consequences. In the case of multiplicity 0..*, it
has no real semantic consequences but suggests an implementation that facilitates easy access
of sets of associated instances linked by a given qualifier value.

Note that the multiplicity of a qualifier is given assuming that the qualifier value is supplied.
The “raw” multiplicity without the qualifier is assumed to be 0..*. This is not fully general but
it is almost always adequate, as a situation in which the raw multiplicity is 1 would best be
modeled without a qualifier.

Note also that a qualified multiplicity whose lower bound is zero indicates that a given qualifier
value may be absent, while a lower bound of 1 indicates that any possible qualifier value must
be present. The latter is reasonable only for qualifiers with a finite number of values (such as
enumerated values or integer ranges) that represent full tables indexed by some finite range of
values.

AssociationClass

An association may be refined to have its own set of features (i.e., features that do not belong
to any of the connected classifiers) but rather to the association itself. Such an association is
called an association class. It will be both an association, connecting a set of classifiers, and a
class, and as such have features and be included in other associations. The semantics of such an
association is a combination of the semantics of an ordinary association and of a class.

The AssociationClass construct can be expressed in a few different ways in the metamodel
(e.g., as a subclass of Class, as a subclass of Association, or as a subclass of Classifier). Since
an AssociationClass is a construct being both an association (having a set of association-ends)
and a class (declaring a set of features), the most accurate way of expressing it is as a subclass
of both Association and Class. In this way, AssociationClass will have all the properties of the
September 2002 OMG-UML , v1.5 Core 2-71

2 UML Semantics
other two constructs. Moreover, if new kinds of associations containing features (e.g.,
AssociationDataType) are to be included in UML, these are easily added as subclasses of
Association and the other Classifier.

The terms child, subtype, and subclass are synonyms and mean that an instance of a classifier
being a subtype of another classifier can always be used where an instance of the latter
classifier is expected. The neutral terms parent and child, with the transitive closures ancestor
and descendant, are the preferred terms in this document.

Class

The purpose of a class is to declare a collection of methods, operations, and attributes that fully
describe the structure and behavior of objects. All objects instantiated from a class will have
attribute values matching the attributes of the full class descriptor and support the operations
found in the full class descriptor. Some classes may not be directly instantiated. These classes
are said to be abstract and exist only for other classes to inherit and reuse the features declared
by them. No object may be a direct instance of an abstract class, although an object may be an
indirect instance of one through a subclass that is non-abstract.

When a class is instantiated to create a new object, a new instance is created, which is
initialized containing an attribute value for each attribute found in the full class descriptor. The
object is also initialized with a connection to the list of methods in the full class descriptor.

Note – An actual implementation behaves as if there were a full class descriptor, but
many clever optimizations are possible in practice.

Finally, the identity of the new object is returned to the creator. The identity of every instance
in a well-formed system is unique and automatic.

A class can have generalizations to other classes. This means that the full class descriptor of a
class is derived by inheritance from its own segment declaration and those of its ancestors.
Generalization between classes implies substitutability (i.e., an instance of a class may be used
whenever an instance of a superclass is expected). If the class is specified as a root, it cannot be
a subclass of other classes. Similarly, if it is specified as a leaf, no other class can be a subclass
of the class.

Each attribute declared in a class has a visibility and a type. Visibility limits availability of the
attribute to procedures and actions of any class (public), inside the class and its subclasses
(protected), any classes within the containing package (package), or only inside the class
(private). The targetScope of the attribute declares whether its value should be an instance (of a
child) of that type or if it should be (a child of) the type itself. There are two alternatives for the
ownerScope of an attribute:

• it may state that each object created by the class (or by its subclasses) has its own value of
the attribute, or

• that the value is owned by the class itself.
2-72 OMG-UML , v1.5 Core September 2002

2 UML Semantics
An attribute also declares how many attribute values should be connected to each owner
(multiplicity). When multiplicity is enforced is a semantic variation point. For example,
implementations might allow violations of minimum multiplicity during object initialization.
An attribute also declares what the initial values should be, and if these attribute values may be
changed:

• none - no constraints exists,

• frozen - values cannot be added or removed after the object has been initialized, or

• addOnly - new values may be added anytime. Values cannot be removed after the object has
been initialized.

For each operation, the operation name, the types of the parameters, and the return type(s) are
specified, as well as its visibility (see above). An operation may also include a specification of
the effects of its invocation. The specification can be done in several different ways (e.g., with
pre- and post-conditions, pseudo-code, or just plain text). Each operation declares if it is
applicable to the instances, the class, or to the class itself (ownerScope). Furthermore, the
operation states whether or not its application will modify the state of the object (isQuery). The
operation also states whether or not the operation may be realized by a different method in a
subclass (isPolymorphic). A method realizing an operation has the same signature as the
operation and a procedure implementing the specification of the operation. Methods in
descendents override and replace methods inherited from ancestors (see “Inheritance” on
page 2-74). Each method implements an operation declared in the class or inherited from an
ancestor. The same operation may be declared more than once in a full class descriptor, but
their descriptions must all match, except that the generalization properties (isRoot, IsAbstract,
isLeaf) may vary, and a child operation may strengthen query properties (the child may be a
query even though the parent is not). The specification of the method must match the
specification of its matching operation, as defined above for operations. Furthermore, if the
isQuery attribute of an operation is true, then it must also be true in any realizing method.
However, if it is false in the operation, it may still be true in the method if the method does not
actually modify the state to carry out the behavior required by the operation (this can only be
true if the operation does not inherently modify state). The visibility of a method must match its
operation.

Classes may have associations to each other. This implies that objects created by the associated
classes are semantically connected (i.e., that links exist between the objects, according to the
requirements of the associations). See Association on the next page. Associations are inherited
by subclasses.

A class may realize a set of interfaces. This means that each operation found in the full
descriptor for any realized interface must be present in the full class descriptor with the same
specification (see Semantics section Inheritance on page 2-74). The relationship between
interface and class is not necessarily one-to-one; a class may offer several interfaces and one
interface may be offered by more than one class. The same operation may be defined in
multiple interfaces that a class supports; if their specifications are identical then there is no
conflict; otherwise, the model is ill-formed. Moreover, a class may contain additional
operations besides those found in its interfaces.

A class acts as the namespace for various kinds of contained elements defined within its scope,
including classes, interfaces and associations (note that this is purely a scoping construction and
does not imply anything about aggregation), the contained classifiers can be used as ordinary
September 2002 OMG-UML , v1.5 Core 2-73

2 UML Semantics
classifiers in the container class. If a class inherits another class, the contents of the ancestor are
available to its descendents if the visibility of an element is public or protected; however, if the
visibility is private, then the element is not visible and therefore not available in the descendant.

Inheritance

To understand inheritance it is first necessary to understand the concept of a full descriptor and
a segment descriptor. A full descriptor is the full description needed to describe an object or
other instance (see “Instantiation” on page 2-74). It contains a description of all of the
attributes, associations, and operations that the object contains. In a pre-object-oriented
language, the full descriptor of a data structure was declared directly in its entirety. In an
object-oriented language, the description of an object is built out of incremental segments that
are combined using inheritance to produce a full descriptor for an object. The segments are the
modeling elements that are actually declared in a model. They include elements such as class
and other generalizable elements. Each generalizable element contains a list of features and
other relationships that it adds to what it inherits from its ancestors. The mechanism of
inheritance defines how full descriptors are produced from a set of segments connected by
generalization. The full descriptors are implicit, but they define the structure of actual instances.

Each kind of generalizable element has a set of inheritable features. For any model element,
these include constraints. For classifiers, these include features (attributes, operations, signal
receptions, and methods) and participation in associations. The ancestors of a generalizable
element are its parents (if any) together with all of their ancestors (with duplicates removed).
For a Namespace (such as a Package or a Class with nested declarations), the public or
protected contents of the Namespace are available to descendants of the Namespace.

If a generalizable element has no parent, then its full descriptor is the same as its segment
descriptor. If a generalizable element has one or more parents, then its full descriptor contains
the union of the features from its own segment descriptor and the segment descriptors of all of
its ancestors. For a classifier, no attribute, operation, or signal with the same signature may be
declared in more than one of the segments (in other words, they may not be redefined). A
method may be declared in more than one segment. The way methods override each other is a
semantic variation point. The constraints on the full descriptor are the union of the constraints
on the segment itself and all of its ancestors. If any of them are inconsistent, then the model is
ill-formed.

In any full descriptor for a classifier, each method must have a corresponding operation. In a
concrete classifier, each operation in its full descriptor must have a corresponding method in the
full descriptor.

The purpose of the full descriptor is explained under “Instantiation” on page 2-74.

Instantiation

The purpose of a model is to describe the possible states of a system and their behavior. The
state of a system comprises objects, values, and links. Each object is described by a full class
descriptor. The class corresponding to this descriptor is the direct class of the object. If an
object is not completely described by a single class (multiple classification), then any class in
the minimal set of unrelated (by generalization) classes whose union completely describes the
object is a direct class of the object. Similarly each link has a direct association and each value
2-74 OMG-UML , v1.5 Core September 2002

2 UML Semantics
has a direct data type. Each of these instances is said to be a direct instance of the classifier
from which its full descriptor was derived. An instance is an indirect instance of the classifier
or any of its ancestors.

The data content of an object comprises one value for each attribute in its full class descriptor
(and nothing more). The value must be consistent with the type of the attribute. The data
content of a link comprises a tuple containing a list of instances, one that is an indirect instance
of each participant classifier in the full association descriptor. The instances and links must
obey any constraints on the full descriptors of which they are instances (including both explicit
constraints and built-in constraints such as multiplicity).

The state of a system is a valid system instance if every instance in it is a direct instance of
some element in the system model and if all of the constraints imposed by the model are
satisfied by the instances.

The behavioral parts of UML describe the valid sequences of valid system instances that may
occur as a result of both external and internal behavioral effects.

Interface

The purpose of an interface is to collect a set of operations that constitute a coherent service
offered by classifiers. Interfaces provide a way to partition and characterize groups of
operations. An interface is only a collection of operations with a name. It cannot be directly
instantiated. Instantiable classifiers, such as class or use case, may use interfaces for specifying
different services offered by their instances. Several classifiers may realize the same interface.
All of them must contain at least the operations matching those contained in the interface. The
specification of an operation contains the signature of the operation (i.e., its name, the types of
the parameters and the return type). An interface does not imply any internal structure of the
realizing classifier. For example, it does not define which algorithm to use for realizing an
operation. An operation may, however, include a specification of the effects of its invocation.
The specification can be done in several different ways (e.g., with pre and post-conditions,
pseudo-code, or just plain text).

Each operation declares if it applies to the instances of the classifier declaring it or to the
classifier itself (e.g., a constructor on a class (ownerScope)). Furthermore, the operation states
whether or not its application will modify the state of the instance (isQuery). The operation also
states whether or not all the classes must have the same realization of the operation
(isPolymorphic).

An interface can be a child of other interfaces denoted by generalizations. This means that a
classifier offering the interface must provide not only the operations declared in the interface
but also those declared in the ancestors of the interface. If the interface is specified as a root, it
cannot be a child of other interfaces. Similarly, if it is specified as a leaf, no other interface can
be a child of the interface.
September 2002 OMG-UML , v1.5 Core 2-75

2 UML Semantics
Operation

Operation is a conceptual construct, while Method is the implementation construct. Their
common features, such as having a signature, are expressed in the BehavioralFeature metaclass,
and the specific semantics of the Operation. The Method constructs are defined in the
corresponding subclasses of BehavioralFeature.

PresentationElement

The responsibility of presentation element is to provide a textual and graphical projection of a
collection of model elements. In this context, projection means that the presentation element
represents a human readable notation for the corresponding model elements. The notation for
UML can be found in Chapter 3 of this document.

Presentation elements and model elements must be kept in agreement, but the mechanisms for
doing this are design issues for model editing tools.

Template

A template is a parameterized model element that cannot be used directly in a model. Instead, it
may be used to generate other model elements using the Binding relationship; those generated
model elements can be used in normal relationships with other elements.

A template represents the parameterization of a model element, such as a class or an operation,
although conceptually any model element may be used (but not all may be useful). The
template element is attached by composite aggregation to an ordered list of parameter elements.
Each parameter element has a name that represents an parameter name within the template
element. Any use of the name within the scope of the template element represents an unbound
parameter that is to be replaced by an actual value in a Binding of the template. For example, a
parameter may represent the type of an attribute of a class (for a class template). The
corresponding attribute would have an association to the template parameter as its type.

Note that the scope of the template includes all of the elements recursively owned by it through
composite aggregation. For example, a parameterized class template owns its attributes,
operations, and so on. Neither the parameterized elements nor its contents may be used directly
in a model without binding.

A template element has the templateParameter association to a list of ModelElements that serve
as its parameters. To avoid introducing metamodel (M2) elements in an ordinary (M1) model,
the model contains a representative of each parameter element, rather than the type of the
parameter element. For example, a frequent kind of parameter is a class. Instead of including
the metaclass Class in the (M1) ordinary model, a dummy class must be declared whose name
is the name of the parameter. This dummy element is meaningful only within the template (it
may not be used within the wider model) and it has no features (such as attributes and
operations), because the features are part of an actual element that is supplied when the
template is bound. Because a template parameter is only a dummy that lacks internal structure,
it may violate well-formedness constraints of elements of its kind; the actual elements supplied
during binding must satisfy ordinary well-formedness constraints.
2-76 OMG-UML , v1.5 Core September 2002

2 UML Semantics
Note also that when the template is bound, the bound element does not show the explicit
structure of a element of its kind; it is a stub. Its semantics and well-formedness rules must be
evaluated as if the actual substitutions of actual elements for parameters had been made; but the
expansions are not explicitly shown in a canonical model as they are regarded as derived.

A template element is therefore effectively isolated from the directly-usable part of the model
and is indirectly connected to its ultimate instances through Binding associations to bound
elements. The bound elements may be used in ordinary models in places where the model
element underlying the template could be used.

Miscellaneous

A constraint is a Boolean expression over one or several elements which must always be true. A
constraint can be specified in several different ways (e.g., using natural language or a constraint
language).

A dependency specifies that the semantics of a set of model elements requires the presence of
another set of model elements. This implies that if the source is somehow modified, the
dependents probably must be modified. The reason for the dependency can be specified in
several different ways (e.g., using natural language or an algorithm) but is often implicit.

A Usage or Binding dependency can be established only between elements in the same model,
since the semantics of a model cannot be dependent on the semantics of another model. If a
connection is to be established between elements in different models, a Trace or Refinement
should be used. Refinement can connect elements in different or same models.

Whenever the supplier element of a dependency changes, the client element is potentially
invalidated. After such invalidation, a check should be performed followed by possible changes
to the derived client element. Such a check should be performed after which action can be taken
to change the derived element to validate it again. The semantics of this validation and change
is outside the scope of UML.

A data type is a special kind of classifier, similar to a class, but whose instances are primitive
values (not objects). For example, the integers and strings are usually treated as primitive
values. A primitive value does not have an identity, so two occurrences of the same value
cannot be differentiated. Usually, it is used for specification of the type of an attribute. An
enumeration type is a user-definable type comprising a finite number of values.

2.6 Extension Mechanisms

2.6.1 Overview

The Extension Mechanisms package is the subpackage that specifies how specific
UML model elements are customized and extended with new semantics by using
stereotypes, constraints, tag definitions, and tagged values. A coherent set of such
extensions, defined for specific purposes, constitutes a UML profile (see Section 2.15,
“Model Management,” on page 2-184).
September 2002 OMG-UML , v1.5 Extension Mechanisms 2-77

2 UML Semantics
The UML provides a rich set of modeling concepts and notations that have been
carefully designed to meet the needs of typical software modeling projects. However,
users may sometimes require additional features beyond those defined in the UML
standard. These needs are met in UML by its built-in extension mechanisms that
enable new kinds of modeling elements to be added to the modeler’s repertoire as well
as to attach free-form information to modeling elements. The principal extension
mechanism is the concept of Stereotype. It provides a way of defining virtual
subclasses of UML metaclasses with new metaattributes and additional semantics.

A fundamental constraint on all extensions defined using the profile extension
mechanism is that extensions must be strictly additive to the standard UML semantics.
This means that such extensions must not conflict with or contradict the standard
semantics. In effect, these extension mechanisms are a means for refining the standard
semantics of UML and do not support arbitrary semantic extension. They allow the
modeler to add new modeling elements to UML for use in creating UML models for
process-specific or implementation language-specific domains (for example,
supporting code generation for a certain language and infrastructure). It should be
noted that stereotypes and tags are used in the definition of UML itself. They are used
to define standard model elements that are not considered complex enough to be
defined directly as UML metaclasses.

Stereotypes are themselves metaclasses in UML. Consequently, the user of a UML tool
can define stereotypes; for example, a new stereotype «persistent» could be defined
that can be attached to classes. Many users will not define new stereotypes, but will
only apply them during modeling; for example, the stereotype “«persistent»” can be
attached to the class “Invoice” by the modeler. A tool could use this as an indicator that
a database table definition needs to be generated.

A profile is a stereotyped package that contains model elements that have been
customized for a specific domain or purpose by extending the metamodel using
stereotypes, tagged definitions, and constraints. A profile may specify model libraries
on which it depends and the metamodel subset that it extends.

A stereotype is a model element that defines additional values (based on tag
definitions), additional constraints, and optionally a new graphical representation. All
model elements that are branded by one or more particular stereotypes receive these
values and constraints in addition to the attributes, associations, and superclasses that
the element has in the standard UML. Stereotypes augment the classification
mechanism based on the built in UML metamodel class hierarchy; therefore, names of
new stereotypes must not clash with the names of predefined UML metamodel
elements or standard elements.

Tag definitions specify new kinds of properties that may be attached to model
elements. The actual properties of individual model elements are specified using
Tagged Values. These may either be simple datatype values or references to other
model elements. Tag definitions can be compared to metaattribute definitions while
tagged values correspond to values attached to model elements. They may be used to
represent properties such as management information (author, due date, status), code
generation information (optimizationLevel, containerClass).
2-78 OMG-UML , v1.5 Extension Mechanisms September 2002

2 UML Semantics
Constraints can also be attached to any model element to refine its semantics.
Constraints attached to a stereotype must be observed by all model elements branded
by that stereotype. If the rules are specified formally in a profile (for example, by using
OCL for the expression of constraints), then a modeling tool may be able to interpret
the rules and aid the modeler in enforcing them when applying the profile.

Although it is outside the scope and intent of the UML specification, it is also possible
to extend the UML metamodel by explicitly adding new metaclasses and other meta
constructs. This capability depends on the use of tools and repositories that support the
OMG Meta Object Facility (MOF). Profiles are sometimes referred to as the
‘lightweight’ built-in extension mechanisms of UML, in contrast with the
‘heavyweight’ extensibility mechanism as defined by the MOF specification. This is
because there are restrictions on how UML profiles can extend the UML metamodel.
These restrictions are intended to ensure that any extensions defined by a UML profile
are purely additive. Such restrictions do not apply in the MOF context where, in
principle, any metamodel can be defined. (Consequently, every profile definition could
also be expressed as an MOF metamodel, but not all MOF metamodels based on UML
can be expressed as proper UML profiles.)

From a pragmatic viewpoint, when modeling tools are used to specify lightweight
extensions, they should fully support UML extension mechanisms (including a default
graphical notation for extended elements) and the XMI that they produce must be
compatible with the predefined XMI for UML DTDs. (Note that this is expected to be
less readable than a dedicated XMI format based on an MOF metamodel.)

When defining profiles modelers should be careful to base their extensions on the most
semantically similar constructs in the UML metamodel. Failure to observe this can
easily result in semantically incorrect or semantically redundant language extensions.
When capturing the extended semantics of a domain in the definition of a profile (with
the purpose of enabling tool support for the domain), modelers should also be careful
not to focus exclusively on defining stereotypes. In most cases a combination of
stereotypes and predefined standard model elements will be most effective. Examples
of standard or common model elements in a profile definition are standard classes that
the user is intended to reuse or subclass, or a set of standard Templates that the user
may apply.

Several profile-related standard stereotypes and tags are defined in the Model
Management package and chapter, including «profile», «modelLibrary»,
«appliedProfile», and {applicableSubset}.

The following sections describe the abstract syntax, well-formedness rules, and
semantics of the Extension Mechanisms package.

2.6.2 Abstract Syntax

The abstract syntax for the Extension Mechanisms package is expressed in graphic
notation in Figure 2-10.
September 2002 OMG-UML , v1.5 Extension Mechanisms 2-79

2 UML Semantics
Figure 2-10 Extension Mechanisms

2.6.2.1 Constraint (as extended)

The constraint concept allows new semantics to be specified linguistically for a model
element. The specification is written as an expression in a designated constraint
language. The language can be specially designed for writing constraints (such as
OCL), a programming language, mathematical notation, or natural language. If
constraints are to be enforced by a model editor tool, then the tool must understand the
syntax and semantics of the constraint language. Because the choice of language is
arbitrary, constraints are an extension mechanism.

In the metamodel a constraint directly attached to a model element describes semantic
restrictions that this model element must obey. Constraints attached to a Stereotype
apply to each model element that bears that stereotype. Note that, for the case of
constraints attached to stereotype definitions, the scope of the constraint is the UML
metamodel and not the model in which it is defined. This allows the definition of well-
formedness rules for stereotypes in the same manner as the well-formedness rules of
other metamodel elements.

GeneralizableElement
(from Core)

{xor}

Stereotype

icon: Geometry
baseClass : Name

Constraint
(from Core)

0..1

*

+constrainedStereotype

0..1

+stereotypeConstraint
*

TagDefinition
tagType: Name
multiplicity: Multiplicity

*0..1

+definedTag

*

+owner

0..1

ModelElement
(from Core)

*

*

+stereotype

*

+extendedElement

*

*

*

+constrainedElement

*{ordered}

+constraint

* TaggedValue
dataValue :String

1

*

+type1

+typedValue*

1

*

1

+taggedValue*

*

*

+referenceValue

*

+referenceTag*

[*]

[*]
2-80 OMG-UML , v1.5 Extension Mechanisms September 2002

2 UML Semantics
Attributes

Associations

Any one Constraint must have one or more constrainedElement links, or one
constrainedStereotype link, but not both.

2.6.2.2 ModelElement (as extended)

Any model element may have arbitrary tagged values and constraints (subject to these
making sense). A model element may also have one or more stereotypes. In the latter
case, the base class of the stereotype must match the metaclass of that model element
(such as Class, Association, Dependency) or one of its subclasses. The presence of a
stereotype may impose implicit constraints on the modeling element and may require
the presence of specific tagged values.

Associations

body A boolean expression defining the constraint. Expressions are written
as strings in a designated language. For the model to be well formed,
the expression must always yield a true value when evaluated for
instances of the constrained elements at any time when the system is
stable; that is, not during the execution of an atomic operation.

When a constraint is attached to a stereotype, the lexical scope of that
constraint is the UML metamodel rather than the M1 model in which
the constraint is defined. This means that there is no need to explicitly
import the UML metamodel.

constrainedElement An ordered list of elements subject to the constraint

constrainedStereotype A stereotype to which the constraint applies. This constraint
will automatically apply to all model elements branded by that
stereotype.

constraint A constraint that must be satisfied by the model element. A model
element may have a set of constraints. The constraint is to be evaluated
when the system is stable; that is, not in the middle of an atomic
operation.

stereotype Designates the stereotypes that further qualify the UML metaclass
(the base class or one of its subclasses) of the modeling element. The
stereotype does not conflict with or contradict the standard semantics
of the metaclass to which it applies, but may specify additional
constraints and tag definitions. All constraints and tag definitions on a
stereotype apply to the model elements that are branded by the
stereotype. The stereotype acts as a virtual metaclass describing the
model element.
September 2002 OMG-UML , v1.5 Extension Mechanisms 2-81

2 UML Semantics
2.6.2.3 Stereotype

The stereotype concept provides a way of branding (classifying) model elements so
that they behave in some respects as if they were instances of new virtual metamodel
constructs. These model elements have the same structure (attributes, associations,
operations) as similar non-stereotyped model elements of the same kind. The
stereotype may specify additional constraints and tag definitions that apply to model
elements. In addition, a stereotype may be used to indicate a difference in meaning or
usage between two model elements with identical structure.

In the metamodel the Stereotype metaclass is a subclass of GeneralizableElement. Tag
definitions and constraints attached to a stereotype apply to all model elements branded
by that stereotype. A stereotype may also specify a geometrical icon to be used for
presenting elements with the stereotype.

If a stereotype is a subclass of another stereotype, then it inherits all of the constraints
and tagged values from its stereotype supertype and it must apply to the same kind of
base class. A stereotype keeps track of the base class to which it may be applied.
Stereotypes are typically grouped in a Profile package.

Attributes

Associations

taggedValue An arbitrary property attached to the model element based on an
associated tag definition. The interpretation of the tagged value is
outside the scope of the UML metamodel.

baseClass Specifies the names of one or more UML modeling elements to which
the stereotype applies, such as Class, Association, Refinement,
Constraint. This is the name of a metaclass; that is, a class from the
UML metamodel itself rather than a user model class.

icon The geometrical description for an icon to be used to present an
image of a model element branded by the stereotype.

extendedElement Designates the model elements affected by the stereotype. Each
one must be a model element of the kind specified by the
baseClass attribute.

definedTag Specifies a set of tag definitions, each of which specifies tagged
values that a model element branded by the stereotype can have.

stereotypeConstraint Designates constraints that apply to all model elements branded
by this stereotype. These constraints are defined in the scope of
the full UML metamodel.
2-82 OMG-UML , v1.5 Extension Mechanisms September 2002

2 UML Semantics
2.6.2.4 TagDefinition

A tag definition specifies the tagged values that can be attached to a kind of model
element. Among other things, tag definitions can be used to define the virtual meta
attributes of the stereotype to which they are attached. Some of these meta attributes
may be references to other metamodel elements and, in effect, can be used to specify
new one-way meta references. However, this latter feature should be used with
discretion since it can easily be misused to define new semantics that are more than
just refinement of the original UML metamodel.

Tag definitions should be defined in conjunction with a stereotype since that allows
them to be used in a more disciplined manner (stereotypes are constrained by the
semantics of their base class). However, primarily for reasons of compatibility with
models defined on the basis of UML 1.3, it is still possible to have tag definitions that
are not associated with any stereotype.

Attributes

Associations

2.6.2.5 TaggedValue

A tagged value allows information to be attached to any model element in
conformance with its tag definition. Although a tagged value, being an instance of a
kind of ModelElement, automatically inherits the name attribute, the name that is
actually used in the tagged value is the name of the associated tag definition. The
interpretation of tagged values is intentionally beyond the scope of UML semantics. It
must be determined by user or tool conventions that may be specified in a profile in
which the tagged value is defined. It is expected that various model analysis tools will
define tag definitions to supply information needed for their operations beyond the
basis semantics of UML. Such information could include code generation options,
model management information, or user-specified semantics.

Any tagged value must have one or more reference value links or one or more data
values, but not both.

multiplicity Specifies the number of data values that tagged values based on this
tag must have, or, the number of model elements that can be
associated to the related tagged values.

tagType In the general case, where the tag type is a data type, this specifies the
range of values of the tagged values associated with the tag definition.

In the special case, where the tag type refers to a metaclass that is not
a datatype, the tag value references model elements that are instances
of the metaclass.

typedValue The tagged values that conform to this tag definition.

owner The stereotype to which this tag definition belongs.
September 2002 OMG-UML , v1.5 Extension Mechanisms 2-83

2 UML Semantics
Attributes

Associations

2.6.3 Well-Formedness Rules

The following well-formedness rules apply to the Extension Mechanisms package.

2.6.3.1 Constraint

[1] A Constraint attached to a stereotype must not conflict with constraints on any inherited
stereotype, or associated with the base class.

-- cannot be specified with OCL, level M2 not accessible

[2] A constraint attached to a stereotyped model element (either directly or through another
stereotype) must not conflict with any constraints on the associated stereotype, nor with
the class (the base class) of the model element.

-- cannot be specified with OCL, level M2 not accessible

[3] A constraint attached to a stereotype will apply to all model elements branded by that
stereotype and must not conflict with any constraints on the attached branding stereotype,
nor with the class (the base class) of the model element.

-- cannot be specified with OCL, level M2 not accessible

2.6.3.2 ModelElement

[1] Tags associated with a model element (directly via a property list or indirectly via a
stereotype) must not clash with any meta attributes associated with the model element.

-- cannot be specified with OCL, level M2 not accessible

[2] A model element must have at most one tagged value with a given tag name.

self.taggedValue->forAll(t1, t2 : TaggedValue |

t1.type.name = t2.type.name implies t1 = t2)

dataValue Specifies the set of values that are part of the tagged value. The type
of this value must conform to the type specified in the tagType
attribute of the associated tag definition. The number of values that
can be specified is defined by the multiplicity attribute of the
associated tag definition.

type Specifies the tag definition which defines the name, meaning, and
type of the tagged value.

referenceValue Specifies the model elements that this tagged value references. These
elements are model-level instances of the metaclass or stereotype
specified by the tagType attribute of the corresponding tag definition.
The number of references is defined by the multiplicity attribute of the
associated tag definition.
2-84 OMG-UML , v1.5 Extension Mechanisms September 2002

2 UML Semantics
[3] A stereotype cannot extend itself.

self.stereotype->excludes(self)

2.6.3.3 Stereotype

[1] Stereotype names must not clash with any base class names.

Stereotype.allInstances->forAll(st | st.baseClass <> self.name)

[2] The base class name must be provided.

Set {self.baseClass}->notEmpty

[3] Tag names attached to a stereotype must not clash with M2 meta-attribute
namespace of the appropriate base class element, nor with tag definition names of any
inherited stereotype.

-- cannot be specified with OCL, level M2 not accessible

[4] The base class of a stereotype must be the same or a subclass of the base class of parent
stereotypes.

-- cannot be specified with OCL, level M2 not accessible

[5] All stereotype definitions must be contained either directly or transitively in a profile
package.

findProfile(self)->notEmpty

Additional Operations

[1] The find profile operation returns either the single-element set containing profile package
in which the model element is defined or an empty set if the element is not contained in
any profile.

findProfile (me : ModelElement) : Set (Package)

if (me.namespace->notEmpty) then

if (me.namespace.oclIsKindOf(Package) and

me.namespace.stereotype->notEmpty) and

me.namespace.stereotype->exists(s|s.name = profile) then

result = me.namespace

else -- go up to the next level of namespace

result = findProfile (me.namespace)

else

result = me.namespace -- return empty set

2.6.3.4 TagDefinition

[1] The type associated with a tag definition is either the name of a UML metaclass, including
elements of the DataType package, or an instance of the DataType metaclass or one of its
descendants.

-- cannot be specified with OCL, level M2 not accessible
September 2002 OMG-UML , v1.5 Extension Mechanisms 2-85

2 UML Semantics
[2] All tag definitions must be contained either directly or transitively in a profile package.

findProfile(self)->notEmpty

2.6.3.5 TaggedValue

[1] The data value of a tagged value is exclusive to the “referenceValue” association.

if (self.referenceValue->size > 0)
then (self.dataValue->size = 0)
else (self.dataValue->size > 0)

endif

[2] The data value of a tagged value must conform to the data type specified by the “tagType”
attribute of the tag definition.

-- cannot be specified with OCL (requires an OCL function that
converts a string name into a corresponding metatype)

[3] The model elements associated with a tagged value by the “referenceValue” association
must be instances of the metaclass specified by the “tagType” attribute of the tag
definition.

-- cannot be specified with OCL (requires an OCL function that
converts a string name into a corresponding metatype)

2.6.4 Detailed Semantics

The various extension mechanisms defined in this chapter represent extensions to the
modeling language UML that affect the structure and semantics of models produced by
the user.

Within a model, any user-level model element may have a set of links to stereotypes,
and a set of tagged values conformant to existing tag definitions. The constraints
defined for the stereotype specify restrictions on the instantiation of the model. An
instance of a user-level model element must satisfy all of the constraints on its model
element for the model to be well-formed. Evaluation of constraints is to be performed
when the relevant portion of the system is “stable,” that is, after the completion of any
internal operations when it is waiting for external events. In general, constraints are
written in any language that can adequately specify the desired constraints, such as
OCL, C++, or natural language. The interpretation of the constraints must be specified
by the constraint language.

A stereotype refers to a base class, which is a class in the UML metamodel (not a user-
level modeling element) such as Class, Association, Refinement, etc. A stereotype may
be a subclass of one or more existing stereotypes. In that case, it inherits their
constraints and tag definitions and may add additional ones of its own. In principle, a
stereotype inherits the base class value of its parent, if one exists (this is expressed as
a constraint on these values). The modeler may refine this to any subclass of that base
class. For instance, if a stereotype s with a base class b is defined, then a stereotype
t that has s as its superclass has either b or any subclass of b as its base class value. If
a stereotype has multiple superclasses, then all of these superclasses must be derived
from a single common superclass. In that case, the base class of the subclass is
2-86 OMG-UML , v1.5 Extension Mechanisms September 2002

2 UML Semantics
equivalent to the most specific parent stereotype, or a subclass of that. For instance, if
a stereotype s has supertypes t and u with base classes “Classifier” and “Class”
respectively, then the base class of s is “Class” or any subclass of “Class” in UML.

If a model element is branded by an attached stereotype, then the UML base class of
the model element must be the base class specified by the stereotype or one of the
subclasses of that base class. Any constraints on the stereotype are implicitly attached
to the model element. Any tag definitions belonging to the stereotype will serve as
specifications for tagged values associated to the model element. If the stereotype is a
subclass of one or more stereotypes, then any constraints or tag definitions from those
stereotypes also apply to the model element (because they are inherited by this
stereotype). If there are any conflicts among the multiple constraints and tag
definitions (inherited or directly specified), then the model is ill formed, as is the case
with general specialization hierarchies.

2.6.5 Notes

Backward compatibility of profiles with UML 1.3 has been addressed by maintaining
the basic UML 1.3 extension features while adding new features that can be optionally
exploited. There are two areas where backward compatibility has been carefully
considered. First, although it is generally recommended that tags should be defined in
the context of a stereotype, they may still be defined independently as was the case
with UML 1.3. Second, although it is generally recommended that tag definitions
should be typed, they may still be defined with type declared String; that is, they are
effectively not typed.

UML 1.4 compliant tools are expected to make use of the ability to type tags, and to
provide conversion utilities for models based on earlier versions of UML. It is
important to note, however, that older models that contain tags declared to be of type
String should still work correctly, since String continues to be a standard UML
datatype.

The following are some typical examples of stereotypes and tag definitions:

A stereotype of Class with an associated tag definition

Stereotype Base Class Parent Tags Constraints Description

persistent Class N/A storageMode none Classes of this stereotype are
persistent and may be stored in a
variety of different modes.

Tag Stereotype Type Multiplicity Description

storageMode persistent StorageProfile::StorageEnum
(an enumeration:
{table, file, object})

* identifies the storage mode
September 2002 OMG-UML , v1.5 Extension Mechanisms 2-87

2 UML Semantics
A stereotype of Class with an associated tag definition

A stereotype of Class with an associated tag definition

A stereotype of Class with an associated tag definition

A tag defined independently of a stereotype

A tag defined independently of a stereotype

2UMLSemantics

Stereotype Base Class Parent Tags Constraints Description

persistent Class N/A isPersistent none Classes of this stereotype may be
persistent, depending on the value of
the “isPersistent” tag.

Tag Stereotype Type Multiplicity Description

isPersistent persistent UML::Datatypes::Boolean 1 indicates whether the class is persistent or not

Stereotype Base Class Parent Tags Constraints Description

persistent Class N/A primaryKeyClass none Classes of this stereotype have a
reference to indicate the primary
key specification.

Tag Stereotype Type Multiplicity Description

primaryKeyClass persistent reference to
UML::Foundation::Class

1 Identifies the M1 class that serves as
the primary key.

Stereotype Base Class Stereotype Parent Tags Constraints Description

workflow ActionState N/A resources none action states of this stereotype
represent workflow actions

Tag Stereotype Type Multiplicity Description

debugMode N/A DebugProfile::DebugDomain
(an enumeration with three
possible choices: {on, off,
trace})

1 Used to set the desired debug mode for
a model post-processor.

Tag Stereotype Type Multiplicity Description

aliasNames N/A UML::Datatypes::String * Reuses the standard String datatype at the M1
level.
2-88 OMG-UML , v1.5 Extension Mechanisms September 2002

2 UML Semantics
2.7 Data Types

2.7.1 Overview

The Data Types package is the subpackage that specifies the different data types that are used to
define UML. This chapter has a simpler structure than the other packages, since it is assumed
that the semantics of these basic concepts are well known.

2.7.2 Abstract Syntax

The abstract syntax for the Data Types package is expressed in graphic notation in Figure 2-1
on page 2-89 and Figure 2-2 on page 2-89.

Figure 2-1 Data Types Package - Main

Figure 2-2 Data Types Package - Expressions

AggregationKind
<<enumeration>>

Boolean
<<enumeration>>

ChangeableKind
<<enumeration>>

Expression

language : Name
body : String

Name

Integer

ParameterDirectionKind
<<enumeration>>

ScopeKind
<<enumeration>>

String

VisibilityKind
<<enumeration>>

PseudostateKind
<<enumeration>>

CallConcurrencyKind
<<enumeration>>

MultiplicityRange

lower : Integer
upper : UnlimitedInteger

Multiplicity

1..*1

+range

1..*1

Mapping

body : String

Unlimi tedInteger

LocationReference

OrderingKind
<<enumeration>>

Geometry

ooleanExpres sion TimeExpression TypeExpressionArgLis tsExpression MappingExpression

Expression

language : Name
body : String

ProcedureExpression
September 2002 OMG-UML , v1.5 Data Types 2-89

2 UML Semantics
In the metamodel the data types are used for declaring the types of the class attributes. They
appear as strings in the diagrams and not with a separate ‘data type’ icon. In this way, the sizes
of the diagrams are reduced. However, each occurrence of a particular name of a data type
denotes the same data type.

Note that these data types are the data types used for defining UML and not the data types to be
used by a user of UML. The latter data types will be instances of the DataType metaclass
defined in the metamodel.

AggregationKind

An enumeration that denotes what kind of aggregation an Association is. When placed on a
target end, specifies the relationship of the target end to the source end. AggregationKind
defines an enumeration whose values are:

ArgListsExpression

In the metamodel ArgListsExpression defines a statement which will result in a set of object
lists when it is evaluated.

Boolean

In the metamodel, Boolean defines an enumeration that denotes a logicial condition. Its
enumeration literals are:

BooleanExpression

In the metamodel BooleanExpression defines a statement which will evaluate to an instance of
Boolean when it is evaluated.

none The end is not an aggregate.

aggregate The end is an aggregate; therefore, the other end is a part and
must have the aggregation value of none. The part may be
contained in other aggregates.

composite The end is a composite; therefore, the other end is a part and must
have the aggregation value of none. The part is strongly owned by
the composite and may not be part of any other composite.

true The Boolean condition is satisfied.

false The Boolean condition is not satisfied.
2-90 OMG-UML , v1.5 Data Types September 2002

2 UML Semantics
CallConcurrencyKind

An enumeration that denotes the semantics of multiple concurrent calls to the same passive
instance (i.e., an Instance originating from a Classifier with isActive=false). It is an
enumeration with the values:

ChangeableKind

In the metamodel ChangeableKind defines an enumeration that denotes how an AttributeLink or
LinkEnd may be modified. Its values are:

Expression

In the metamodel an Expression defines a statement which will evaluate to a (possibly empty)
set of instances when executed in a context. An Expression does not modify the environment in
which it is evaluated. An expression contains an expression string and the name of an
interpretation language with which to evaluate the string.

sequential Callers must coordinate so that only one call to an Instance (on
any sequential Operation) may be outstanding at once. If
simultaneous calls occur, then the semantics and integrity of the
system cannot be guaranteed.

guarded Multiple calls from concurrent threads may occur simultaneously
to one Instance (on any guarded Operation), but only one is
allowed to commence. The others are blocked until the
performance of the first Operation is complete. It is the
responsibility of the system designer to ensure that deadlocks do
not occur due to simultaneous blocks. Guarded Operations must
perform correctly (or block themselves) in the case of a
simultaneous sequential Operation or guarded semantics cannot
be claimed.

concurrent Multiple calls from concurrent threads may occur simultaneously
to one Instance (on any concurrent Operation). All of them may
proceed concurrently with correct semantics. Concurrent
Operations must perform correctly in the case of a simultaneous
sequential or guarded Operation or concurrent semantics cannot
be claimed.

changeable No restrictions on modification.

frozen The value may not be changed from the source end after the
creation and initialization of the source object. Operations on the
other end may change a value.

addOnly If the multiplicity is not fixed, values may be added at any time
from the source object, but once created a value may not be
removed from the source end. Operations on the other end may
change a value.
September 2002 OMG-UML , v1.5 Data Types 2-91

2 UML Semantics
Attributes

Predefined language names include the following:

In general, a language name should be spelled and capitalized exactly as it appears in the
document defining the language. For example, use COBOL, not Cobol; use Ada, not ADA; use
PostScript, not Postscript. In other words, spell it correctly.

Geometry

An uninterpreted type used to describe the geometrical shape of icons, such as those that may
be attached to stereotypes. The details of this specification are not currently part of UML and
must therefore be supplied by the implementation of a model editing tool, with the
understanding that they will likely be tool-specific. This type is therefore not actually defined in
the metamodel but is used only as the type of attributes.

Integer

In the metamodel, Integer is a classifier element that is an instance of Primitive, representing
the predefined type of integers. An instance of Integer an element in the (infinite) set of integers
(…-2, -1, 0, 1, 2…).

LocationReference

Designates a position within a behavior sequences for the insertion of an extension use case.
May be a line or range of lines in code, or a state or set of states in a state machine, or some
other means in a different kind of specification.

Mapping

In the metamodel a Mapping is an expression that is used for mapping ModelElements. For
exchange purposes, it should be represented as a String.

language Names the language in which the expression body is represented.
The interpretation of the expression depends on the language. If
the language name is omitted, no interpretation for the expression
can be assumed by UML.

body The text of the expression expressed in the given language.

OCL The Object Constraint Language (see Chapter , “Object Constraint
Language Specification").

(The empty string) This represents a natural-language statement.
As such, it is obviously intended for human information rather
than formal specification.
2-92 OMG-UML , v1.5 Data Types September 2002

2 UML Semantics
Attributes

MappingExpression

An expression that evaluates to a mapping.

Multiplicity

In the metamodel a Multiplicity defines a non-empty set of non-negative integers. A set which
only contains zero ({0}) is not considered a valid Multiplicity. Every Multiplicity has at least
one corresponding String representation.

Additional operations

[1] The operation allows takes an integer as input. It checks if a given integer cardi-
nality is allowed by a multiplicity.
allows(i : Integer) : Boolean;

allows(i) = self.range->exists(r : MultiplicityRange |

r.contains(i))

[2] The operation compatibleWith takes another multiplicity as input. It checks if one
multiplicity is compatible with another.
compatibleWith(other : Multiplicity) : Boolean;

compatibleWith(other) = Integer.allInstances()->

forAll(i : Integer | self.allows(i) implies other.allows(i))

[3] The operation lowerbound returns the lowest lower bound of the ranges in a multi-
plicity.
lowerbound() : Integer;

lowerbound = self.range->exists(r : MultiplicityRange |

r.lower = result)

and self.range->forall(r : MultiplicityRange |

r.lower <= result)

[4] The operation upperbound returns the highest upper bound of the ranges in a mul-
tiplicity.
upperbound() : UnlimitedInteger;

upperbound = self.range->exists(r : MultiplicityRange |

r.upper = result)

and self.range->forall(r : MultiplicityRange |

r.upper <= result)

[5] The operation is determines if the upper and lower bound of the ranges are the
ones given.
is(lowerbound : integer, upperbound : unlimitedInteger) : Boolean

is(lowerbound, upperbound) = (lowerbound = self.lowerbound and

upperbound = self.upperbound)

body A string describing the mapping. The format of the mapping is
currently unspecified in UML.
September 2002 OMG-UML , v1.5 Data Types 2-93

2 UML Semantics
MultiplicityRange

In the metamodel a MultiplicityRange defines a range of integers. The upper bound of the range
cannot be below the lower bound. The lower bound must be a nonnegative integer. The upper
bound must be a nonnegative integer or the special value unlimited, which indicates there is no
upper bound on the range.

Additional operations

[1] The operation contains takes an integer as input and checks if a given integer is
within the range specified by a multiplicity range.
contains(i : Integer) : Boolean;

contains(i) = (self.lower<=i and i<=self.upper)

Name

In the metamodel a Name defines a token which is used for naming ModelElements. A name is
represented as a String.

OrderingKind

Defines an enumeration that specifies how the elements of a set are arranged. Used in
conjunction with elements that have a multiplicity in cases when the multiplicity value is
greater than one. The ordering must be determined and maintained by operations that modify
the set. The intent is that the set of enumeration literals be open for new values to be added by
tools for purposes of design, code generation, etc. For example, a value of sorted might be used
for a design specification. Values are:

ParameterDirectionKind

In the metamodel ParameterDirectionKind defines an enumeration that denotes if a Parameter is
used for supplying an argument and/or for returning a value. The enumeration values are:

unordered The elements of the set have no inherent ordering.

ordered The elements of the set have a sequential ordering.

Other possibilities (such as sorted) may be defined later by
declaring additional keywords. As with user-defined stereotypes,
this would be a private extension supported by particular editing
tools.

in An input Parameter (may not be modified).

out An output Parameter (may be modified to communicate
information to the caller).

inout An input Parameter that may be modified.

return A return value of a call.
2-94 OMG-UML , v1.5 Data Types September 2002

2 UML Semantics
ProcedureExpression

In the metamodel ProcedureExpression defines a statement which will result in a change to the
values of its environment when it is evaluated.

PseudostateKind

In the metamodel, PseudostateKind defines an enumeration that discriminates the kind of
Pseudostate. See “PseudostateKind” on page 2-95 for details. The enumeration values are:

ScopeKind

In the metamodel ScopeKind defines an enumeration that denotes whether a feature belongs to
individual instances or an entire classifier. Its values are:

choice Splits an incoming transition into several disjoint outgoing
transition. Each outgoing transition has a guard condition that is
evaluated after prior actions on the incoming path have been
completed. At least one outgoing transition must be enabled or the
model is ill-formed.

deepHistory When reached as the target of a transition, restores the full state
configuration that was active just before the enclosing composite
state was last exited.

fork Splits an incoming transition into several concurrent outgoing
transitions. All of the transitions fire together.

initial The default target of a transition to the enclosing composite state.

join Merges transitions from concurrent regions into a single outgoing
transition. All the transitions fire together.

junction Chains together transitions into a single run-to-completion path.
May have multiple input and/or output transitions. Each complete
path involving a junction is logically independent and only one
such path fires at one time. May be used to construct branches and
merges.

shallowHistory When reached as the target of a transition, restores the state
within the enclosing composite state that was active just before
the enclosing state was last exited. Does not restore any substates
of the last active state.

instance The feature pertains to Instances of a Classifier. For example, it is
a distinct Attribute in each Instance or an Operation that works on
an Instance.

classifier The feature pertains to an entire Classifier. For example, it is an
Attribute shared by the entire Classifier or an Operation that
works on the Classifier, such as a creation operation.
September 2002 OMG-UML , v1.5 Data Types 2-95

2 ML Semantics
String

In the metamodel, String is a classifier element that is an instance of Primitive. An instance of
String defines a piece of text.

TimeExpression

In the metamodel TimeExpression defines a statement which will define the time of occurrence
of an event. The specific format of time expressions is not specified here and is subject to
implementation considerations.

TypeExpression

In the metamodel TypeExpression is the encoding of a programming language type in the
interpretation language. It is used within a ProgrammingLanguageDataType.

UnlimitedInteger

In the metamodel, UnlimitedInteger is a classifier element that is an instance of Primitive. It
defines a data type whose range is the nonnegative integers augmented by the special value
“unlimited”. It is used for the upper bound of multiplicities.

Additional operations

[1] The operation <= determines whether an unlimited integer is less than or equal to
another.
<= (ui2 : unlimitedInteger) : Boolean;

<= (ui2) = (ui2 = #unlimited or

(self <> #unlimited

and self.oclAsType(Integer)

<= ui2.oclAsType(Integer)))

VisibilityKind

In the metamodel VisibilityKind defines an enumeration that denotes how the element to which
it refers is seen outside the enclosing name space. Its values are:

2MLSemantics

public Other elements may see and use the target element.

protected Descendants of the source element may see and use the target
element.

private Only the source element may see and use the target element.

package Elements declared in the same package as the target element may
see and use the target element.
2-96 OMG-UML , v1.5 Data Types September 2002

2 ML Semantics
Part 3 - Behavioral Elements
This Behavioral Elements package is the language superstructure that specifies the dynamic
behavior or models. The Behavioral Elements package is decomposed into the following
subpackages: Common Behavior, Collaborations, Use Cases, State Machines, Activity Graphs,
and Actions.

2.8 Behavioral Elements Package

Common Behavior specifies the core concepts required for behavioral elements. The
Collaborations package specifies a behavioral context for using model elements to accomplish a
particular task. The Use Case package specifies behavior using actors and use cases. The State
Machines package defines behavior using finite-state transition systems. The Activity Graphs
package defines a special case of a state machine that is used to model processes. The Actions
package defines behavior using a detailed model of computation.

Figure 2-3 Behavioral Elements Package

2.9 Common Behavior

2.9.1 Overview

The Common Behavior package is the most fundamental of the subpackages that compose the
Behavioral Elements package. It specifies the core concepts required for dynamic elements and
provides the infrastructure to support Collaborations, State Machines, Use Cases, and Actions.

The following sections describe the abstract syntax, well-formedness rules and semantics of the
Common Behavior package.

Use Cases State M achinesCollaborations

Common Behavior

Activity Graphs

Actions
September 2002 OMG-UML , v1.5 Behavioral Elements Package 2-97

2 ML Semantics
2.9.2 Abstract Syntax

The abstract syntax for the Common Behavior package is expressed in graphic notation in the
following figures. Figure 2-4 on page 2-98 shows the model elements that define Signals and
Receptions.

Figure 2-4 Common Behavior - Signals

Figure 2-5 on page 2-99 illustrates the Procedure model element and its support for Expressions
and Methods.

E xception

Reception
specification : S tring
isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean

B ehaviora lFeature
(fro m C ore)

S ignal
1

0..*

+s ignal

1

+reception

0..*

**

+context

*

+ra isedS ignal

*

C la ssifier
(from Core)
2-98 OMG-UML , v1.5 Common Behavior September 2002

2 ML Semantics
Figure 2-5 Common Behavior - Procedure

Figure 2-6 on page 2-100 shows the model elements that define Instances and Links.

Method
(from Core)

Procedure
language : Name
body : String
isList : Boolean

0..*

0..1

+method

0..*

+procedure
0..1

Express ion
(from Data Types)

0.. 1 0..*

+procedure

0.. 1

+expression

0..*

ModelElement
(from Core)
September 2002 OMG-UML , v1.5 Common Behavior 2-99

2 ML Semantics
Figure 2-6 Common Behavior - Instances

DataValue Object

ModelE lement
(fromCore)

SubsystemInstance NodeInstance

Attribute
(from Core)

ComponentInstance

* 0..1

+resident

* 0..1

Classifier
(fromCore)

AttributeLink

*1 *

+attribute

1

Instance

0..1

+resident

0..1

1..* *

+classifier

1..* *

1

0..*

1

+slot 0..* *

1

*

+value1

0..*

0..1

+ownedInstance

0..*

+owner

0..1

Procedure

Stimulus

*

*

*

+argument *

{ordered}

*

1

*

+sender 11

*

+receiver 1

*

1*

+dispatchAction

1*
2-100 OMG-UML , v1.5 Common Behavior September 2002

2 ML Semantics
Figure 2-7 Commmon Behavior - Links

The following metaclasses are contained in the Common Behavior package.

AttributeLink

An attribute link is a named slot in an instance, which holds the value of an attribute.

In the metamodel AttributeLink is a piece of the state of an Instance and holds the value of an
Attribute.

Associations

value The Instance which is the value of the AttributeLink.

attribute The Attribute from which the AttributeLink originates.

LinkObject

Object

ModelElement
(from Core)

AssociationEnd
(from Core)

AttributeLink

Association
(from Core)

Stimulus LinkEndLink

Instance

+associationEnd 1

+qualifierValue*{ordered}

2..*1

+connection

2..*1 {ordered}

+association1

*

*

1

*

0..10..1

*

+linkEnd

*

*

1

*

+communicationLink

0..1* 0..1

1 2 .. *1

+connection

2 .. *{ordered}

+ownedLink

*

+instance

11

*

+owner

0..1

*

0..1
September 2002 OMG-UML , v1.5 Common Behavior 2-101

2 ML Semantics
ComponentInstance

A component instance is an instance of a component that resides on a node instance. A
component instance may have a state.

In the metamodel, a ComponentInstance is an Instance that originates from a Component. It
may be associated with a set of Instance, and may reside on a NodeInstance.

Associations

DataValue

A data value is an instance with no identity.

In the metamodel DataValue is a child of Instance that cannot change its state, i.e. all
Operations that are applicable to it are pure functions or queries. DataValues are typically used
as attribute values.

Exception

An exception is a signal raised by behavioral features typically in case of execution faults.

In the metamodel, Exception is derived from Signal. An Exception is associated with the
BehavioralFeatures that raise it.

Associations

Instance

The instance construct defines an entity to which a set of operations can be applied and which
has a state that stores the effects of the operations.

In the metamodel Instance is connected to at least one Classifier which declares its structure
and behavior. It has a set of attribute values and is connected to a set of Links, both sets
matching the definitions of its Classifiers. The two sets implement the current state of the
Instance. An Instance may also own other Instances or Links.

Instance is an abstract metaclass.

resident A collection of Instances that exist inside the ComponentInstance.

context (Inherited from Signal) The set of BehavioralFeatures that raise
the exception.
2-102 OMG-UML , v1.5 Common Behavior September 2002

2 ML Semantics
Associations

Standard Constraints

Tagged Values

Link

The link construct is a connection between instances.

In the metamodel Link is an instance of an Association. It has a set of LinkEnds that matches
the set of AssociationEnds of the Association. A Link defines a connection between Instances.

Associations

slot The set of AttributeLinks that holds the attribute values of the
Instance.

linkEnd The set of LinkEnds of the connected Links that are attached to
the Instance.

classifier The set of Classifiers that declare the structure of the Instance.

ownedInstance The set of Instances that are owned by the Instance.

ownedLink The set of Links that are owned by the Instance.

owner Specifies the Instance that owns the Instance.

destroyed
Association

Destroyed is a constraint applied to an instance, specifying that the
instance is destroyed during the execution.

new
Association

New is a constraint applied to an instance, specifying that the instance is
created during the execution.

transient
Association

Transient is a constraint applied to an instance, specifying that the instance
is created and destroyed during the execution.

persistent
Association

Persistence denotes the permanence of the state of the instance, marking it
as transitory (its state is destroyed when the instance is destroyed) or
persistent (its state is not destroyed when the instance is destroyed).

association The Association that is the declaration of the link.

connection The tuple of LinkEnds that constitute the Link.

owner Specifies the Instance that owns the Link.
September 2002 OMG-UML , v1.5 Common Behavior 2-103

2 ML Semantics
Standard Constraints

LinkEnd

A link end is an end point of a link.

In the metamodel LinkEnd is the part of a Link that connects to an Instance. It corresponds to
an AssociationEnd of the Link’s Association.

Associations

Stereotypes

LinkObject

A link object is a link with its own set of attribute values and to which a set of operations may
be applied.

In the metamodel LinkObject is a connection between a set of Instances, where the connection
itself may have a set of attribute values and to which a set of Operations may be applied. It is a
child of both Object and Link.

destroyed
Association

Destroyed is a constraint applied to a link, specifying that the link is
destroyed during the execution.

new
Association

New is a constraint applied to a link, specifying that the link is created
during the execution.

transient
Association

Transient is a constraint applied to a link, specifying that the link is
created and destroyed during the execution.

associationEnd The AssociationEnd that is the declaration of the LinkEnd..

instance The Instance connected to the LinkEnd.

qualifierValue The AttributeLinks that hold the values of the Qualifier associated
with the corresponding AssociationEnd.

association
Association

Association is a constraint applied to a link-end, specifying that the
corresponding instance is visible via association.

global
Association

Global is a constraint applied to a link-end, specifying that the
corresponding instance is visible because it is in a global scope relative to
the link.

local
Association

Local is a constraint applied to link-end, specifying that the corresponding
instance is visible because it is in a local scope relative to the link.

parameter
Association

Parameter is a constraint applied to a link-end, specifying that the
corresponding instance is visible because it is a parameter relative to the
link.

self Association Self is a constraint applied to a link-end, specifying that the corresponding
instance is visible because it is the dispatcher of a request.
2-104 OMG-UML , v1.5 Common Behavior September 2002

2 ML Semantics
NodeInstance

A node instance is an instance of a node. A collection of component instances may reside on
the node instance.

In the metamodel NodeInstance is an Instance that originates from a Node. Each
ComponentInstance that resides on a NodeInstance must be an instance of a Component that
resides on the corresponding Node.

Associations

Object

An object is an instance that originates from a class.

In the metamodel Object is a subclass of Instance and it originates from at least one Class. The
set of Classes may be modified dynamically, which means that the set of features of the Object
may change during its life-time.

Procedure

A procedure is a coordinated set of actions that models a computation, such as an algorithm. It
can also be used without actions to express a procedure in a textual language.

In the metamodel Procedure is a subclass of ModelElement. It can be linked to a Method or
Expression to model how the method is carried out or the expression is evaluated.

Attributes

Associations

resident A collection of ComponentInstances that reside on the
NodeInstances.

language Names the language in which the body attribute is written.

body The text of the procedure written in the given language..

isList Determines whether the arguments tothe procedure are passed as
attributes of a single object, or are passed separately. See
descriptions in Actions.

expresssion An expression the value of which is calculated by the procedure.
Used to provide a detailed action model for an expression.

method A method which is performed by the procedure. Used to provide a
detailed action model for a method.
September 2002 OMG-UML , v1.5 Common Behavior 2-105

2 ML Semantics
Reception

A reception is a declaration stating that a classifier is prepared to react to the receipt of a signal.
The reception designates a signal and specifies the expected behavioral response. A reception is
a summary of expected behavior. The details of handling a signal are specified by a state
machine.

In the metamodel Reception is a child of BehavioralFeature and declares that the Classifier
containing the feature reacts to the signal designated by the reception feature. The
isPolymorphic attribute specifies whether the behavior is polymorphic or not; a true value
indicates that the behavior is not always the same and may be affected by state or subclassing.
The specification indicates the expected response to the Signal.

Attributes

Associations

Signal

A signal is a specification of an asynchronous stimulus communicated between instances. The
receiving instance handles the signal by a state machine. Signal is a generalizable element and
is defined independently of the classes handling the signal. A reception is a declaration that a
class handles a signal, but the actual handling is specified by a state machine.

In the metamodel Signal is a child to Classifier, with the parameters expressed as Attributes. A
Signal is always asynchronous. A Signal is associated with the BehavioralFeatures that raise it.

Associations

isAbstract If true, then the reception does not have an implementation, and
one must be supplied by a descendant. If false, the reception must
have an implementation in the classifier or inherited from an
ancestor.

isLeaf If true, then the implementation of the reception may not be
overriden by a descendant classifier. If false, then the
implementation of the reception may be overridden by a
descendant classifier (but it need not be overridden).

isRoot If true, then the classifier must not inherit a declaration of the
same reception. If false, then the classifier may (but need not)
inherit a declaration of the same reception. (But the declaration
must match in any case; a classifier may not modify an inherited
declaration of a reception.)

specification A description of the effects of the classifier receiving a Signal,
stated by a String.

signal The Signal that the Classifier is prepared to handle.

context The set of BehavioralFeatures that raise the signal.
2-106 OMG-UML , v1.5 Common Behavior September 2002

2 ML Semantics
Stimulus

A stimulus reifies a communication between two instances.

In the metamodel Stimulus is a communication, i.e. a Signal sent to an Instance, or an
invocation of an Operation. It can also be a request to create an Instance, or to destroy an
Instance It has a sender, a receiver, and may have a set of actual arguments, all being Instances.

Associations

SubsystemInstance

A subsystem instance is an instance of a subsystem. It is the runtime representation of a
subsystem, hence it can be connected to links corresponding to associations of the subsystem.
Its task is to handle incoming communication by re-directing stimuli to the appropriate receiver
inside the subsystem.

In the metamodel SubsystemInstance is a subclass of Instance.

2.9.3 Well-Formedness Rules

The following well-formedness rules apply to the Common Behavior package.

AttributeLink

[1] The type of the Instance must match the type of the Attribute.

self.value.classifier->union (
self.value.classifier.allParents)->includes (

self.attribute.type)

ComponentInstance

[1] A ComponentInstance originates from exactly one Component.

self.classifier->size = 1

and

reception A set of Receptions that indicates Classes prepared to handle the
signal.

argument The sequence of Instances being the arguments of the Stimulus.

communicationLink The Link, which is used for communication.

dispatchAction The procedure which caused the Stimulus to be dispatched when
it was executed.

receiver The Instance which receives the Stimulus.

sender The Instance which sends the Stimulus.
September 2002 OMG-UML , v1.5 Common Behavior 2-107

2 ML Semantics
self.classifier.oclIsKindOf (Component)

[2] A ComponentInstance may only own ComponentInstances.

self.contents->forAll (c | c.oclIsKindOf(ComponentInstance))

DataValue

[1] A DataValue originates from exactly one Classifier, which is a DataType.

(self.classifier->size = 1)

and

self.classifier.oclIsKindOf(DataType)

[2] A DataValue has no AttributeLinks.

self.slot->isEmpty

[3] A DataValue may not contain any Instances.

self.contents->isEmpty

Exception

No extra well-formedness rules.

Instance

[1] The AttributeLinks match the declarations in the Classifiers.

self.slot->forAll (al |

self.classifier->exists (c |

c.allAttributes->includes (al.attribute)))

[2] The Links matches the declarations in the Classifiers.

self.allLinks->forAll (l |

self.classifier->exists (c |

c.allAssociations->includes (l.association)))

[3] If two Operations have the same signature they must be the same.

self.classifier->forAll (c1, c2 |

c1.allOperations->forAll (op1 |

c2.allOperations->forAll (op2 |

op1.hasSameSignature (op2) implies op1 = op2)))

[3] There are no name conflicts between the AttributeLinks and opposite LinkEnds.

self.slot->forAll(al |

not self.allOppositeLinkEnds->exists(le | le.name = al.name))

and

self.allOppositeLinkEnds->forAll(le |

not self.slot->exists(al | le.name = al.name))
2-108 OMG-UML , v1.5 Common Behavior September 2002

2 ML Semantics
[4] For each Association in which an Instance is involved, the number of opposite LinkEnds
must match the multiplicity of the AssociationEnd.

self.classifier.allOppositeAssociationEnds->forAll (ae |

ae.multiplicity.multiplicityRange->exists (mr |

self.selectedLinkEnds (ae)->size >= mr.lower and

(mr.upper = ‘unlimited’ or

(mr.upper <> ‘unlimited’ and

self.selectedLinkEnds (ae)->size <=

mr.upper.oclAsType (Integer)))))

[5] The number of associated AttributeLinks must match the multiplicity of the Attribute.

self.classifier.allAttributes->forAll (a |

a.multiplicity.multiplicityRange->exists (mr |

self.selectedAttributeLinks (a)->size >= mr.lower and

(mr.upper = ‘unlimited’ or

(mr.upper <> ‘unlimited’ and

self.selectedLinkEnds (a)->size <=

mr.upper.oclAsType (Integer)))))

Additional operations

[1] The operation allLinks results in a set containing all Links of the Instance itself.

allLinks : set(Link);

allLinks = self.linkEnd.link

[2] The operation allOppositeLinkEnds results in a set containing all LinkEnds of Links
connected to the Instance with another LinkEnd.

allOppositeLinkEnds : set(LinkEnd);

allOppositeLinkEnds = self.allLinks.connection->select (le |
le.instance <> self)

[3] The operation selectedLinkEnds results in a set containing all opposite LinkEnds
corresponding to a given AssociationEnd.

selectedLinkEnds (ae : AssociationEnd) : set(LinkEnd);

selectedLinkEnds (ae) = self.allOppositeLinkEnds->select (le |
le.associationEnd = ae)

[4] The operation selectedAttributeLinks results in a set containing all AttributeLinks
corresponding to a given Attribute.

selectedAttributeLinks (ae : Attribute) : set(AttributeLink);

selectedAttributeLinks (a) = self.slot->select (s |
s.attribute = a)

[5] The operation contents results in a Set containing all ModelElements contained by the
Instance.

contents: Set(ModelElement);

contents = self.ownedInstance->union(self.ownedLink)
September 2002 OMG-UML , v1.5 Common Behavior 2-109

2 ML Semantics
Link

[1] The set of LinkEnds must match the set of AssociationEnds of the Association.

Sequence {1..self.connection->size}->forAll (i |

self.connection->at (i).associationEnd =

self.association.connection->at (i))

[2] There are not two Links of the same Association which connects the same set of
 Instances in the same way.

self.association.link->forAll (l |

Sequence {1..self.connection->size}->forAll (i |

self.connection->at (i).instance =

l.connection->at (i).instance)

implies self = l)

LinkEnd

[1] The type of the Instance must match the type of the AssociationEnd.

self.instance.classifier->union (
self.instance.classifier.allParents)->includes (

self.associationEnd.type)

LinkObject

[1] One of the Classifiers must be the same as the Association.

self.classifier->includes(self.association)

[2] The Association must be a kind of AssociationClass.

self.association.oclIsKindOf(AssociationClass)

NodeInstance

[1] A NodeInstance must have only one Classifier as its origin, and it must be a Node.

self.classifier->forAll (c | c.oclIsKindOf(Node))

and

self.classifier->size = 1

[2] Each ComponentInstance that resides on a NodeInstance must be an instance of a
Component that resides on the corresponding Node.

self.resident->forAll(n |

self.classifier.resident->includes(n.classifier))

[3] A NodeInstance may not contain any Instances.

self.contents->isEmpty
2-110 OMG-UML , v1.5 Common Behavior September 2002

2 ML Semantics
Object

[1] Each of the Classifiers must be a kind of Class or ClassifierInState.

self.classifier->forAll (c | c.oclIsKindOf(Class) or

(c.oclIsKindOf(ClassifierInState) and

c.oclAsType(ClassifierInState).type.oclIsKindOf(Class)))

[2] An Object may only own Objects, DataValues, Links, UseCaseInstances,
CollaborationInstances and Stimuli.

self.contents->forAll(c |

c.oclIsKindOf(Object) or

c.oclIsKindOf(DataValue) or

c.oclIsKindOf(Link) or

c.oclIsKindOf(UseCaseInstance) or

c.oclIsKindOf(CollaborationInstance) or

c.oclIsKindOf(Stimuli))

Procedure

A procedure is a coordinated set of actions that models a computation, such as an algorithm. It
can also be used without actions to express a procedure in a textual language.

In the metamodel Procedure is a subclass of ModelElement. It can be linked to a Method or
Expression to model how the method is carried out or the expression is evaluated.

Attributes

Associations

Reception

[1] A Reception can not be a query.

language Names the language in which the body attribute is written. This
language name should follow the conventions for language
names in UML, as described for the language attribute of
Expression.

body The text of the procedure written in the given language..

isList Determines whether the arguments tothe procedure are passed as
attributes of a single object, or are passed separately. See
description in Actions.

expresssion An expression the value of which is calculated by the procedure.
Used to provide a detailed action model for an expression.

method A method which is performed by the procedure. Used to provide a
detailed action model for a method.
September 2002 OMG-UML , v1.5 Common Behavior 2-111

2 ML Semantics
not self.isQuery

Signal

[1] A Signal may not contain any ModelElements.

self.contents->isEmpty

Stimulus

[1] The number of arguments must match the number of arguments of the procedure.

self.dispatchAction.argument->size = self.argument->size

SubsystemInstance

[1] A SubsystemInstance may only own Objects, DataValues, Links, UseCaseInstances, Col-
laborationInstances, SubsystemInstances, and Stimuli.

self.contents->forAll (c |

c.oclIsKindOf(Object) or

c.oclIsKindOf(DataValue) or

c.oclIsKindOf(Link) or

c.oclIsKindOf(UseCaseInstance) or

c.oclIsKindOf(CollaborationInstance) or

c.oclIsKindOf(SubsystemInstance) or

c.oclIsKindOf(Stimulus))

[2] A SubsystemInstance originates from a Subsystem.

self.classifier.oclIsKindOf(Subsystem)

2.9.4 Detailed Semantics

This section provides a description of the semantics of the elements in the Common Behavior
package.

Object and DataValue

An object is an instance that originates from a class, it is structured and behaves according to its
class. All objects originating from the same class are structured in the same way, although each
of them has its own set of attribute links. Each attribute link references an instance, usually a
data value. The number of attribute links with the same name fulfills the multiplicity of the
corresponding attribute in the class. The set may be modified according to the specification in
the corresponding attribute, e.g. each referenced instance must originate from (a specialization
of) the type of the attribute, and attribute links may be added or removed according to the
changeable property of the attribute.

An object may have multiple classes (i.e., it may originate from several classes). In this case,
the object will have all the features declared in all of these classes, both the structural and the
behavioral ones. Moreover, the set of classes (i.e., the set of features that the object conforms
2-112 OMG-UML , v1.5 Common Behavior September 2002

2 ML Semantics
to) may vary over time. New classes may be added to the object and old ones may be detached.
This means that the features of the new classes are dynamically added to the object, and the
features declared in a class which is removed from the object are dynamically removed from the
object. No name clashes between attributes links and opposite link ends are allowed, and each
operation which is applicable to the object should have a unique signature.

Another kind of instance is data value, which is an instance with no identity. Moreover, a data
value cannot change its state; all operations that are applicable to a data value are queries and
do not cause any side effects. Since it is not possible to differentiate between two data values
that appear to be the same, it becomes more of a philosophical issue whether there are several
data values representing the same value or just one for each value-it is not possible to tell. In
addition, a data value cannot change its data type.

An instance may contain other instances as a result of a (namespace) containment between their
classifiers. Namespace rules imply that an instance contained in another instance has access to
all names that are accessible to its container instance.

Subsystem instances are further discussed in Model Management.

Link

A link is a connection between instances. Each link is an instance of an association, i.e. a link
connects instances of (specializations of) the associated classifiers. In the context of an
instance, an opposite end defines the set of instances connected to the instance via links of the
same association and each instance is attached to its link via a link-end originating from the
same association-end. However, to be able to use a particular opposite end, the corresponding
link end attached to the instance must be navigable. An instance may use its opposite ends to
access the associated instances. An instance can communicate with the instances of its opposite
ends and also use references to them as arguments or reply values in communications.

A link object is a special kind of link, which at the same time is also an object. Since an object
may change its classes this is also true for a link object. However, one of the classes must
always be an association class.

Signal, Exception and Stimulus

Several kinds of requests exist between instances, e.g. sending a signal and invoking an
operation. The former is used to trigger a reaction in the receiver in an asynchronous way and
without a reply, while the latter applies an operation to an instance, which can be either done
synchronously or asynchronously and may require a reply from the receiver to the sender. Other
kinds of requests are used for example to create a new instance or to delete an already existing
instance. When an instance communicates with another instance a stimulus is passed between
the two instances. Each stimulus has a sender instance and a receiver instance, and possibly a
sequence of arguments according to the specifying signal or operation. The stimulus uses a link
between the sender and the receiver for communication. This link may be missing if the
receiver is an argument inside the current activation, a local or global variable, or if the stimulus
is sent to the sender instance itself. Moreover, a stimulus is dispatched by an action, e.g. a call
action or a send action. The action specifies the request made by the stimulus, like the operation
to be invoked or the signal event to be raised, as well as how the actual arguments of the
stimulus are determined.
September 2002 OMG-UML , v1.5 Common Behavior 2-113

2 ML Semantics
A signal may be attached to a classifier, which means that instances of the classifier will be able
to receive that signal. This is facilitated by declaring a reception by the classifier. An exception
is a special kind of signal, typically used to signal fault situations. The sender of the exception
aborts execution and execution resumes with the receiver of the exception, which may be the
sender itself. Unlike other signals, the receiver of an exception is determined implicitly by the
interaction sequence during execution; it is not explicitly specified as the target of the send
action.

The reception of a stimulus originating from a call action by an instance causes the invocation
of an operation on the receiver. The receiver executes the method that is found in the full
descriptor of the class that corresponds to the operation. The reception of a stimulus originating
from a signal by an instance may cause a transition and subsequent effects as specified by the
state machine for the classifier of the recipient. This form of behavior is described in the State
Machines package. Note that the invoked behavior is described by methods and state machine
transitions. Operations and receptions merely declare that a classifier accepts a given operation
invocation or signal but they do not specify the implementation.

2.10 Collaborations

2.10.1 Overview

The Collaborations package is a subpackage of the Behavioral Elements package. The
package uses constructs defined in the Foundation package and the Common Behavior
packages.

The Collaborations package provides the means to define Collaborations and
CollaborationInstanceSets. The main constructs used in a Collaboration include
ClassifierRole, AssociationRole, Interaction, and Message while Instance, Stimulus,
and Link are used in a CollaborationInstanceSet.

The description of cooperating Instances involves two aspects: 1) the structural
description of the participants, and 2) the description of their communication patterns.
The structure of the participants that play the roles in the performance of a specific
task and their relationships is called a Collaboration. The communication pattern
performed by Instances playing the roles to accomplish the task is called an
Interaction. The behavior is implemented by ensembles of Instances that exchange
Stimuli within an overall Interaction. To understand the mechanisms used in a design,
it is important to see only those Instances and their Interactions that are involved in
accomplishing a purpose or a related set of purposes, projected from the larger system
of which they are part of.

A Collaboration includes a set of ClassifierRoles and AssociationRoles that define the
participants needed for a given set of purposes. Instances conforming to the
ClassifierRoles play the roles defined by the ClassifierRoles, while Links between the
Instances conform to AssociationRoles of the Collaboration. ClassifierRoles and
AssociationRoles define a usage of Instances and Links, and the Classifiers and
Associations declare all required properties of these Instances and Links.
2-114 OMG-UML , v1.5 Collaborations September 2002

2 ML Semantics
An Interaction is defined in the context of a Collaboration. It specifies the
communication patterns between the roles in the Collaboration. More precisely, it
contains a set of partially ordered Messages, each specifying one communication; for
example, what Signal to be sent or what Operation to be invoked, as well as the roles
to be played by the sender and the receiver, respectively.

A CollaborationInstanceSet references a collection of Instances that jointly perform the
task specified by the CollaborationInstanceSet’s Collaboration. These Instances play
the roles defined by the ClassifierRoles of the Collaboration; that is, the Instances have
all the properties stated by (the Instances conform to) the ClassifierRoles. The Stimuli
sent between the Instances when performing the task are participating in the
InteractionInstanceSet of the CollaborationInstanceSet. These Stimuli conform to the
Messages in one of the Interactions of the Collaboration. Since an Instance can
participate in several CollaborationInstanceSets at the same time, all its
communications are not necessarily referenced by only one InteractionInstanceSet.
They can be interleaved.

A parameterized Collaboration represents a design construct that can be used
repeatedly in different designs. The participants in the Collaboration, including the
Classifiers and Relationships, can be parameters of the generic Collaboration. The
parameters are bound to particular ModelElements in each instantiation of generic
Collaboration. Such a parameterized Collaboration can capture the structure of a
design pattern (note that a design pattern involves more than structural aspects).
Whereas most Collaborations can be anonymous because they are attached to a named
ModelElement, Collaboration patterns are free standing design constructs that must
have names.

A Collaboration may be expressed at different levels of granularity. A coarse-grained
Collaboration may be refined to produce another Collaboration that has a finer
granularity.

Collaborations can be used for expressing several different things, like how use cases
are realized, actor structures of ROOM, OOram role models, and collaborations as
defined in Catalysis. They are also used for setting up the context of Interactions and
for defining the mapping between the specification part and the realization part of a
Subsystem.

A Collaboration may be attached to an Operation or a Classifier, like a UseCase, to
describe the realization of the Operation or of the Classifier; that is, what roles
Instances play to perform the behavior specified by the Operation or the UseCase. A
Collaboration that describes a Classifier, like a UseCase, references Classifiers and
Associations in general, while a Collaboration describing an Operation includes the
arguments and the local variables of the Operation, as well as ordinary Associations
attached to the Classifier owning the Operation. The Interactions defined within the
Collaboration specify the communication pattern between the Instances when they
perform the behavior specified in the Operation or the UseCase. A Collaboration may
also be attached to a Classifier to define the static structure of it; that is, the roles
played by the Attributes, the Parameters, etc.
September 2002 OMG-UML , v1.5 Collaborations 2-115

2 ML Semantics
A ClassifierRole or an AssociationRole has one or a collection of Classifiers or
Associations as its base. The same Classifier or Association can appear as the base of
roles in several Collaborations and several times in the same Collaboration, each time
in a different role. In each appearance it is specified which of the properties of the
Classifier or the Association are needed in the particular usage. These properties
constitute a subset of all the properties of that Classifier or Association.

A Collaboration is a GeneralizableElement. This implies that a Collaboration may
specify a task that is a specialization of another Collaboration’s task.

The following sections describe the abstract syntax, well-formedness rules, and
semantics of the Collaborations package.

2.10.2 Abstract Syntax

The abstract syntax for the Collaborations package is expressed in graphic notation in
Figure 2-18 through Figure 2-20.

Figure 2-18 Collaborations - Roles

AssociationEnd
(from Core)

Attribute
(from Core)

Association
(from Core)

2..*

1

+connection2..*

1

{ordered}

Feature
(from Core)

Collaboration

AssociationEndRole

collaborationMultiplicity : Multiplicity

0..1 *

+base

0..1 *

*

*

*

+availableQualifier*

Classifier
(fromCore)

ModelElement
(fromCore)

*

*

*

+constrainingElement *
Action

(fromCommonBehavior)

AssociationRole

multiplicity : Multiplicity

0..1 *

+base

0..1 *

1

*

1

+/ownedElement*

1

2..*

1

+/connection 2..*

ClassifierRole

multiplicity : Multiplicity

** *

+availableFeature

*

1

1..*

1

+/ownedElement

1..*

* 1*

+/type

1

1.. *

+base

1..*

*

*

*

+availableContents *

Message

1

*

+action 1

*

*0..1 *

+communicationConnection

0..1

1

*

+sender 1

* *

1

*

+receiver1

*

*

+predecessor

*

+successor

*

*

0..1

*

+activator

0..1
2-116 OMG-UML , v1.5 Collaborations September 2002

2 ML Semantics
Figure 2-19 Collaborations - Interactions

{xor}

GeneralizableElement
(fromCore)

Namespace
(fromCore)

Message

Operation
(fromCore)

Interaction

1 1..*1

+message

1..*

Classifier
(fromCore)

Collaboration

* 0..1*

+representedOperation

0..1

1

*

+context
1

+interaction

*

* 0..1*

+representedClassifier

0..1*

*

+usedCollaboration

*

*

ModelElement
(fromCore)
September 2002 OMG-UML , v1.5 Collaborations 2-117

2 ML Semantics
Figure 2-20 Collaborations - Instances

2.10.2.1 AssociationEndRole

An association-end role specifies an endpoint of an association as used in a
collaboration.

In the metamodel an AssociationEndRole is part of an AssociationRole and specifies
the connection of an AssociationRole to a ClassifierRole. It is related to the
AssociationEnd, declaring the corresponding part in an Association.

Attributes

Associations

2.10.2.2 AssociationRole

An association role is a specific usage of an association needed in a collaboration.

collaborationMultiplicity The number of LinkEnds playing this role in a Collaboration.

availableQualifier The subset of Qualifiers that are used in the Collaboration.

base The AssociationEnd which the AssociationEndRole is a projection
of.

Message

Stimulus
(from Common Behavior)

*

*

+playedRole*

+conformingStimulus*

Interaction

1..* 1

+message

1..* 1

ClassifierRole
multiplicity : Multiplicity

AssociationRole
multiplicity : Multiplicity

InteractionInstanceSet

1.. *

+participatingStimulus

1..*

0..1

*

+interaction0..1

*

Collaboration

* 1

+interaction

*

+context

1 1..*1

+/ownedElement

1..*1

*

1

+/ownedElement *

1

Instance
(fromCommon Behavior)

*

*

+playedRole *

+conformingInstance *

ModelElement
(fromCore) Link

(from Common Behavior)

*

*

+playedRole

*

+conformingLink*

CollaborationInstanceSet

1*

+context

1

+interactionInstance

*

0..1

*

+collaboration0..1

*

* 1..**

+participatingInstance

1..*

*

*

+constrainingElement

*

*

*

*

+participatingLink

*

*

2-118 OMG-UML , v1.5 Collaborations September 2002

2 ML Semantics
In the metamodel an AssociationRole specifies a restricted view of an Association used
in a Collaboration. An AssociationRole is a composition of a set of
AssociationEndRoles corresponding to the AssociationEnds of its base Association.

Attributes

Associations

2.10.2.3 ClassifierRole

A classifier role is a specific role played by a participant in a collaboration. It specifies
a restricted view of a classifier, defined by what is required in the collaboration.

In the metamodel a ClassifierRole specifies one participant of a Collaboration; that is,
a role Instances conform to. A ClassifierRole defines a set of Features, which is a
subset of those available in the base Classifiers, as well as a subset of ModelElements
contained in the base Classifiers, that are used in the role. The ClassifierRole may be
connected to a set of AssociationRoles via AssociationEndRoles. As ClassifierRole is
a kind of Classifier, a Generalization relationship may be defined between two
ClassifierRoles. The child role is a specialization of the parent; that is, the Features and
the contents of the child includes the Features and contents of the parent.

Attributes

Associations

2.10.2.4 Collaboration

A collaboration describes how an operation or a classifier, like a use case, is realized
by a set of classifiers and associations used in a specific way. The collaboration defines
a set of roles to be played by instances and links, as well as a set of interactions that
define the communication between the instances when they play the roles.

multiplicity The number of Links playing this role in a Collaboration.

base The Association which the AssociationRole is a view of.

conformingLink The collection of Links that conforms to the AssociationRole.

multiplicity The number of Instances playing this role in a Collaboration.

availableContents The subset of ModelElements contained in the base Classifier,
which is used in the Collaboration.

availableFeature The subset of Features of the base Classifier, which is used in the
Collaboration.

base The Classifiers, which the ClassifierRole is a view of.

conformingInstance The collection of Instances that conforms to the ClassifierRole.
September 2002 OMG-UML , v1.5 Collaborations 2-119

2 ML Semantics
In the metamodel a Collaboration contains a set of ClassifierRoles and
AssociationRoles, which represent the Classifiers and Associations that take part in the
realization of the associated Classifier or Operation. The Collaboration may also
contain a set of Interactions that are used for describing the behavior performed by
Instances conforming to the participating ClassifierRoles.

A Collaboration specifies a view (restriction, slice, projection) of a model of
Classifiers. The projection describes the required relationships between Instances that
conform to the participating ClassifierRoles, as well as the required subsets of the
Features and contained ModelElements of these Classifiers. Several Collaborations
may describe different projections of the same set of Classifiers. Hence, a Classifier
can be a base for several ClassifierRoles.

A Collaboration may also reference a set of ModelElements, usually Classifiers and
Generalizations, needed for expressing structural requirements, such as Generalizations
required between the Classifiers themselves to fulfill the intent of the Collaboration.

A Collaboration is a GeneralizableElement, which implies that one Collaboration may
specify a task that is a specialization of the task of another Collaboration.

Associations

2.10.2.5 CollaborationInstanceSet

A collaboration instance set references a set of instances that jointly collaborate in
performing the particular task specified by the collaboration of the collaboration
instance. The instances in the collaboration instance set play the roles defined in the
collaboration.

In the metamodel a CollaborationInstanceSet references a set of Instances and Links
that play the roles defined by the ClassifierRoles and AssociationRoles of the
CollaborationInstanceSet’s Collaboration.

constrainingElement The ModelElements that add extra constraints, like Generalization
and Constraint, on the ModelElements participating in the
Collaboration.

interaction The set of Interactions that are defined within the Collaboration.

ownedElement (Inherited from Namespace) The set of roles defined by the
Collaboration. These are ClassifierRoles and AssociationRoles.

representedClassifier The Classifier the Collaboration is a realization of. (Used if the
Collaboration represents a Classifier.)

representedOperation The Operation the Collaboration is a realization of. (Used if the
Collaboration represents an Operation.)

usedCollaboration Collaborations that are used when defining the source
Collaboration.
2-120 OMG-UML , v1.5 Collaborations September 2002

2 ML Semantics
A CollaborationInstanceSet contains an InteractionInstanceSet, which references the
set of Stimuli that are interchanged between the Instances of the
CollaborationInstanceSet and corresponds to the Messages of an Interaction in the
CollaborationInstanceSet’s Collaboration.

Associations

2.10.2.6 Interaction

An interaction specifies the communication between instances performing a specific
task. Each interaction is defined in the context of a collaboration.

In the metamodel an Interaction contains a set of Messages specifying the
communication between a set of Instances conforming to the ClassifierRoles of the
owning Collaboration.

Associations

2.10.2.7 InteractionInstanceSet

An interaction instance set is the set of stimuli that participate in a collaboration
instance set.

In the metamodel an InteractionInstanceSet references a collection of Stimuli that
conform to the Messages of the InteractionInstanceSet’s Interaction.

constrainingElement The ModelElements that add extra constraints, like
Generalization and Constraint, on the ModelElements
participating in the Collaboration.

collaboration The Collaboration, which declares the roles that the Instances
that participate in the CollaborationInstanceSet play.

interactionInstanceSet The InteractionInstanceSet that references the Stimuli passed
between the Instances when performing the task of the
CollaborationInstanceSet’s Collaboration.

participatingInstance The set of Instances that participate in the
CollaborationInstanceSet.

participatingLink The set of Links that participate in the CollaborationInstanceSet.

context The Collaboration that defines the context of the Interaction.

message The Messages that specify the communication in the Interaction.
September 2002 OMG-UML , v1.5 Collaborations 2-121

2 ML Semantics
Associations

2.10.2.8 Message

A message defines a particular communication between instances that is specified in an
interaction.

In the metamodel a Message defines one specific kind of communication in an
Interaction. A communication can be raising a Signal, invoking an Operation, creating
or destroying an Instance. The Message specifies not only the kind of communication,
but also the roles of the sender and the receiver, the dispatching Action, and the role
played by the communication Link. Furthermore, the Message defines the relative
sequencing of Messages within the Interaction.

Associations

2.10.3 Well-Formedness Rules

The following well-formedness rules apply to the Collaborations package.

2.10.3.1 AssociationEndRole

[1] The type of the ClassifierRole must conform to the type of the base AssociationEnd.

context The CollaborationInstanceSet that defines the context of the
InteractionInstanceSet.

participating-
Stimulus

The Stimuli that participate in the performance of the
CollaborationInstanceSet.

interaction The Interaction that defines the interaction pattern that the stimuli
conforms to.

action The Action that causes a Stimulus to be sent according to
the Message.

activator The Message that invokes the behavior causing the
dispatching of the current Message.

communicationConnection The AssociationRole played by the Links used in the
communications specified by the Message.

conformingStimulus The collection of Stimuli that conforms to the Message.

interaction The Interaction of which the Message is a part.

receiver The role of the Instance that receives the communication
and reacts to it.

predecessor The set of Messages whose completion enables the
execution of the current Message. All of them must be
completed before execution begins.

 sender The role of the Instance that invokes the communication
and possibly receives a response.
2-122 OMG-UML , v1.5 Collaborations September 2002

2 ML Semantics
self.type.base = self.base.type

or

self.type.base.allParents->includes (self.base.type)

[2] The type must be a kind of ClassifierRole.

self.type.oclIsKindOf (ClassifierRole)

[3] The qualifiers used in the AssociationEndRole must be a subset of those in the base
AssociationEnd.

self.base.qualifier->includesAll (self.availableQualifier)

[4] In a Collaboration an Association may only be used for traversal if it is allowed by the
base Association.

self.isNavigable implies self.base.isNavigable

[5] An AssociationEndRole is not a role of another AssociationEndRole.

not self.base.oclIsKindOf (AssociationEndRole)

2.10.3.2 AssociationRole

[1] The AssociationEndRoles must conform to the AssociationEnds of the base Association.

Sequence{ 1..(self.connection->size) }->forAll (index |

self.connection->at(index).base =

self.base.connection->at(index))

[2] The endpoints must be a kind of AssociationEndRoles.

self.connection->forAll(r | r.oclIsKindOf (AssociationEndRole))

[3] An AssociationEnd is not a role of another AssociationEnd.

not self.base.oclIsKindOf (AssociationEnd)

2.10.3.3 ClassifierRole

[1] The AssociationRoles connected to the ClassifierRole must match a subset of the
Associations connected to the base Classifiers.

self.allAssociations->forAll(ar |

self.base.allAssociations->exists (a | ar.base = a))

[2] The Features and contents of the ClassifierRole must be subsets of those of the base
Classifiers.

self.base.allFeatures->includesAll (self.allAvailableFeatures)

and

self.base.allContents->includesAll (self.allAvailableContents)

[3] A ClassifierRole does not have any Features of its own.

self.allFeatures->isEmpty

[4] A ClassifierRole is not a role of another ClassifierRole.
September 2002 OMG-UML , v1.5 Collaborations 2-123

2 ML Semantics
not self.base.oclIsKindOf (ClassifierRole)

Additional operations

[1] The operation allAvailableFeatures results in the set of all Features contained in the
ClassifierRole together with those contained in the parents.

allAvailableFeatures : Set(Feature);

allAvailableFeatures = self.availableFeature->union

(self.parent.allAvailableFeatures)

[2] The operation allAvailableContents results in the set of all ModelElements contained in
the ClassifierRole together with those contained in the parents.

allAvailableContents : Set(ModelElement);

allAvailableContents = self.availableContents->union

(self.parent.allAvailableContents)

2.10.3.4 Collaboration

[1] All Classifiers and Associations of the ClassifierRoles and AssociationRoles in the
Collaboration must be included in the namespace owning the Collaboration.

self.allContents->forAll (e |

(e.oclIsKindOf (ClassifierRole) implies

self.namespace.allContents->includes (

e.oclAsType(ClassifierRole).base))

and

(e.oclIsKindOf (AssociationRole) implies

self.namespace.allContents->includes (

e.oclAsType(AssociationRole).base)))

[2] All the constraining ModelElements must be included in the namespace owning the
Collaboration.

self.constrainingElement->forAll (ce |

self.namespace.allContents->includes (ce))

[3] If a ClassifierRole or an AssociationRole does not have a name, then it should be the only
one with a particular base.

self.allContents->forAll (p |

(p.oclIsKindOf (ClassifierRole) implies

p.name = '' implies

self.allContents->forAll (q |

q.oclIsKindOf(ClassifierRole) implies

(p.oclAsType(ClassifierRole).base =

q.oclAsType(ClassifierRole).base implies

p = q)))

and
2-124 OMG-UML , v1.5 Collaborations September 2002

2 ML Semantics
(p.oclIsKindOf (AssociationRole) implies

p.name = '' implies

self.allContents->forAll (q |

q.oclIsKindOf(AssociationRole) implies

(p.oclAsType(AssociationRole).base =

q.oclAsType(AssociationRole).base implies

p = q)))

)

[4] A Collaboration may only contain ClassifierRoles and AssociationRoles, the
Generalizations and the Constraints between them, and Actions used in the
Collaboration’s Interactions.

self.allContents->forAll (p |

p.oclIsKindOf (ClassifierRole) or

p.oclIsKindOf (AssociationRole) or

p.oclIsKindOf (Generalization) or

p.oclIsKindOf (Action) or

p.oclIsKindOf (Constraint))

[5] An Action contained in a Collaboration must be connected to a Message; that is, be the
dispatching Action of the Message, in an Interaction of the Collaboration.

self.allContents->forAll (p |

p.oclIsKindOf (Action) implies

self.interaction->exists (i : Interaction |

i.messages->exists (m : Message | m.action = p)))

[6] A role with the same name as one of the roles in a parent of the Collaboration must be a
child (a specialization) of that role.

self.contents->forAll (c |

self.parent.allContents->forall (p |

c.name = p.name implies c.allParents->include (p)))

Additional operations

[1] The operation allContents results in the set of all ModelElements contained in the
Collaboration together with those contained in the parents except those that have been
specialized.

allContents : Set(ModelElement);

allContents = self.contents->union (

self.parent.allContents->reject (e |

self.contents.name->include (e.name)))

2.10.3.5 CollaborationInstanceSet

[1] The Interaction of the CollaborationInstanceSet’s InteractionInstanceSet must be defined
within the CollaborationInstanceSet’s Collaboration.
September 2002 OMG-UML , v1.5 Collaborations 2-125

2 ML Semantics
self.collaboration.interaction->includes (

self.interactionInstanceSet.interaction)

2.10.3.6 Interaction

[1] All Signals being sent must be included in the namespace owning the Collaboration in
which the Interaction is defined.

self.message->forAll (m |

m.action.oclIsKindOf(SendAction) implies

self.context.namespace.allContents->includes (

m.action->oclAsType (SendAction).signal))

2.10.3.7 InteractionInstanceSet

No extra well-formedness rules.

2.10.3.8 Message

[1] The sender and the receiver must participate in the Collaboration, which defines the
context of the Interaction.

self.interaction.context.ownedElement->includes (self.sender)

and

self.interaction.context.ownedElement->includes (self.receiver)

[2] The predecessors and the activator must be contained in the same Interaction.

self.predecessor->forAll (p | p.interaction = self.interaction)

and

self.activator->forAll (a | a.interaction = self.interaction)

[3] The predecessors must have the same activator as the Message.

self.allPredecessors->forAll (p | p.activator = self.activator)

[4] A Message cannot be the predecessor of itself.

not self.allPredecessors->includes (self)

[5] The communicationLink of the Message must be an AssociationRole in the context of the
Message’s Interaction.

self.interaction.context.ownedElement->includes (

self.communicationConnection)

[6] The sender and the receiver roles must be connected by the AssociationRole, which acts as
the communication connection.

self.communicationConnection->size > 0 implies

self.communicationConnection.connection->exists (ar |

ar.type = self.sender)

and
2-126 OMG-UML , v1.5 Collaborations September 2002

2 ML Semantics
self.communicationConnection.connection->exists (ar |

ar.type = self.receiver)

Additional operations

[1] The operation allPredecessors results in the set of all Messages that precede the current
one.

allPredecessors : Set(Message);

allPredecessors = self.predecessor->union

(self.predecessor.allPredecessors)

2.10.4 Detailed Semantics

This section provides a description of the semantics of the elements in the
Collaborations package. It is divided into two parts: Collaboration and Interaction. The
description of behavior involves two aspects: 1) the structural description of the
participants, and 2) the description of their communication patterns. The structure of
Instances playing roles in a behavior and their relationships is described by a
collaboration. The communication pattern performed by Instances playing the roles to
accomplish a specific purpose is specified by an interaction.

2.10.4.1 Collaboration

Behavior is implemented by ensembles of instances that exchange stimuli to
accomplish a task. To understand the mechanisms used in a design, it is important to
see only those instances and their interactions that are involved in accomplishing the
task or a related set of tasks, projected from the larger system of which they are parts
of, and might be used for other purposes as well. Such a static construct is called a
collaboration.

A collaboration defines an ensemble of participants that are needed for a given set of
purposes. The participants define roles that instances and links play when interacting
with each other. The roles to be played by the instances are modeled as classifier roles,
and by the links as association roles. Classifier roles and association roles define a
usage of instances and links, while the classifiers and associations specify all required
properties of these instances and links. This means that the structure of an ensemble of
interlinked instances conforms to the roles in a collaboration as they collaborate to
achieve a given task. Reasoning about the behavior of an ensemble of instances can
therefore be done in the context of the collaboration as well as in the context of the
instances.

A collaboration can be used for specification of how an operation or a classifier, like a
use case, is realized by an ensemble of classifiers and associations. Together, the
classifiers and their associations participating in the collaboration meet the
requirements of the realized operation or classifier. The collaboration defines a context
in which the behavior of the realized element can be specified.
September 2002 OMG-UML , v1.5 Collaborations 2-127

2 ML Semantics
A collaboration specifies what properties instances must have to be able to take part in
the collaboration; that is, a role in the collaboration specifies the required set of
features a conforming instance must have. Furthermore, the collaboration also states
what associations must exist between the participants, as well as what classifiers a
participant, like a subsystem, must contain. Neither all features nor all contents of the
participating classifiers and not all associations between these classifiers are always
required in a particular collaboration. Because of this, a collaboration is defined in
terms of classifier roles. A classifier role is a description of the features required in a
particular collaboration; that is, a classifier role can be seen as a projection of a
classifier, which is called the base of the classifier role. (In fact, since an instance can
originate from multiple classifiers at the same time (multiple classification), a classifier
role can have several base classifiers.) However, instances of different classifiers can
play the role defined by the classifier role, as long as they have all the required
properties. Several classifier roles may have the same base classifier, even in the same
collaboration, but their features and contained elements may be different subsets of the
features and contained elements of the classifier. These classifier roles specify different
roles played by (possibly different) instances of the same classifier.

A collaboration may be attached to an operation or a classifier, like a use case, to
describe the context in which their behavior occurs; that is, what roles instances play to
perform the behavior specified by the operation or the use case. A collaboration used
in this way describes the realization of the operation or the classifier. A collaboration
that describes for example a use case, references classifiers and associations in general,
while a collaboration describing an operation includes only the parameters and the
local variables of the operation, as well as ordinary associations attached to the
classifier owning the operation. The interactions defined within the collaboration (see
below) specify the communication pattern between the instances when they perform
the behavior specified in the operation or the use case. A collaboration may also be
attached to a class to define its static structure; that is, how its attributes, parameters
etc. cooperate with each other.

In a collaboration the association roles define what associations are needed between
the classifiers in this context. Each association role represents the usage of an
association in the collaboration, and it is defined between the classifier roles that
represent the associated classifiers. The represented association is called the base
association of the association role. As the association roles specify a particular usage
of an association in a specific collaboration, all constraints expressed by the
association ends are not necessarily required to be fulfilled in the specified usage. The
multiplicity of the association end may be reduced in the collaboration; that is, the
upper and the lower bounds of the association end roles may be inside the bounds of
the corresponding end of the base association, as it might be that only a subset of the
associated instances participate in the collaboration instance set. Similarly, an
association may be traversed in some, but perhaps not all, of the allowed directions in
the specific collaboration; that is, the value of the isNavigable property of an
association end role may be false even if the value of that property of the base
association end is true. (However, the opposite is not true; that is, an association may
not be used for traversal in a direction that is not allowed according to the isNavigable
properties of the association ends.) The changeability and ordering of an association
end may be strengthened in an association end role; that is, in a particular usage the
end is used in a more restricted way than is defined by the association. Furthermore, if
2-128 OMG-UML , v1.5 Collaborations September 2002

2 ML Semantics
an association has a collection of qualifiers (see the Core), some of them may be used
in a specific collaboration. An association end role may therefore include a subset of
the qualifiers defined by the corresponding association end of the base association.

A collaboration instance set references a collection of instances that play the roles
defined in the collaboration instance set’s collaboration. An instance participating in a
collaboration instance set plays a specific role; that is, conforms to a classifier role, in
the collaboration. The number of instances that should play one specific role in a
collaboration is specified by the classifier role’s multiplicity. Different instances may
play the same role but in different collaboration instance sets. Since all these instances
play the same role, they must all conform to the classifier role specifying the role.
Thus, they are normally instances of one of the base classifier of the classifier role, or
one of their descendants. The only requirement on conforming instances is that they
must offer operations according to the classifier role, as well as support attribute links
corresponding to the attributes specified by the classifier role, and links corresponding
to the association roles connected to the classifier role. They may, therefore, be
instances of any classifier meeting this requirement. The instances may, of course, have
more attribute links than required by the classifier role, which for example would be
the case if they originate from a classifier being a child of a base classifier. Moreover,
a conforming instance may also support more attribute links than required if it
originates from multiple classifiers (multiple classification). Finally, one instance may
play different roles in different collaboration instance sets of the same collaboration. In
fact, the instance may play multiple roles in the same collaboration instance set.

Collaborations (but not collaboration instance sets) may have generalization
relationships to other collaborations. This means that one collaboration can specify a
specialization of another collaboration’s task. This implies that all the roles of the
parent collaboration are also available in the child collaboration; the child
collaboration may, of course, also contain new roles. The former roles may possibly be
specialized with new features; that is, the role defined in the parent is replaced in the
child by a role with the same name as the parent role. The role in the child must
reference the same collection of features and the same collection of contained elements
as the role in the parent, and may also reference some additional features and
additional contained elements. In this way it is possible to specialize a collaboration
both by adding new roles and by replacing existing roles with specializations of them.
The specialized role, that is, a role with a generalization relationship to the replaced
role, may both reference new features and replace (override) features of its parent.
Note that the base classifiers of the specialized roles are not necessarily specializations
of the base classifiers of the parent’s roles; it is enough that they contain all the
required features.

How the instances referenced by a collaboration instance set should interact to jointly
perform the behavior of the classifier realized by the collaboration is specified with a
set of interactions (see below). The collaboration thus specifies the context in which
these interactions are performed. If the collaboration represents an operation, the
context includes things like parameters, attributes, and classifiers contained in the
classifier owning the operation. The interactions then specify how the arguments, the
attribute values, the instances etc. will cooperate to perform the behavior specified by
the operation. If the collaboration is a specialization of another collaboration, all
communications specified by the parent collaboration are also included in the child, as
September 2002 OMG-UML , v1.5 Collaborations 2-129

2 ML Semantics
the child collaboration includes all the roles of the parent. However, new messages
may be inserted into these sequences of communication, since the child may include
specializations of the parent’s roles as well as new roles. The child may of course also
include completely new interactions that do not exist in the parent.

Two or more collaborations may be composed to form a new collaboration. For
example, when refining a superordinate use case into a set of subordinate use cases, the
collaborations specifying each of the subordinate use cases may be composed into one
collaboration, which will be a (simple) refinement of the superordinate collaboration.
The composition is done by observing that at least one instance must participate in
both sets of collaborating instances. This instance has to conform to one classifier role
in each collaboration. In the composite collaboration these two classifier roles are
merged into a new one, which will contain all features included in either of the two
original classifier roles. The new classifier role will, of course, be able to fulfill the
requirements of both of the previous collaborations, so the instance participating in
both of the two sets of collaborating instances will conform to the new classifier role.

A parameterized collaboration represents a design construct that can be used
repeatedly in different designs. The participants in the collaboration, including the
classifiers and relationships, can be parameters of the generic collaboration. The
parameters are bound to particular model elements in each instantiation of generic
collaboration. Such a parameterized collaboration can capture the structure of a design
pattern (note that a design pattern involves more than structural aspects). Whereas
most collaborations can be anonymous because they are attached to a named model
element, collaboration patterns are free standing design constructs that must have
names.

A collaboration may be a specification of a template. There will not be any instances
of such a collaboration template, but it can be used for generating ordinary
collaborations, which may be instantiated. Collaboration templates may have
parameters that act like placeholders in the template. Usually, these parameters would
be used as base classifiers and associations, but other kinds of model elements can also
be defined as parameters in the collaboration, like operation or signal. In a
collaboration generated from the template these parameters are refined by other model
elements that make the collaboration instantiable.

Moreover, a collaboration may also contain a set of constraining model elements, like
constraints and generalizations perhaps together with some extra classifiers. These
constraining model elements do not participate in the collaboration themselves, but are
used for expressing the extra constraints on the participating elements in the
collaboration that cannot be covered by the participating roles themselves. For
example, in a collaboration template it might be required that the base classifiers of
two roles must have a common ancestor, or one role must be a subclass of another one.
These kinds of requirements cannot be expressed with association roles, as the
association roles express the required links between participating instances. An extra
set of model elements may therefore be included in the collaboration.
2-130 OMG-UML , v1.5 Collaborations September 2002

2 ML Semantics
2.10.4.2 Interaction

An interaction is defined in the context of a collaboration. It specifies the
communication patterns between its roles. More precisely, it contains a set of partially
ordered messages, each specifying one communication, such as what signal to be sent
or what operation to be invoked, as well as the roles to be played by the sender and the
receiver, respectively.

The purpose of an interaction is to specify the communication between an ensemble of
interacting instances performing a specific task. An interaction is defined within a
collaboration; that is, the collaboration defines the context in which the interaction
takes place. The instances performing the communication specified by the interaction
are included in a collaboration instance set; that is, they conform to the classifier roles
of the collaboration instance set’s collaboration.

An interaction specifies the sending of a set of stimuli. These are partially ordered
based on which execution thread they belong to. Within each thread the stimuli are sent
in a sequential order while stimuli of different threads may be sent in parallel or in an
arbitrary order.

An interaction instance set references the collection of stimuli that constitute the actual
communication between the collection of instances. These instances are the collection
of instances that participate in the collaboration instance set owning the interaction
instance set. Hence, the interaction instance set includes those stimuli that the instances
communicate when performing the task of the collaboration instance set. The stimuli
of an interaction instance set match the messages of the interaction instance set’s
interaction.

A message is a specification of a communication. It specifies the roles of the sender
and the receiver instances, as well as which association role specifies the
communication link. The message is connected to an action, which specifies the
statement that, when executed, causes the communication specified by the message to
take place. If the action is a call action or a send action, the signal to be sent or the
operation to be invoked in the communication is stated by the action. The action also
contains the argument expressions that, when executed, will determine the actual
arguments being transmitted in the communication. Moreover, any conditions or
iterations of the communication are also specified by the action. Apart from send
action and call action, the action connected to a message can also be of other kinds,
like create action and destroy action. In these cases, the communication will not raise a
signal or invoke an operation, but cause a new instance to be created or an already
existing instance to be destroyed. In the case of a create action, the receiver specified
by the message is the role to be played by the instance, which is created when the
action is performed.

The stimuli being sent when an action is executed conforms to a message, implying
that the sender and receiver instances of the stimuli are in conformance with the sender
and the receiver roles specified by the message. Furthermore, the action dispatching the
stimulus is the same as the action attached to the message. If the action connected to
the message is a create action or destroy action, the receiver role of the message
specifies the role to be played by the instance, or was played by the instance,
respectively.
September 2002 OMG-UML , v1.5 Collaborations 2-131

2 ML Semantics
The interaction specifies the activator and predecessors of each message. The activator
is the message that invoked the procedure that in turn invokes the current message.
Every message except the initial messages of an interaction thus has an activator. The
predecessors are the set of messages that must be completed before the current
message may be executed. The first message in a procedure of course has no
predecessors. If a message has more than one predecessor, it represents the joining of
two threads of control. If a message has more than one successor (the inverse of
predecessor), it indicates a fork of control into multiple threads. Thus, the
predecessor’s relationship imposes a partial ordering on the messages within a
procedure, whereas the activator relationship imposes a tree on the activation of
operations. Messages may be executed concurrently subject to the sequential
constraints imposed by the predecessors and activator relationship.

2.10.5 Notes

In UML, the term Pattern is a synonym for a collaboration template that describes the
structure of a design pattern. This definition is not as powerful as the term is used in
other contexts. In general, design patterns involve many nonstructural aspects, such as
heuristics for their use and lists of advantages and disadvantages. Such aspects are not
modeled by UML and may be represented as text or tables.

2.11 Use Cases

2.11.1 Overview

The Use Cases package is a subpackage of the Behavioral Elements package. It
specifies the concepts used for definition of the functionality of an entity like a system.
The package uses constructs defined in the Foundation package of UML as well as in
the Common Behavior package.

The elements in the Use Cases package are primarily used to define the behavior of an
entity, like a system or a subsystem, without specifying its internal structure. The key
elements in this package are UseCase and Actor. Instances of use cases and instances
of actors interact when the services of the entity are used. How a use case is realized in
terms of cooperating objects, defined by classes inside the entity, can be specified with
a Collaboration. A use case of an entity may be refined to a set of use cases of the
elements contained in the entity. How these subordinate use cases interact can also be
expressed in a Collaboration. The specification of the functionality of the system itself
is usually expressed in a separate use-case model; that is, a Model stereotyped
«useCaseModel» (see Section 4.3, “Stereotypes and Notation,” on page 4-2). The use
cases and actors in the use-case model are equivalent to those of the top-level package.

The following sections describe the abstract syntax, well-formedness rules, and
semantics of the Use Cases package.
2-132 OMG-UML , v1.5 Use Cases September 2002

2 ML Semantics
2.11.2 Abstract Syntax

The abstract syntax for the Use Cases package is expressed in graphic notation in
Figure 2-21 on page 2-133.

Figure 2-21 Use Cases

The following metaclasses are contained in the Use Cases package.

2.11.2.1 Actor

An actor defines a coherent set of roles that users of an entity can play when
interacting with the entity. An actor may be considered to play a separate role with
regard to each use case with which it communicates.

UseCaseInstance

Actor

Classifier
(from Core)

Instance
(from Common Behavior)

1..* *

+classifier

1..* *

ModelElement
(from Core)

Include

UseCase

*

1

+include*

+addition 1

*

1

*

+base1

ExtensionPoint
location : LocationReference

*1

+extensionPoint

*1

Extend
condition : BooleanExpression

1

*

+base1

*

1

*

+extension 1

+extend *

1..*

*

+extensionPoint
1..*

{ordered}

*

Relationship
(from Core)
September 2002 OMG-UML , v1.5 Use Cases 2-133

2 ML Semantics
In the metamodel Actor is a subclass of Classifier. An Actor has a Name and may
communicate with a set of UseCases, and, at realization level, with Classifiers taking
part in the realization of these UseCases. An Actor may also have a set of Interfaces,
each describing how other elements may communicate with the Actor.

An Actor may have generalization relationships to other Actors. This means that the
child Actor will be able to play the same roles as the parent Actor, that is,
communicate with the same set of UseCases, as the parent Actor.

2.11.2.2 Extend

An extend relationship defines that instances of a use case may be augmented with
some additional behavior defined in an extending use case.

In the metamodel an Extend relationship is a directed relationship implying that a
UseCaseInstance of the base UseCase may be augmented with the structure and
behavior defined in the extending UseCase. The relationship consists of a condition,
which must be fulfilled if the extension is to take place, and a sequence of references
to extension points in the base UseCase where the additional behavior fragments are to
be inserted.

Attributes

Associations

2.11.2.3 ExtensionPoint

An extension point references one or a collection of locations in a use case where the
use case may be extended.

In the metamodel an ExtensionPoint has a name and one or a collection of descriptions
of locations in the behavior of the owning use case, where a piece of behavior may be
inserted into the owning use case.

Attributes

condition An expression specifying the condition that must be fulfilled if the
extension is to take place.

base The UseCase to be extended.

extension The UseCase specifying the extending behavior.

extensionPoint A sequence of extension-points in the base UseCase specifying
where the additions are to be inserted.

location A reference to one location or a collection of locations where an
extension to the behavior of the use case may be inserted.
2-134 OMG-UML , v1.5 Use Cases September 2002

2 ML Semantics
2.11.2.4 Include

An include relationship defines that a use case contains the behavior defined in another
use case.

In the metamodel an Include relationship is a directed relationship between two
UseCases implying that the behavior in the addition UseCase is inserted into the
behavior of the base UseCase. The base UseCase may only depend on the result of
performing the behavior defined in the addition UseCase, but not on the structure; that
is, on the existence of specific attributes and operations, of the addition UseCase.

2.11.2.5 Associations

2.11.2.6 UseCase

The use case construct is used to define the behavior of a system or other semantic
entity without revealing the entity’s internal structure. Each use case specifies a
sequence of actions, including variants, that the entity can perform, interacting with
actors of the entity.

In the metamodel UseCase is a subclass of Classifier, specifying the sequences of
actions performed by an instance of the UseCase. The actions include changes of the
state and communications with the environment of the UseCase. The sequences can be
described using many different techniques, like Operation and Methods,
ActivityGraphs, and StateMachines.

There may be Associations between UseCases and the Actors of the UseCases. Such
an Association states that an instance of the UseCase and a user playing one of the
roles of the Actor communicate. UseCases may be related to other UseCases by
Extend, Include, and Generalization relationships. An Include relationship means that a
UseCase includes the behavior described in another UseCase, while an Extend
relationship implies that a UseCase may extend the behavior described in another
UseCase, ruled by a condition. Generalization between UseCases means that the child
is a more specific form of the parent. The child inherits all Features and Associations
of the parent, and may add new Features and Associations.

The realization of a UseCase may be specified by a set of Collaborations; that is, the
Collaborations define how Instances in the system interact to perform the sequences of
the UseCase.

addition The UseCase specifying the additional behavior.

base The UseCase that is to include the addition.
September 2002 OMG-UML , v1.5 Use Cases 2-135

2 ML Semantics
Associations

2.11.2.7 UseCaseInstance

A use case instance is the performance of a sequence of actions specified in a use case.

In the metamodel UseCaseInstance is a subclass of Instance. Each method performed
by a UseCaseInstance is performed as an atomic transaction; that is, it is not
interrupted by any other UseCaseInstance.

An explicitly described UseCaseInstance is called a scenario.

2.11.3 Well-FormednessRules

The following well-formedness rules apply to the Use Cases package.

2.11.3.1 Actor

[1] Actors can only have Associations to UseCases, Subsystems, and Classes and these
Associations are binary.

self.associations->forAll(a |

a.connection->size = 2 and

a.allConnections->exists(r | r.type.oclIsKindOf(Actor)) and

a.allConnections->exists(r |

r.type.oclIsKindOf(UseCase) or

r.type.oclIsKindOf(Subsystem) or

r.type.oclIsKindOf(Class)))

[2] Actors cannot contain any Classifiers.

self.contents->isEmpty

2.11.3.2 Extend

[1] The referenced ExtensionPoints must be included in set of ExtensionPoint in the target
UseCase.

self.base.allExtensionPoints -> includesAll (self.extensionPoint)

extend A collection of Extend relationships to UseCases that the UseCase
extends.

extensionPoint Defines a collection of ExtensionPoints where the UseCase may
be extended.

include A collection of Include relationships to UseCases that the
UseCase includes.
2-136 OMG-UML , v1.5 Use Cases September 2002

2 ML Semantics
2.11.3.3 ExtensionPoint

[1] The name must not be the empty string.

not self.name = ‘’

2.11.3.4 Include

No extra well-formedness rules.

2.11.3.5 UseCase

[1] UseCases can only have binary Associations.

self.associations->forAll(a | a.connection->size = 2)

[2] UseCases cannot have Associations to UseCases specifying the same entity.

self.associations->forAll(a |

a.allConnections->forAll(s, o|

(s.type.specificationPath->isEmpty and

o.type.specificationPath->isEmpty)

or

(not s.type.specificationPath->includesAll(

o.type.specificationPath) and

not o.type.specificationPath->includesAll(

s.type.specificationPath))

))

[3] A UseCase cannot contain any Classifiers.

self.contents->isEmpty

[4] The names of the ExtensionPoints must be unique within the UseCase.

self.allExtensionPoints -> forAll (x, y |

x.name = y.name implies x = y)

Additional operations

[1] The operation specificationPath results in a set containing all surrounding Namespaces
that are not instances of Package.

specificationPath : Set(Namespace)

specificationPath = self.allSurroundingNamespaces->select(n |

n.oclIsKindOf(Subsystem) or n.oclIsKindOf(Class))

[2] The operation allExtensionPoints results in a set containing all ExtensionPoints of the
UseCase.

allExtensionPoints : Set(ExtensionPoint)

allExtensionPoints = self.allSupertypes.extensionPoint -> union (

self.extensionPoint)
September 2002 OMG-UML , v1.5 Use Cases 2-137

2 ML Semantics
2.11.3.6 UseCaseInstance

[1] The Classifier of a UseCaseInstance must be a UseCase.

self.classifier->forAll (c | c.oclIsKindOf (UseCase))

[2] A UseCaseInstance may not contain any Instances.

self.contents->isEmpty

2.11.4 Detailed Semantics

This section provides a description of the semantics of the elements in the Use Cases
package, and its relationship to other elements in the Behavioral Elements package.

2.11.4.1 Actor

Figure 2-22 Actor Illustration

Actors model parties outside an entity, such as a system, a subsystem, or a class that
interact with the entity. Each actor defines a coherent set of roles users of the entity can
play when interacting with the entity. Every time a specific user interacts with the
entity, it is playing one such role. An instance of an actor is a specific user interacting
with the entity. Any instance that conforms to an actor can act as an instance of the
actor. If the entity is a system, the actors represent both human users and other
systems. Some of the actors of a lower level subsystem or a class may coincide with
actors of the system, while others appear inside the system. The roles defined by the
latter kind of actors are played by instances of classifiers in other packages or
subsystems; in the latter case the classifier may belong to either the specification part
or the realization part of the subsystem.

Since an actor is outside the entity, its internal structure is not defined but only its
external view as seen from the entity. Actor instances communicate with the entity by
sending and receiving message instances to and from use case instances and, at
realization level, to and from objects. This is expressed by associations between the
actor and the use case or the class. Furthermore, interfaces can be connected to an
actor, defining how other elements may interact with the actor.

Interface

Generalization

Association

AssociationEnd

Namespace

Actor
* 1

*

*

*

*

2-138 OMG-UML , v1.5 Use Cases September 2002

2 ML Semantics
Two or more actors may have commonalities; that is, communicate with the same set
of use cases in the same way. The commonality is expressed with generalizations to
another (possibly abstract) actor, which models the common role(s). An instance of a
child can always be used where an instance of the parent is expected.

2.11.4.2 UseCase

Figure 2-23 UseCase Illustration

In the following text the term entity is used when referring to a system, a subsystem, or
a class and the terms model element and element denote a subsystem or a class.

The purpose of a use case is to define a piece of behavior of an entity without revealing
the internal structure of the entity. The entity specified in this way may be a system or
any model element that contains behavior, like a subsystem or a class, in a model of a
system. Each use case specifies a service the entity provides to its users; that is, a
specific way of using the entity. The service, which is initiated by a user, is a complete
sequence. This implies that after its performance the entity will in general be in a state
in which the sequence can be initiated again. A use case describes the interactions
between the users and the entity as well as the responses performed by the entity, as
these responses are perceived from the outside of the entity. A use case also includes
possible variants of this sequence (for example, alternative sequences, exceptional
behavior, error handling, etc.). The complete set of use cases specifies all different
ways to use the entity; that is, all behavior of the entity is expressed by its use cases.
These use cases can be grouped into packages for convenience.

From a pragmatic point of view, use cases can be used both for specification of the
(external) requirements on an entity and for specification of the functionality offered
by an (already realized) entity. Moreover, the use cases also indirectly state the
requirements the specified entity poses on its users; that is, how they should interact so
the entity will be able to perform its services.

Since users of use cases always are external to the specified entity, they are represented
by actors of the entity. Thus, if the specified entity is a system or a subsystem at the
topmost level, the users of its use cases are modeled by the actors of the system. Those

UseCase

Attribute

Operation

UseCaseInstance

AssociationEndAssociation

Namespace Interface

Include

Extend

ExtensionPoint

*

*

*
*

*

*

*
*

*

*

September 2002 OMG-UML , v1.5 Use Cases 2-139

2 ML Semantics
actors of a lower level subsystem or a class that are internal to the system are often not
explicitly defined. Instead, the use cases relate directly to model elements conforming
to these implicit actors; that is, whose instances play the roles of these actors in
interaction with the use cases. These model elements are contained in other packages
or subsystems, where in the subsystem case they may be contained in the specification
part or the realization part. The distinction between actor and conforming element like
this is often neglected; thus, they are both referred to by the term actor.

There may be associations between use cases and actors, meaning that the instances of
the use case and the actor communicate with each other. One actor may communicate
with several use cases of an entity; that is, the actor may request several services of the
entity, and one use case communicates with one or several actors when providing its
service. Note that two use cases specifying the same entity cannot communicate with
each other since each of them individually describes a complete usage of the entity.
Moreover, use cases always use signals when communicating with actors outside the
system, while they may use other communication semantics when communicating with
elements inside the system.

The interaction between actors and use cases can be defined with interfaces. An
interface of a use case defines a subset of the entire interaction defined in the use case.
Different interfaces offered by the same use case need not be disjoint.

A use case can be described in plain text, using operations and methods together with
attributes, in activity graphs, by a state machine, or by other behavior description
techniques, such as preconditions and postconditions. The interaction between a use
case and its actors can also be presented in collaboration diagrams for specification of
the interactions between the entity containing the use case and the entity’s
environment.

A use-case instance is a performance of a use case, initiated by a message instance
from an instance of an actor. As a response the use-case instance performs a sequence
of actions as specified by the use case, like communicating with actor instances, not
necessarily only the initiating one. The actor instances may send new message
instances to the use-case instance and the interaction continues until the instance has
responded to all input and does not expect any more input, when it ends. Each method
performed by a use-case instance is performed as an atomic transaction; that is, it is not
interrupted by any other use-case instance.

In the case where subsystems are used to model the system’s containment hierarchy,
the system can be specified with use cases at all levels, as use cases can be used to
specify subsystems and classes. A use case specifying one model element is then
refined into a set of smaller use cases, each specifying a service of a model element
contained in the first one. The use case of the whole may be referred to as
superordinate to its refining use cases, which, correspondingly, may be called
subordinate in relation to the first one. The functionality specified by each
superordinate use case is completely traceable to its subordinate use cases. Note,
though, that the structure of the container element is not revealed by the use cases,
since they only specify the functionality offered by the element. The subordinate use
cases of a specific superordinate use case cooperate to perform the superordinate one.
Their cooperation is specified by collaborations and may be presented in collaboration
diagrams. A specific subordinate use case may appear in several collaborations; that is
2-140 OMG-UML , v1.5 Use Cases September 2002

2 ML Semantics
play a role in the performances of several superordinate use cases. In each such
collaboration, other roles specify the cooperation with this specific subordinate use
case. These roles are the roles played by the actors of that subordinate use case. Some
of these actors may be the actors of the superordinate use case, as each actor of a
superordinate use case appears as an actor of at least one of the subordinate use cases.
Furthermore, the interfaces of a superordinate use case are traceable to the interfaces of
those subordinate use cases that communicate with actors that are also actors of the
superordinate use case.

The environment of subordinate use cases is the model element containing the model
elements specified by these use cases. Thus, from a bottom-up perspective, an
interaction between subordinate use cases results in a superordinate use case, that is, a
use case of the container element.

Use cases of classes are mapped onto operations of the classes, since a service of a
class in essence is the invocation of the operations of the class. Some use cases may
consist of the application of only one operation, while others may involve a set of
operations, usually in a well-defined sequence. One operation may be needed in several
of the services of the class, and will therefore appear in several use cases of the class.

The realization of a use case depends on the kind of model element it specifies. For
example, since the use cases of a class are specified by means of operations of the
class, they are realized by the corresponding methods, while the use cases of a
subsystem are realized by the elements contained in the subsystem. Since a subsystem
does not have any behavior of its own, all services offered by a subsystem must be a
composition of services offered by elements contained in the subsystem (i.e.,
eventually by classes). These elements will collaborate and jointly perform the
behavior of the specified use case. One or a set of collaborations describes how the
realization of a use case is made. Hence, collaborations are used for specification of
both the refinement and the realization of a use case in terms of subordinate use cases.

The usage of use cases at all levels imply not only a uniform way of specification of
functionality at all levels, but also a powerful technique for tracing requirements at the
system package level down to operations of the classes. The propagation of the effect
of modifying a single operation at the class level all the way up to the behavior of the
system package is managed in the same way.

Commonalities between use cases can be expressed in three different ways: with
generalization, include, and extend relationships. A generalization relationship between
use cases implies that the child use case contains all the attributes, sequences of
behavior, and extension points defined in the parent use case, and participates in all
relationships of the parent use case. The child use case may also define new behavior
sequences, as well as add additional behavior into and specialize existing behavior of
the inherited ones. One use case may have several parent use cases and one use case
may be a parent to several other use cases.

An include relationship between two use cases means that the behavior defined in the
target use case is included at one location in the sequence of behavior performed by an
instance of the base use case. When a use-case instance reaches the location where the
behavior of an another use case is to be included, it performs all the behavior described
by the included use case and then continues according to its original use case. This
September 2002 OMG-UML , v1.5 Use Cases 2-141

2 ML Semantics
means that although there may be several paths through the included use case due to
(e.g., conditional statements), all of them must end in such a way that the use-case
instance can continue according to the original use case. One use case may be included
in several other use cases and one use case may include several other use cases. The
included use case may not be dependent on the base use case. In that sense the
included use case represents encapsulated behavior, which may easily be reused in
several use cases. Moreover, the base use case may only be dependent on the results of
performing the included behavior and not on structure, like Attributes and
Associations, of the included use case.

An extend relationship defines that a use case may be augmented with some additional
behavior defined in another use case. One use case may extend several use cases and
one use case may be extended by several use cases. The base use case may not be
dependent of the addition of the extending use case. The extend relationship contains a
condition and references a sequence of extension points in the target use case. The
condition must be satisfied if the extension is to take place, and the references to the
extension points define the locations in the base use case where the additions are to be
made. Once an instance of a use case is to perform some behavior referenced by an
extension point of its use case, and the extension point is the first one in an extends
relationship’s sequence of references to extension points, the condition of the
relationship is evaluated. If the condition is fulfilled, the sequence obeyed by the use-
case instance is extended to include the sequence of the extending use case. The
different parts of the extending use case are inserted at the locations defined by the
sequence of extension points in the relationship -- one part at each referenced
extension point. Note that the condition is only evaluated once: at the first referenced
extension point, and if it is fulfilled all of the extending use case is inserted in the
original sequence. An extension point may define one location or a set of locations in
the behavior defined by the use case. However, if an extend relationship references a
sequence of extension points, only the first one may define a set of locations. All other
ones must define exactly one location each. Which of the locations of the first
extension point to use is determined by where the extension is triggered. This is not
possible for the other ones. In other words, once the extension has been triggered, all
locations where to add the different part of the extending use case must be uniquely
defined. Hence, all extension points, except for the first one, referenced by an extend
relationship must define single locations. The description of the location references by
an extension point can be made in several different ways, like textual description of
where in the behavior the addition should be made, pre-or post conditions, or using the
name of a state in a state machine.

Note that the three kinds of relationships described above can only exist between use
cases specifying the same entity. The reason for this is that the use cases of one entity
specify the behavior of that entity alone; that is, all use-case instances are performed
entirely within that entity. If a use case would have a generalization, include, or extend
relationship to a use case of another entity, the resulting use-case instances would
involve both entities, resulting in a contradiction. However, generalization, include, and
extend relationships can be defined from use cases specifying one entity to use cases of
another one if the first entity has a generalization to the second one, since the contents
of both entities are available in the first entity. However, the contents of the second
entity must be at least protected, so they become available inside the child entity.
2-142 OMG-UML , v1.5 Use Cases September 2002

2 UML Semantics
As a first step when developing a system, the dynamic requirements of the system as a
whole can be expressed with use cases. The entity being specified is then the whole
system, and the result is a separate model called a use-case model, that is, a model with
the stereotype «useCaseModel». Next, the realization of the requirements is expressed
with a model containing a system package, probably a package hierarchy, and at the
bottom a set of classes. If the system package, that is, a package with the stereotype
«topLevelPackage» is a subsystem, its abstract behavior is naturally the same as that of
the system. Thus, if use cases are used for the specification part of the system package,
these use cases are equivalent to those in the use-case model of the system; that is, they
express the same behavior but possibly slightly differently structured. In other words,
all services specified by the use cases of a system package, and only those, define the
services offered by the system. Furthermore, if several models are used for modeling
the realization of a system (for example, an analysis model and a design model), the
set of use cases of all system packages and the use cases of the use-case model must be
equivalent.

2.11.5 Notes

A pragmatic rule of use when defining use cases is that each use case should yield
some kind of observable result of value to (at least) one of its actors. This ensures that
the use cases are complete specifications and not just fragments.

2UMLSemantics
2UMLSemantics

2.12 State Machines

2.12.1 Overview

The State Machine package is a subpackage of the Behavioral Elements package. It specifies a
set of concepts that can be used for modeling discrete behavior through finite state-transition
systems. These concepts are based on concepts defined in the Foundation package as well as
concepts defined in the Common Behavior package. This enables integration with the other
subpackages in Behavioral Elements.

The state machine formalism described in this section is an object-based variant of Harel
statecharts. It incorporates several concepts similar to those defined in ROOMcharts, a variant
of statechart defined in the ROOM modeling language. The major differences relative to
classical Harel statecharts are described on page 172.

State machines can be used to specify behavior of various elements that are being modeled. For
example, they can be used to model the behavior of individual entities (e.g., class instances) or
to define the interactions (e.g., collaborations) between entities.

In addition, the state machine formalism provides the semantic foundation for activity graphs.
This means that activity graphs are simply a special form of state machines.

The following sections describe the abstract syntax, well-formedness rules, and semantics of the
State Machines package. Activity graphs are described in section 2.13.
September 2002 OMG-UML , v1.5 State Machines 2-143

2 UML Semantics
2.12.2 Abstract Syntax

The abstract syntax for state machines is expressed graphically in Figure 2-24 on page 2-145,
which covers all the basic concepts of state machine graphs such as states and transitions.
Figure 2-25 on page 2-146 describes the abstract syntax of events that can trigger state machine
behavior.

The specifications of the concepts defined in these two diagrams are listed in alphabetical order
following the figures.
2-144 OMG-UML , v1.5 State Machines September 2002

2 UML Semantics
Figure 2-24 State Machines - Main

Pseudostate

ind: PseudostateKind

SimpleState

SynchState

bound: UnlimitedInteger

StubState

referenceState: Name

FinalStateCompositeState

SubmachineState

ModelElement
(fromCore)

Guard

expression: BooleanExpression

Event

StateVertex

0..*

0..1

+subvertex

0..*

+container

0..1

StateMachine

*

1

*

+submachine

1

*

0..1

+behavior *

+context 0..1

State

0..*

0..*

0..* +deferrableEvent

0..*

1

..1

+top1

..1

Procedure
(fromCommonBehavior)

0..1

0..1

0..1 +doActivity

0..1

0..1

0..1

0..1 +exit

0..1

0..1 0..10..1

+entry

0..1

Transition

1

0..1

1

+guard0..1

0..1

*

+trigger0..1

*
1 *

+source

1

+outgoing

*

1 *

+target

1

+incoming

*

*

0..1

transitions*

0..1

*

0..1

+internalTransition*

0..1 0..1

0..1

+effect0..1

0..1
September 2002 OMG-UML , v1.5 State Machines 2-145

2 UML Semantics
Figure 2-25 State Machines - Events

CallEvent

A call event represents the reception of a request to synchronously invoke a specific operation.
(Note that a call event instance is distinct from the call action that caused it.) The expected
result is the execution of a sequence of actions which characterize the operation behavior at a
particular state.

Two special cases of CallEvent are the object creation event and the object destruction event.

Associations

operation Designates the operation whose invocation raised the call event

TimeEvent

when : TimeExpression

ChangeEvent
changeExpression : BooleanExpression

Operation
(from Core)

CallEvent

1

*

+operation 1

+occurrence *

SignalEvent

Signal
(from Common Behavior)

*

1

+occurrence *

+signal 1

Parameter
(from Core)

Event

* 0..1

+parameter

*

{ordered}

0..1

ModelElement
(fromCore)
2-146 OMG-UML , v1.5 State Machines September 2002

2 UML Semantics
Stereotypes

ChangeEvent

A change event models an event that occurs when an explicit boolean expression becomes true
as a result of a change in value of one or more attributes or associations. A change event is
raised implicitly and is not the result of some explicit change event action.

The change event should not be confused with a guard. A guard is only evaluated at the time an
event is dispatched whereas, conceptually, the boolean expression associated with a change
event is evaluated continuously until it becomes true. The event that is generated remains until
it is consumed even if the boolean expression changes to false after that.

Attributes

CompositeState

A composite state is a state that contains other state vertices (states, pseudostates, etc.). The
association between the composite and the contained vertices is a composition association.
Hence, a state vertex can be a part of at most one composite state.

Any state enclosed within a composite state is called a substate of that composite state. It is
called a direct substate when it is not contained by any other state; otherwise it is referred to as
a transitively nested substate.

CompositeState is a child of State.

Associations

Attributes

«create»
CallEvent

Create is a stereotyped call event denoting that the instance receiving that
event has just been created. For state machines, it triggers the initial
transition at the topmost level of the state machine (and is the only kind
of trigger that may be applied to an initial transition).

«destroy»
CallEvent

Destroy is a stereotyped call event denoting that the instance receiving
the event is being destroyed.

changeExpression The boolean expression that specifies the change event.

subvertex The set of state vertices that are owned by this composite state.

isConcurrent A boolean value that specifies the decomposition semantics. If this attribute is
true, then the composite state is decomposed directly into two or more
orthogonal conjunctive components called regions (usually associated with
concurrent execution). If this attribute is false, then there are no direct
orthogonal components in the composite.
September 2002 OMG-UML , v1.5 State Machines 2-147

2 UML Semantics
Event

An event is a specification of a type of observable occurrence. The occurrence that generates an
event instance is assumed to take place at an instant in time with no duration.

Strictly speaking, the term “event” is used to refer to the type and not to an instance of the type.
However, on occasion, where the meaning is clear from the context, the term is also used to
refer to an event instance.

Event is a child of ModelElement.

Associations

FinalState

A special kind of state signifying that the enclosing composite state is completed. If the
enclosing state is the top state, then it means that the entire state machine has completed.

A final state cannot have any outgoing transitions.

FinalState is a child of State.

Guard

A guard is a boolean expression that is attached to a transition as a fine-grained control over its
firing. The guard is evaluated when an event instance is dispatched by the state machine. If the
guard is true at that time, the transition is enabled, otherwise, it is disabled.

Guards should be pure expressions without side effects. Guard expressions with side effects are
ill formed.

Guard is a child of ModelElement.

Attributes

isRegion A derived boolean value that indicates whether a CompositeState is a substate of
a concurrent state. If it is true, then this composite state is a direct substate of a
concurrent state.

parameter The list of parameters defined by the event.

expression The boolean expression that specifies the guard.
2-148 OMG-UML , v1.5 State Machines September 2002

2 UML Semantics
PseudoState

A pseudostate is an abstraction that encompasses different types of transient vertices in the state
machine graph. They are used, typically, to connect multiple transitions into more complex state
transitions paths. For example, by combining a transition entering a fork pseudostate with a set
of transitions exiting the fork pseudostate, we get a compound transition that leads to a set of
concurrent target states.

The following pseudostate kinds are defined:

• An initial pseudostate represents a default vertex that is the source for a single transition to
the default state of a composite state. There can be at most one initial vertex in a composite
state.

• deepHistory is used as a shorthand notation that represents the most recent active
configuration of the composite state that directly contains this pseudostate; that is, the state
configuration that was active when the composite state was last exited. A composite state
can have at most one deep history vertex. A transition may originate from the history
connector to the default deep history state. This transition is taken in case the composite
state had never been active before.

• shallowHistory is a shorthand notation that represents the most recent active substate of its
containing state (but not the substates of that substate). A composite state can have at most
one shallow history vertex. A transition coming into the shallow history vertex is equivalent
to a transition coming into the most recent active substate of a state. A transition may
originate from the history connector to the initial shallow history state. This transition is
taken in case the composite state had never been active before.

• join vertices serve to merge several transitions emanating from source vertices in different
orthogonal regions. The transitions entering a join vertex cannot have guards.

• fork vertices serve to split an incoming transition into two or more transitions terminating on
orthogonal target vertices. The segments outgoing from a fork vertex must not have guards.

• junction vertices are semantic-free vertices that are used to chain together multiple
transitions. They are used to construct compound transition paths between states. For
example, a junction can be used to converge multiple incoming transitions into a single
outgoing transition representing a shared transition path (this is known as an merge).
Conversely, they can be used to split an incoming transition into multiple outgoing transition
segments with different guard conditions. This realizes a static conditional branch. (In the
latter case, outgoing transitions whose guard conditions evaluate to false are disabled. A
predefined guard denoted “else” may be defined for at most one outgoing transition. This
transition is enabled if all the guards labeling the other transitions are false.) Static
conditional branches are distinct from dynamic conditional branches that are realized by
choice vertices (described below).

• choice vertices which, when reached, result in the dynamic evaluation of the guards of its
outgoing transitions. This realizes a dynamic conditional branch. It allows splitting of
transitions into multiple outgoing paths such that the decision on which path to take may be
a function of the results of prior actions performed in the same run-to-completion step. If
more than one of the guards evaluates to true, an arbitrary one is selected. If none of the
guards evaluates to true, then the model is considered ill-formed. (To avoid this, it is
September 2002 OMG-UML , v1.5 State Machines 2-149

2 UML Semantics
recommended to define one outgoing transition with the predefined “else” guard for every
choice vertex.) Choice vertices should be distinguished from static branch points that are
based on junction points (described above).

PseudoState is a child of StateVertex.

Attributes

SignalEvent

A signal event represents the reception of a particular (asynchronous) signal. A signal event
instance should not be confused with the action (e.g., send action) that generated it.

SignalEvent is a child of Event.

Associations

SimpleState

A SimpleState is a state that does not have substates.

It is a child of State.

State

A state is an abstract metaclass that models a situation during which some (usually implicit)
invariant condition holds. The invariant may represent a static situation such as an object
waiting for some external event to occur. However, it can also model dynamic conditions such
as the process of performing some activity (i.e., the model element under consideration enters
the state when the activity commences and leaves it as soon as the activity is completed).

State is a child of StateVertex.

Associations

kind Determines the precise type of the PseudoState and can be one of: initial,
deepHistory, shallowHistory, join, fork, junction, or choice.

signal The specific signal that is associated with this event.

deferrableEvent A list of events that are candidates to be retained by the state machine if they
trigger no transitions out of the state (not consumed).

entry An optional procedure that is executed whenever this state is entered regardless
of the transition taken to reach the state. If defined, entry actions are always
executed to completion prior to any internal activity or transitions performed
within the state.
2-150 OMG-UML , v1.5 State Machines September 2002

2 UML Semantics
StateMachine

A state machine is a specification that describes all possible behaviors of some dynamic model
element. Behavior is modeled as a traversal of a graph of state nodes interconnected by one or
more joined transition arcs that are triggered by the dispatching of series of event instances.
During this traversal, the state machine executes a series of actions associated with various
elements of the state machine.

StateMachine has a composition relationship to State, which represents the top-level state, and
a set of transitions. This means that a state machine owns its transitions and its top state. All
remaining states are transitively owned through the state containment hierarchy rooted in the
top state. The association to ModelElement provides the context of the state machine. A
common case of the context relation is where a state machine is used to specify the lifecycle of
a classifier.

Associations

StateVertex

A StateVertex is an abstraction of a node in a statechart graph. In general, it can be the source
or destination of any number of transitions.

StateVertex is a child of ModelElement.

exit An optional procedure that is executed whenever this state is exited regardless
of which transition was taken out of the state. If defined, exit actions are always
executed to completion only after all internal activities and transition actions
have completed execution.

doActivity An optional activity that is executed while being in the state. The execution
starts when this state is entered, and stops either by itself, or when the state is
exited, whichever comes first.

internalTransition A set of transitions that, if triggered, occur without exiting or entering this state.
Thus, they do not cause a state change. This means that the entry or exit
condition of the State will not be invoked. These transitions can be taken even if
the state machine is in one or more regions nested within this state.

context An association to the model element that whose behavior is specified by this
state machine. A model element may have more than one state machine
(although one is sufficient for most purposes). Each state machine is optionally
owned by one model element.

top Designates the top-level state that is the root of the state containment hierarchy.
There is exactly one state in every state machine that is the top state.

transition The set of transitions owned by the state machine. Note that internal transitions
are owned by their containing states and not by the state machine.
September 2002 OMG-UML , v1.5 State Machines 2-151

2 UML Semantics
Associations

StubState

A stub state can appear within a submachine state and represents an actual subvertex contained
within the referenced state machine. It can serve as a source or destination of transitions that
connect a state vertex in the containing state machine with a subvertex in the referenced state
machine.

StubState is a child of State.

Associations

SubmachineState

A submachine state is a syntactical convenience that facilitates reuse and modularity. It is a
shorthand that implies a macro-like expansion by another state machine and is semantically
equivalent to a composite state. The state machine that is inserted is called the referenced state
machine while the state machine that contains the submachine state is called the containing
state machine. The same state machine may be referenced more than once in the context of a
single containing state machine. In effect, a submachine state represents a “call” to a state
machine “subroutine” with one or more entry and exit points.

The entry and exit points are specified by stub states.

SubmachineState is a child of State.

Associations

SynchState

A synch state is a vertex used for synchronizing the concurrent regions of a state machine. It is
different from a state in the sense that it is not mapped to a boolean value (active, not active),
but an integer. A synch sate is used in conjunction with forks and joins to insure that one region
leaves a particular state or states before another region can enter a particular state or states.

SynchState is a child of StateVertex.

outgoing Specifies the transitions departing from the vertex.

incoming Specifies the transitions entering the vertex.

container The composite state that contains this state vertex.

referenceState Designates the referenced state as a pathname (a name formed by the
concatenation of the name of a state and the successive names of all states that
contain it, up to the top state).

submachine The state machine that is to be substituted in place of the submachine state.
2-152 OMG-UML , v1.5 State Machines September 2002

2 UML Semantics
Attributes

TimeEvent

A TimeEvent models the expiration of a specific deadline. Note that the time of occurrence of a
time event instance (i.e., the expiration of the deadline) is the same as the time of its reception.
However, it is important to note that there may be a variable delay between the time of
reception and the time of dispatching (e.g., due to queueing delays).

The expression specifying the deadline may be relative or absolute. If the time expression is
relative and no explicit starting time is defined, then it is relative to the time of entry into the
source state of the transition triggered by the event. In the latter case, the time event instance is
generated only if the state machine is still in that state when the deadline expires.

Attributes

Transition

A transition is a directed relationship between a source state vertex and a target state vertex. It
may be part of a compound transition, which takes the state machine from one state
configuration to another, representing the complete response of the state machine to a particular
event instance.

Transition is a child of ModelElement.

Associations

bound A positive integer or the value “unlimited” specifying the maximal count of the
SynchState. The count is the difference between the number of times the
incoming and outgoing transitions of the synch state are fired

when Specifies the corresponding time deadline

trigger Specifies the event that fires the transition. There can be at most one trigger per
transition

guard A boolean predicate that provides a fine-grained control over the firing of the
transition. It must be true for the transition to be fired. It is evaluated at the time
the event is dispatched. There can be at most one guard per transition.

effect Specifies an optional procedure to be performed when the transition fires.

source Designates the originating state vertex (state or pseudostate) of the transition.

target Designates the target state vertex that is reached when the transition is taken.
September 2002 OMG-UML , v1.5 State Machines 2-153

2 UML Semantics
2.12.3 Well-FormednessRules

The following well-formedness rules apply to the State Machines package.

CompositeState

[1] A composite state can have at most one initial vertex

self.subvertex->select (v | v.oclIsKindOf(Pseudostate))->

select(p : Pseudostate | p.kind = #initial)->size <= 1

[2] A composite state can have at most one deep history vertex

self.subvertex->select (v | v.oclIsKindOf(Pseudostate))->

select(p : Pseudostate | p.kind = #deepHistory)->size <= 1

[3] A composite state can have at most one shallow history vertex

self.subvertex->select(v | v.oclIsKindOf(Pseudostate))->

select(p : Pseudostate | p.kind = #shallowHistory)->size <= 1

[4] There have to be at least two composite substates in a concurrent composite state

(self.isConcurrent) implies

(self.subvertex->select
(v | v.oclIsKindOf(CompositeState))->size >= 2)

[5] A concurrent state can only have composite states as substates

(self.isConcurrent) implies
self.subvertex->forAll(s | (s.oclIsKindOf(CompositeState))

[6] The substates of a composite state are part of only that composite state

self.subvertex->forAll(s | (s.container->size = 1) and (s.container =
self))

FinalState

[1] A final state cannot have any outgoing transitions

self.outgoing->size = 0

Guard

[1] A guard should not have side effects

self.transition->stateMachine->notEmpty implies
post: (self.transition.stateMachine->context =
self.transition.stateMachine->context@pre)
2-154 OMG-UML , v1.5 State Machines September 2002

2 UML Semantics
PseudoState

[1] An initial vertex can have at most one outgoing transition and no incoming
transitions

(self.kind = #initial) implies

((self.outgoing->size <= 1) and (self.incoming->isEmpty))

[2] History vertices can have at most one outgoing transition

((self.kind = #deepHistory) or (self.kind = #shallowHistory)) implies

(self.outgoing->size <= 1)

[3] A join vertex must have at least two incoming transitions and exactly one outgoing
transition.

(self.kind = #join) implies

((self.outgoing->size = 1) and (self.incoming->size >= 2))

[4] All transitions incoming a join vertex must originate in different regions of a concurrent
state.

(self.kind = #join
and not oclIsKindOf(self.stateMachine, ActivityGraph))

implies
self.incoming->forAll (t1, t2 | t1<>t2 implies

(self.stateMachine.LCA(t1.source, t2.source).
container.isConcurrent)

[5] A fork vertex must have at least two outgoing transitions and exactly one incoming
transition.

(self.kind = #fork) implies

((self.incoming->size = 1) and (self.outgoing->size >= 2))

[6] All transitions outgoing a fork vertex must target states in different regions of a
concurrent state.

(self.kind = #fork
and not oclIsKindOf(self.stateMachine, ActivityGraph))

implies
self.outgoing->forAll (t1, t2 | t1<>t2 implies

(self.stateMachine.LCA(t1.target, t2.target).
container.isConcurrent)

[7] A junction vertex must have at least one incoming and one outgoing transition.

(self.kind = #junction) implies

((self.incoming->size >= 1) and (self.outgoing->size >= 1))

[8] A choice vertex must have at least one incoming and one outgoing transition.

(self.kind = #choice) implies

((self.incoming->size >= 1) and (self.outgoing->size >= 1))

StateMachine

[1] A StateMachine is aggregated within either a classifier or a behavioral feature.
September 2002 OMG-UML , v1.5 State Machines 2-155

2 UML Semantics
self.context.notEmpty implies

(self.context.oclIsKindOf(BehavioralFeature) or

self.context.oclIsKindOf(Classifier))

[2] A top state is always a composite.

self.top.oclIsTypeOf(CompositeState)

[3] A top state cannot have any containing states

self.top.container->isEmpty

[4] The top state cannot be the source of a transition.

(self.top.outgoing->isEmpty)

[5] If a StateMachine describes a behavioral feature, it contains no triggers of type
CallEvent, apart from the trigger on the initial transition (see OCL for Transition
[8]).

self.context.oclIsKindOf(BehavioralFeature) implies

self.transitions->reject(

source.oclIsKindOf(Pseudostate) and

source.oclAsType(Pseudostate).kind= #initial).trigger->isEmpty

Additional Operations

[1] The operation LCA(s1,s2) returns the state which is the least common ancestor of states s1
and s2.

context StateMachine::LCA (s1 : State, s2 : State) :
CompositeState

result = if ancestor (s1, s2) then
s1

else if ancestor (s2, s1) then
s2

else (LCA (s1.container, s2.container))

[2] The query ancestor(s1, s2) checks whether s2 is an ancestor state of state s1.

context StateMachine::ancestor (s1 : State, s2 : State) : Boolean

result = if (s2 = s1) then
true

else if (s1.container->isEmpty) then
true

else if (s2.container->isEmpty) then
false

else (ancestor (s1, s2.container)

SynchState

[1] The value of the bound attribute must be a positive integer, or unlimited.

(self.bound > 0) or (self.bound = unlimited)
2-156 OMG-UML , v1.5 State Machines September 2002

2 UML Semantics
[2] All incoming transitions to a SynchState must come from the same region and all outgoing
transitions from a SynchState must go to the same region.

SubmachineState

[1] Only stub states allowed as substates of a submachine state.

self.subvertex->forAll (s | s.oclIsTypeOf(StubState))

[2] Submachine states are never concurrent.

self.isConcurrent = false

Transition

[1] A fork segment should not have guards or triggers.

(self.source.oclIsKindOf(Pseudostate)
and not oclIsKindOf(self.stateMachine, ActivityGraph))

implies

((self.source.oclAsType(Pseudostate).kind = #fork) implies

((self.guard->isEmpty) and (self.trigger->isEmpty)))

[2] A join segment should not have guards or triggers.

self.target.oclIsKindOf(Pseudostate) implies

((self.target.oclAsType(Pseudostate).kind = #join) implies

((self.guard->isEmpty) and (self.trigger->isEmpty)))

[3] A fork segment should always target a state.

(self.stateMachine->notEmpty
and not oclIsKindOf(self.stateMachine, ActivityGraph))

implies

self.source.oclIsKindOf(Pseudostate) implies

((self.source.oclAsType(Pseudostate).kind = #fork) implies

(self.target.oclIsKindOf(State)))

[4] A join segment should always originate from a state.

(self.stateMachine->notEmpty
and not oclIsKindOf(self.stateMachine, ActivityGraph))

implies

self.target.oclIsKindOf(Pseudostate) implies

((self.target.oclAsType(Pseudostate).kind = #join) implies

(self.source.oclIsKindOf(State)))

[5] Transitions outgoing pseudostates may not have a trigger.

self.source.oclIsKindOf(Pseudostate)
implies (self.trigger->isEmpty))

[6] An initial transition at the topmost level either has no trigger or it has a trigger with the
stereotype "create”.
September 2002 OMG-UML , v1.5 State Machines 2-157

2 UML Semantics
self.source.oclIsKindOf(Pseudostate) implies
(self.source.oclAsType(Pseudostate).kind = #initial) implies

(self.source.container = self.stateMachine.top) implies
((self.trigger->isEmpty) or
 (self.trigger.stereotype.name = 'create'))

2.12.4 Detailed Semantics

This section describes the execution semantics of state machines. For convenience, the
semantics are described in terms of the operations of a hypothetical machine that implements a
state machine specification. This is for reference purposes only. Individual realizations are free
to choose any form that achieves the same semantics.

In the general case, the key components of this hypothetical machine are:

• an event queue which holds incoming event instances until they are dispatched

• an event dispatcher mechanism that selects and de-queues event instances from the event
queue for processing

• an event processor which processes dispatched event instances according to the general
semantics of UML state machines and the specific form of the state machine in question.
Because of that, this component is simply referred to as the “state machine” in the following
text.

Although the intent is to define the semantics of state machines very precisely, there are a
number of semantic variation points to allow for different semantic interpretations that might be
required in different domains of application. These are clearly identified in the text.

The basic semantics of events, states, transitions, etc. are discussed first in separate subsections
under the appropriate headings. The operation of the state machine as a whole are then
described in the state machine subsection.

Event

Event instances are generated as a result of some action either within the system or in the
environment surrounding the system. An event is then conveyed to one or more targets. The
means by which event instances are transported to their destination depend on the type of
action, the target, the properties of the communication medium, and numerous other factors. In
some cases, this is practically instantaneous and completely reliable while in others it may
involve variable transmission delays, loss of events, reordering, or duplication. No specific
assumptions are made in this regard. This provides full flexibility for modeling different types
of communication facilities.

An event is received when it is placed on the event queue of its target. An event is dispatched
when it is dequeued from the event queue and delivered to the state machine for processing. At
this point, it is referred to as the current event. Finally, it is consumed when event processing is
completed. A consumed event is no longer available for processing. No assumptions are made
about the time intervals between event reception, event dispatching, and consumption. This
leaves open the possibility of different semantic models such as zero-time semantics.

Any parameter values associated with the current event are available to all actions directly
caused by that event (transition actions, entry actions, etc.).
2-158 OMG-UML , v1.5 State Machines September 2002

2 UML Semantics
Event generalization may be defined explicitly by a signal taxonomy in the case of signal
events, or implicitly defined by event expressions, as in time events.

State

Active states

A state can be active or inactive during execution. A state becomes active when it is entered as
a result of some transition, and becomes inactive if it is exited as a result of a transition. A state
can be exited and entered as a result of the same transition (e.g., self transition).

State entry and exit

Whenever a state is entered, it executes its entry action before any other action is executed.
Conversely, whenever a state is exited, it executes its exit action as the final step prior to leaving
the state.

If defined, the activity associated with a state is forked as a concurrent activity at the instant
when the entry action of the state is completed. Upon exit, the activity is terminated before the
exit action is executed.

Activity in state (do-activity)

The activity represents the execution of a sequence of actions, that occurs while the state
machine is in the corresponding state. The activity starts executing upon entering the state,
following the entry action. If the activity completes while the state is still active, it raises a
completion event. In case where there is an outgoing completion transition (see below) the state
will be exited. If the state is exited as a result of the firing of an outgoing transition before the
completion of the activity, the activity is aborted prior to its completion.

Deferred events

A state may specify a set of event types that may be deferred in that state. An event instance
that does not trigger any transitions in the current state, will not be dispatched if its type
matches one of the types in the deferred event set of that state. Instead, it remains in the event
queue while another non-deferred message is dispatched instead. This situation persists until a
state is reached where either the event is no longer deferred or where the event triggers a
transition.

CompositeState

Active state configurations

When dealing with composite and concurrent states, the simple term “current state” can be
quite confusing. In a hierarchical state machine more than one state can be active at once. If the
state machine is in a simple state that is contained in a composite state, then all the composite
states that either directly or transitively contain the simple state are also active. Furthermore,
since some of the composite states in this hierarchy may be concurrent, the current active
September 2002 OMG-UML , v1.5 State Machines 2-159

2 UML Semantics
“state” is actually represented by a tree of states starting with the single top state at the root
down to individual simple states at the leaves. We refer to such a state tree as a state
configuration.

Except during transition execution, the following invariants always apply to state
configurations:

• If a composite state is active and not concurrent, exactly one of its substates is active.

• If the composite state is active and concurrent, all of its substates (regions) are active.

Entering a non-concurrent composite state

Upon entering a composite state, the following cases are differentiated:

• Default entry: Graphically, this is indicated by an incoming transition that terminates on the
outside edge of the composite state. In this case, the default transition is taken. If there is a
guard on the transition it must be enabled (true). (A disabled initial transition is an ill-
defined execution state and its handling is not defined.) The entry action of the state is
executed before the action associated with the initial transition.

• Explicit entry: If the transition goes to a substate of the composite state, then that substate
becomes active and its entry code is executed after the execution of the entry code of the
composite state. This rule applies recursively if the transition terminates on a transitively
nested substate.

• Shallow history entry: If the transition terminates on a shallow history pseudostate, the
active substate becomes the most recently active substate prior to this entry, unless the most
recently active substate is the final state or if this is the first entry into this state. In the latter
two cases, the default history state is entered. This is the substate that is target of the
transition originating from the history pseudostate. (If no such transition is specified, the
situation is illegal and its handling is not defined.) If the active substate determined by
history is a composite state, then it proceeds with its default entry.

• Deep history entry: The rule here is the same as for shallow history except that the rule is
applied recursively to all levels in the active state configuration below this one.

Entering a concurrent composite state

Whenever a concurrent composite state is entered, each one of its concurrent substates (regions)
is also entered, either by default or explicitly. If the transition terminates on the edge of the
composite state, then all the regions are entered using default entry. If the transition explicitly
enters one or more regions (in case of a fork), these regions are entered explicitly and the others
by default.

Exiting non-concurrent state

When exiting from a composite state, the active substate is exited recursively. This means that
the exit actions are executed in sequence starting with the innermost active state in the current
state configuration.
2-160 OMG-UML , v1.5 State Machines September 2002

2 UML Semantics
Exiting a concurrent state

When exiting from a concurrent state, each of its regions is exited. After that, the exit actions of
the regions are executed.

Deferred events

An event that is deferred in a composite state is automatically deferred in all directly or
transitively nested substates.

FinalState

When the final state is active, its containing composite state is completed, which means that it
satisfies the completion condition. If the containing state is the top state, the entire state
machine terminates, implying the termination of the entity associated with the state machine. If
the state machine specifies the behavior of a classifier, it implies the “termination” of that
instance.

SubmachineState

A submachine state is a convenience that does not introduce any additional dynamic semantics.
It is semantically equivalent to a composite state and may have entry and exit actions, internal
transitions, and activities.

Transitions

High-level transitions

Transitions originating from the boundary of composite states are called high-level or group
transitions. If triggered, they result in exiting of all the substates of the composite state
executing their exit actions starting with the innermost states in the active state configuration.
Note that in terms of execution semantics, a high-level transition does not add specialized
semantics, but rather reflects the semantics of exiting a composite state.

Compound transitions

A compound transition is a derived semantic concept, represents a “semantically complete”
path made of one or more transitions, originating from a set of states (as opposed to pseudo-
state) and targeting a set of states. The transition execution semantics described below, refer to
compound transitions.

In general, a compound transition is an acyclical unbroken chain of transitions joined via join,
junction, choice, or fork pseudostates that define path from a set of source states (possibly a
singleton) to a set of destination states, (possibly a singleton). For self-transitions, the same
state acts as both the source and the destination set. A (simple) transition connecting two states
is therefore a special common case of a compound transition.

The tail of a compound transition may have multiple transitions originating from a set of
mutually orthogonal concurrent regions that are joined by a join point.
September 2002 OMG-UML , v1.5 State Machines 2-161

2 UML Semantics
The head of a compound transition may have multiple transitions originating from a fork
pseudostate targeted to a set of mutually orthogonal concurrent regions.

In a compound transition multiple outgoing transitions may emanate from a common junction
point. In that case, only one of the outgoing transition whose guard is true is taken. If multiple
transitions have guards that are true, a transition from this set is chosen. The algorithm for
selecting such a transition is not specified. Note that in this case, the guards are evaluated
before the compound transition is taken.

In a compound transition where multiple outgoing transitions emanate from a common choice
point, the outgoing transition whose guard is true at the time the choice point is reached, will be
taken. If multiple transitions have guards that are true, one transition from this set is chosen.
The algorithm for selecting this transition is not specified. If no guards are true after the choice
point has been reached, the model is ill formed.

Internal transitions

An internal transition executes without exiting or re-entering the state in which it is defined.
This is true even if the state machine is in a nested state within this state.

Completion transitions and completion events

A completion transition is a transition without an explicit trigger, although it may have a guard
defined. When all transition and entry actions and activities in the currently active state are
completed, a completion event instance is generated. This event is the implicit trigger for a
completion transition. The completion event is dispatched before any other queued events and
has no associated parameters. For instance, a completion transition emanating from a
concurrent composite state will be taken automatically as soon as all the concurrent regions
have reached their final state.

If multiple completion transitions are defined for a state, then they should have mutually
exclusive guard conditions.

Enabled (compound) transitions

A transition is enabled if and only if:

• All of its source states are in the active state configuration.

• The trigger of the transition is satisfied by the current event. An event instance satisfies a
trigger if it matches the event specified by the trigger. In case of signal events, since signals
are generalized concepts, a signal event satisfies a signal event associated with the same
signal or a generalization of thereof.

• If there exists at least one full path from the source state configuration to either the target
state configuration or to a dynamic choice point in which all guard conditions are true
(transitions without guards are treated as if their guards are always true).

Since more than one transition may be enabled by the same event instance, being enabled is a
necessary but not sufficient condition for the firing of a transition.
2-162 OMG-UML , v1.5 State Machines September 2002

2 UML Semantics
Guards

In a simple transition with a guard, the guard is evaluated before the transition is triggered.

In compound transitions involving multiple guards, all guards are evaluated before a transition
is triggered, unless there are choice points along one or more of the paths. The order in which
the guards are evaluated is not defined.

If there are choice points in a compound transition, only guards that precede the choice point
are evaluated according to the above rule. Guards downstream of a choice point are evaluated if
and when the choice point is reached (using the same rule as above). In other words, for guard
evaluation, a choice point has the same effect as a state.

Guards should not include expressions causing side effects. Models that violate this are
considered ill formed.

Transition execution sequence

Every transition, except for internal transitions, causes exiting of a source state, and entering of
the target state. These two states, which may be composite, are designated as the main source
and the main target of a transition.

The least common ancestor (LCA) state of a transition is the lowest composite state that
contains all the explicit source states and explicit target states of the compound transition. In
case of junction segments, only the states related to the dynamically selected path are
considered explicit targets (bypassed branches are not considered).

If the LCA is not a concurrent state, the main source is a direct substate of the least common
ancestor that contains the explicit source states, and the main target is a substate of the least
common ancestor that contains the explicit target states. In case where the LCA is a concurrent
state, the main source and main target are the concurrent state itself. The reason is that if a
concurrent region is exited, it forces exit of the entire concurrent state.

Examples:

1. The common simple case: A transition t between two simple states s1 and s2, in a
composite state s.

Here least common ancestor of t is s, the main source is s1 and the main target is s2.
September 2002 OMG-UML , v1.5 State Machines 2-163

2 UML Semantics
2. A more esoteric case: An unstructured transition from one region to another.

Figure 2-26 Unstructured transition among regions

Here least common ancestor of t is s, the main source is s and the main target is s,
since s is a concurrent state as specified above.

Once a transition is enabled and is selected to fire, the following steps are carried out in order:

• The main source state is properly exited.

• Actions are executed in sequence following their linear order along the segments of the
transition: The closer the action to the source state, the earlier it is executed.

• If a choice point is encountered, the guards following that choice point are evaluated
dynamically and a path whose guards are true is selected. Entry and exit actions are executed
for states entered and exited by the transition into the choice point.

• The main target state is properly entered.

StateMachine

Event processing - run-to-completion step

Events are dispatched and processed by the state machine, one at a time. The order of
dequeuing is not defined, leaving open the possibility of modeling different priority-based
schemes.

The semantics of event processing is based on the run-to-completion assumption, interpreted as
run-to-completion processing. Run-to-completion processing means that an event can only be
dequeued and dispatched if the processing of the previous current event is fully completed.

Run-to-completion may be implemented in various ways. For active classes, it may be realized
by an event-loop running in its own concurrent thread, and that reads events from a queue. For
passive classes it may be implemented as a monitor.

The processing of a single event by a state machine is known as an run-to-completion step.
Before commencing on a run-to-completion step, a state machine is in a stable state
configuration with all actions (but not necessarily activities) completed. The same conditions

s

s1 s2
t

2-164 OMG-UML , v1.5 State Machines September 2002

2 UML Semantics
apply after the run-to-completion step is completed. Thus, an event will never be processed
while the state machine is in some intermediate and inconsistent situation. The run-to-
completion step is the passage between two state configurations of the state machine.

The run-to-completion assumption simplifies the transition function of the state machine, since
concurrency conflicts are avoided during the processing of event, allowing the state machine to
safely complete its run-to-completion step.

When an event instance is dispatched, it may result in one or more transitions being enabled for
firing. If no transition is enabled and the event is not in the deferred event list of the current
state configuration, the event is discarded and the run-to-completion step is completed.

In the presence of concurrent states it is possible to fire multiple transitions as a result of the
same event — as many as one transition in each concurrent state in the current state
configuration. In case where one or more transitions are enabled, the state machine selects a
subset and fires them. Which of the enabled transitions actually fire is determined by the
transition selection algorithm described below. The order in which selected transitions fire is
not defined.

Each orthogonal region in the active state configuration that is not decomposed into concurrent
regions (i.e., “bottom-level” region) can fire at most one transition as a result of the current
event. When all orthogonal regions have finished executing the transition, the current event
instance is fully consumed, and the run-to-completion step is completed.

During a transition, a number of actions may be executed. If these actions are synchronous, then
the transition step is not completed until the invoked objects complete their own run-to-
completion steps.

An event instance can arrive at a state machine that is blocked in the middle of a run-to-
completion step from some other object within the same thread, in a circular fashion. This event
instance can be treated by orthogonal components of the state machine that are not frozen along
transitions at that time.

Run-to-completion and concurrency

It is possible to define state machine semantics by allowing the run-to-completion steps to be
applied concurrently to the orthogonal regions of a composite state, rather than to the whole
state machine. This would allow the event serialization constraint to be relaxed. However, such
semantics are quite subtle and difficult to implement. Therefore, the dynamic semantics defined
in this document are based on the premise that a single run-to-completion step applies to the
entire state machine and includes the concurrent steps taken by concurrent regions in the active
state configuration.

In case of active objects, where each object has its own thread of execution, it is very important
to clearly distinguish the notion of run to completion from the concept of thread pre-emption.
Namely, run-to-completion event handling is performed by a thread that, in principle, can be
pre-empted and its execution suspended in favor of another thread executing on the same
processing node. (This is determined by the scheduling policy of the underlying thread
environment — no assumptions are made about this policy.) When the suspended thread is
assigned processor time again, it resumes its event processing from the point of pre-emption
and, eventually, completes its event processing.
September 2002 OMG-UML , v1.5 State Machines 2-165

2 UML Semantics
Conflicting transitions

It was already noted that it is possible for more than one transition to be enabled within a state
machine. If that happens, then such transitions may be in conflict with each other. For example,
consider the case of two transitions originating from the same state, triggered by the same
event, but with different guards. If that event occurs and both guard conditions are true, then
only one transition will fire. In other words, in case of conflicting transitions, only one of them
will fire in a single run-to-completion step.

Two transitions are said to conflict if they both exit the same state, or, more precisely, that the
intersection of the set of states they exit is non-empty. Only transitions that occur in mutually
orthogonal regions may be fired simultaneously. This constraint guarantees that the new active
state configuration resulting from executing the set of transitions is well formed.

An internal transition in a state conflicts only with transitions that cause an exit from that state.

Firing priorities

In situations where there are conflicting transitions, the selection of which transitions will fire
is based in part on an implicit priority. These priorities resolve some transition conflicts, but not
all of them. The priorities of conflicting transitions are based on their relative position in the
state hierarchy. By definition, a transition originating from a substate has higher priority than a
conflicting transition originating from any of its containing states.

The priority of a transition is defined based on its source state. The priority of joined transitions
is based on the priority of the transition with the most transitively nested source state.

In general, if t1 is a transition whose source state is s1, and t2 has source s2, then:

• If s1 is a direct or transitively nested substate of s2, then t1 has higher priority than t2.

• If s1 and s2 are not in the same state configuration, then there is no priority difference
between t1 and t2.

Transition selection algorithm

The set of transitions that will fire is a maximal set of transitions that satisfies the following
conditions:

• All transitions in the set are enabled.

• There are no conflicting transitions within the set.

• There is no transition outside the set that has higher priority than a transition in the set (that
is, enabled transitions with highest priorities are in the set while conflicting transitions with
lower priorities are left out).

This can be easily implemented by a greedy selection algorithm, with a straightforward
traversal of the active state configuration. States in the active state configuration are traversed
starting with the innermost nested simple states and working outwards toward the top state. For
each state at a given level, all originating transitions are evaluated to determine if they are
enabled. This traversal guarantees that the priority principle is not violated. The only non-trivial
issue is resolving transition conflicts across orthogonal states on all levels. This is resolved by
terminating the search in each orthogonal state once a transition inside any one of its
components is fired.
2-166 OMG-UML , v1.5 State Machines September 2002

2 UML Semantics
Synch States

Synch states provide a means of synchronizing the execution of two concurrent regions.
Specifically, a synch state has incoming transitions from a fork (or forks) in one region, the
source region, and outgoing transitions to a join (or joins) in another, the target region. These
forks and joins are called synchronization forks and joins. The synch state itself is contained by
the least common ancestor of the two regions being synchronized. The synchronized regions do
not need to be siblings in state decomposition, but they must have a common ancestor state.

When the source region reaches a synchronization fork, the target states of that fork become
active, including the synch state. Activation of the synch state is an indication that the source
region has completed some activity. This region can continue performing its remaining
activities in parallel. When the target region reaches the corresponding synchronization join, it
is prevented from continuing unless all the states leading into the synchronization join are
active, including the synch states.

A synch state may have multiple incoming and outgoing transitions, used for multiple
synchronization points in each region. Alternatively, it may have single incoming and outgoing
transitions where the incoming transition is fired multiple times before the outgoing one is
fired. To support these applications, synch states keep count of the difference between the
number of times their incoming and outgoing transitions are fired. When an incoming transition
is fired, the count is incremented by one, unless its value is equal to the value defined in the
bound attribute. In that case, the count is not incremented. When an outgoing transition is fired,
the count is decremented by one. An outgoing transition may fire only if the count is greater
than zero, which prevents the count from becoming negative. The count is automatically set to
zero when its container state is exited.

The bound attribute is for limiting the number of times outgoing transitions fire from a synch
state. For a state, to realize the equivalent of a binary semaphore, the bound should be set to
one. In this case multiple incoming transitions may fire before the outgoing transition does,
whereupon the outgoing transition can only fire once.

StubStates

Stub states are pseudostates signifying either entry points to or exit points from a submachine.
Since a submachine is encapsulated and represented as a submachine state, multi-level (“deep”)
transitions may logically connect states in separate state machines. This is facilitated by stub
state, representing real states in a referenced machine to or form transitions in the referencing
machine are incoming/outgoing. stub states are therefore can only be defined within a
submachine state, and are the only potential subvertices of a submachine state.

2.12.5 Notes

Protocol State Machines

One application area of state machines is in specifying object protocols, also known as object
life cycles. A 'protocol state machine' for a class defines the order (i.e. sequence) in which the
operations of that Class can be invoked. The behavior of each of these operations is defined by
an associated method, rather than through actions on transitions.
September 2002 OMG-UML , v1.5 State Machines 2-167

2 UML Semantics
A transition in a protocol state machine has as its trigger a call event that references an
operation of the class, and no actions. Such a transition indicates that if the call event occurs
when an object of the class is in the source state of the transition and the guard on the transition
is true, then the method associated with the operation of the call event will be executed (if one
exists), and the object will enter the target state. Semantically, the invocation of the method
does not lead to a new call event being raised.

If a call event arrives when the state machine is not in an appropriate state to handle the event,
the event is discarded, conform the general RTC semantics. Strictly speaking, from the caller's
point of view this means that the call is completed. If instead the semantics are required that the
caller should 'hang' (potentially infinitely) if the receiver's state machine is not able to process
the call event immediately, then the event must be deferred explicitly. This can be done for all
call events in a protocol state machine by deferring them at a superstate level.

In any practical application, a protocol state machine is made up exclusively of 'protocol'
transitions, and the entry and exit actions of its states are empty (i.e. no action specifications
exist other than for the methods). However, formally it is not prohibited to mix this kind of
transition with transitions with explicit actions (as it does not seem worth the effort to prohibit
this, and there may be some applications that might benefit from 'mixing').

Figure 2-27 Example of a Protocol State Machine for a Class ‘Account’.

Example: Modeling Class Behavior

In the software that is implemented as a result of a state modeling design, the state machine
may or may not be actually visible in the (generated or hand-crafted) code. The state machine
will not be visible if there is some kind of run-time system that supports state machine
behavior. In the more general case, however, the software code will contain specific statements
that implement the state machine behavior.

A C++ example is shown below:

class bankAccount {
private:

int balance;
public:

void deposit (amount) {
if (balance > 0)

Open Closed
close()

withdraw(amount)
[amount <= balance+overdraft]

deposit (amount)
2-168 OMG-UML , v1.5 State Machines September 2002

2 UML Semantics
balance = balance + amount’ // no change
else

balance = balance + amount - 1; // transaction fee
}

void withdrawal (amount) {
if (balance>0)

balance = balance - amount;
}

}

In the above example, the class has an abstract state manifested by the balance attribute,
controlling the behavior of the class. This is modeled by the state machine in Figure 2-28.

Figure 2-28 State Machine for Modeling Class Behavior

Example: State machine refinement

Note – The following discussion provides some potentially useful heuristics on how state
machines can be refined. These techniques are all based on practical experience. However,
readers are reminded that this topic is still the subject of research, and that it is likely that other
approaches may be defined either now or in the future.

Since state machines describe behaviors of generalizable elements, primarily classes, state
machine refinement is used capture the relationships between the corresponding state machines.
State machines use refinement in three different mappings, specified by the mapping attribute of
the refinement meta-class. The mappings are refinement, substitution, and deletion.

To illustrate state machine refinement, consider the following example where one state machine
attached to a class denoted ‘Supplier,’ is refined by another state machine attached to a class
denoted as ‘Client.’

credit

debit

withdrawal

deposit/balance
+=amount

deposit

[amount>-balance]/
balance+=amount-1

else/balance -= amount

else/balance
+=amount-1

[amount>balance]/
balance -= amount
September 2002 OMG-UML , v1.5 State Machines 2-169

2 UML Semantics
Figure 2-29 State Machine Refinement Example

In the example above, the client state (Sa(new)) in the subclass substitutes the simple substate
(Sa1) by a composite substate (Sa1(new)). This new composite substate has a component
substate (Sa11). Furthermore, the new version of Sa1 deletes the substate Sa2 and also adds a
new substate Sa4. Substate Sa3 is inherited and is therefore common to both versions of Sa. For
clarity, we have used a gray shading to identify components that have been inherited from the
original. (This is for illustration purposes and is not intended as a notational recommendation.)

It is important to note that state machine refinement as defined here does not specify or favor
any specific policy of state machine refinement. Instead, it simply provides a flexible
mechanism that allows subtyping, (behavioral compatibility), inheritance (implementation
reuse), or general refinement policies.

We provide a brief discussion of potentially useful policies that can be implemented with the
state machine refinement mechanism.

Subtyping

The refinement policy for subtyping is based on the rationale that the subtype preserves the
pre/post condition relationships of applying events/operations on the type, as specified by the
state machine. The pre/post conditions are realized by the states, and the relationships are
realized by the transitions. Preserving pre/post conditions guarantee the substitutability
principle.

States and transitions are only added, not deleted. Refinement is interpreted as follows:

• A refined state has the same outgoing transitions, but may add others, and a different set of
incoming transitions. It may have a bigger set of substates, and it may change its
concurrency property from false to true.

• A refined transition may go to a new target state which is a substate of the state specified in
the base class. This comes to guarantee the post condition specified by the base class.

Sa

Sa2

Sa1

Sa3

Sa (new)

Sa4
Sa1 (new)

Sa3
Sa11

- Sa2deleted

- Sa4added

- Sa1 refined
into composite

Supplier (refined) Client (refined)
2-170 OMG-UML , v1.5 State Machines September 2002

2 UML Semantics
• A refined guard has the same guard condition, but may add disjunctions. This guarantees
that pre-conditions are weakened rather than strengthened.

• A refined procedure contains the same actions (in the same sequence), but may have
additional actions. The added actions should not hinder the invariant represented by the
target state of the transition.

Strict Inheritance

The rationale behind this policy is to encourage reuse of implementation rather than preserving
behavior. Since most implementation environment utilize strict inheritance (i.e. features can be
replaced or added, but not deleted), the inheritance policy follows this line by disabling
refinements which may lead to non-strict inheritance once the state machine is implemented.

States and transitions can be added. Refinement is interpreted as follows:

• A refined state has some of the same incoming transitions (i.e., drop some, add some) but a
greater or bigger set of outgoing transitions. It may have more substates, and may change its
concurrency attribute.

• A refined transition may go to a new target state but should have the same source.

• A refined guard may have a different guard condition.

• A refined procedure contains some of the same actions (in the same sequence), and may
have additional actions.

General Refinement

In this most general case, states and transitions can be added and deleted (i.e., ‘null’
refinements). Refinement is interpreted without constraints (i.e., there are no formal
requirements on the properties and relationships of the refined state machine element and the
refining element):

• A refined state may have different outgoing and incoming transitions (i.e., drop all, add
some).

• A refined transition may leave from a different source and go to a new target state.

• A refined guard has may have a different guard condition.

• A refined procedure need not contain the same actions (or it may change their sequence),
and may have additional actions.

The refinement of the composite state in the example above is an illustration of general
refinement.

It should be noted that if a type has multiple supertype relationships in the structural model,
then the default state machine for the type consists of all the state machines of its supertypes as
orthogonal state machine regions. This may be explicitly overridden through refinement if
required.
September 2002 OMG-UML , v1.5 State Machines 2-171

2 UML Semantics
Comparison to classical statecharts

The major difference between classical (Harel) statecharts and object state machines result from
the external context of the state machine. Object state machines, such as ROOMcharts,
primarily come to represent behavior of a type. Classical statechart specify behaviors of
processes. The following list of differences result from the above rationale:

• Events carry parameters, rather than being primitive signals.

• Call events (operation triggers) are supported to model behaviors of types.

• Event conjunction is not supported, and the semantics is given in respect to a single event
dispatch, to better match the type context as opposed to a general system context.

• Classical statecharts have an elaborated set of predefined actions, conditions and events
which are not mandated by object state machines, such as entered(s), exited(s),
true(condition), tr!(c) (make true), fs!(c).

• Operations are not broadcast but can be directed to an object-set.

• The notion of activities (processes) does not exist in object state machines. Therefore all
predefined actions and events that deal with activities are not supported, as well as the
relationships between states and activities.

• Transition compositions are constrained for practical reasons. In classical statecharts any
composition of pseudostates, simple transitions, guards and labels is allowed.

• Object state machine support the notion of synchronous communication between state
machines.

• Actions on transitions are executed in their given order.

• Classical statecharts do not support dynamic choice points.

• Classical statecharts are based on the zero-time assumption, meaning transitions take zero
time to execute. The whole system execution is based on synchronous steps where each step
produces new events that will be processed at the next step. In object-oriented state
machines, these assumptions are relaxed and replaced with these of software execution
model, based on threads of execution and that execution of actions may take time. antics

2.13 Activity Graphs

2.13.1 Overview

The Activity Graphs package defines an extended view of the State Machine package. State
machines and activity graphs are both essentially state transition systems, and share many
metamodel elements. This section describes the concepts in the State Machine package that are
specific to activity graphs. It should be noted that the activity graphs extension has few
semantics of its own. It should be understood in the context of the State Machine package,
including its dependencies on the Foundation package and the Common Behavior package.
2-172 OMG-UML , v1.5 Activity Graphs September 2002

2 UML Semantics
An activity graph is a special case of a state machine that is used to model processes involving
one or more classifiers. Its primary focus is on the sequence and conditions for the actions that
are taken, rather than on which classifiers perform those actions. Most of the states in such a
graph are action states that represent atomic actions (i.e., states that invoke actions and then
wait for their completion). Transitions into action states are triggered by events, which can be

• the completion of a previous action state (completion events),

• the availability of an object in a certain state,

• the occurrence of a signal, or

• the satisfaction of some condition.

By defining a small set of additional subtypes to the basic state machine concepts, the well-
formedness of activity graphs can be defined formally, and subsequently mapped to the
dynamic semantics of state machines. In addition, the activity specific subtypes eliminate
ambiguities that might otherwise arise in the interchange of activity graphs between tools.

2.13.2 Abstract Syntax

The abstract syntax for activity graphs is expressed in graphic notation in Figure 2-30 on
page 2-174.
September 2002 OMG-UML , v1.5 Activity Graphs 2-173

2 UML Semantics
Figure 2-30 Activity Graphs

ActionState

An action state represents the execution of an atomic action, typically the invocation of an
operation.

An action state is a simple state with an entry action whose only exit transition is triggered by
the implicit event of completing the execution of the entry action. The state therefore
corresponds to the execution of the entry action itself and the outgoing transition is activated as
soon as the action has completed its execution.

An ActionState may perform more than one action as part of its entry action. An action state
may not have an exit action, do activity, or internal transitions.

CallState

ActionState
isDynamic : Boolean
dynamicArguments : ArgListsExpression
dynamicMultiplicity : Multiplicity

SimpleState
(fromState Machines)

SubactivityState
isDynamic : Boolean
dynamicArguments : ArgListsExpression
dynamicMultiplicity : Multiplicity

SubmachineState
(fromState Machines)

CompositeState
isConcurrent : Boolean

ActivityGraph Partition

1 0..*1

+partition

0..*

ModelElement
(from Core)

*

*

+contents*

*

StateMachine
(from State Machines)

0..1*

+context

0..1

+behavior

*

State
(fromState Machines)

0..1

1

0..1

+top 1

ClassifierInState

0..*

1..*

0..*

+inState

1..*

Parameter
(from Core)

Classifier
(fromCore)

1

*

+type
1

*

ObjectFlowState

isSynch : Boolean

*

*

+parameter
*

+state *

1
*

+type

1
*

2-174 OMG-UML , v1.5 Activity Graphs September 2002

2 UML Semantics
Attributes

Associations

ActivityGraph

An activity graph is a special case of a state machine that defines a computational process in
terms of the control-flow and object-flow among its constituent activities. It does not extend the
semantics of state machines in a major way but it does define shorthand forms that are
convenient for modeling control-flow and object-flow in organizational processes.

The primary purpose of activity graphs is to describe the states of an activity or process
involving one or more classifiers. Activity graphs can be attached to packages, classifiers
(including use cases) and behavioral features. As in any state machine, if an outgoing transition
is not explicitly triggered by an event then it is implicitly triggered by the completion of the
contained actions. A subactivity state represents a nested activity that has some duration and
internally consists of a set of actions or more subactivities. That is, a subactivity state is a
“hierarchical action” with an embedded activity subgraph that ultimately resolves to individual
actions.

Junctions, forks, joins, and synchs may be included to model decisions and concurrent activity.

Activity graphs include the concept of Partitions to organize states according to various criteria,
such as the real-world organization responsible for their performance.

Activity graphing can be applied to organizational modeling for business process engineering
and workflow modeling. In this context, events often originate from inside the system, such as
the finishing of a task, but also from outside the system, such as a customer call. Activity
graphs can also be applied to system modeling to specify the dynamics of operations and
system level processes when a full interaction model is not needed.

Associations

dynamicArguments An ArgListsExpression that determines at runtime the number of
parallel executions of the actions of the state. The value must be a
set of lists of objects, each list serving as arguments for one
execution. This attribute is ignored if the isDynamic attribute is
false.

dynamicMultiplicity A Multiplicity limiting the number of parallel executions of the
actions of state. This attribute is ignored if the isDynamic attribute
is false.

isDynamic A boolean value specifying whether the state's actions might be
executed concurrently. It is used in conjunction with the
dynamicArguments attribute.

entry (Inherited from State) Specifies the invoked actions.

partition A set of Partitions each of which contains some of the model
elements of the model.
September 2002 OMG-UML , v1.5 Activity Graphs 2-175

2 UML Semantics
CallState

A call state is an action state that calls a single operation. It is useful in object flow modeling to
reduce notational ambiguity over which action is taking input or providing output.

ClassifierInState

A classifier-in-state characterizes instances of a given classifier that are in a particular state or
states. In an activity graph, it may be used to specify input and/or output to an action through
an object flow state.

ClassifierInState is a child of Classifier and may be used in static structural models and
collaborations (e.g., it can be used to show associations that are only relevant when objects of a
class are in a given state).

Associations

ObjectFlowState

An object flow state defines an object flow between actions in an activity graph. An instance of
a particular classifier, possibly in a particular state, is available when an object flow state is
occupied.

The generation of an object by an action in an action state may be modeled by an object flow
state that is triggered by the completion of the action state. The use of the object in a
subsequent action state may be modeled by connecting the output transition of the object flow
state as an input transition to the action state. Generally each action places the object in a
different state that is modeled as a distinct object flow state.

Attributes

Associations

type Designates a classifier for the ClassifierInState to characterize the
instances of.

inState Designates a state that characterizes instances of the classifier of
the ClassifierInState. The state must be a valid state of the
corresponding classifier. This may have multiple states when
referring to an object in orthogonal states.

isSynch A boolean value indicating whether an object flow state is used as
a synch state.

type Designates a classifier that specifies the classifier of the object. It
may be a classifier-in-state to specify the state and classifier of the
object.

parameter Designates parameters which provide the object as output or take
it as input.
2-176 OMG-UML , v1.5 Activity Graphs September 2002

2 UML Semantics
Stereotypes

Partition

A partition is a mechanism for dividing the states of an activity graph into groups. Partitions
often correspond to organizational units in a business model. They may be used to allocate
characteristics or resources among the states of an activity graph. It should be noted that
Partitions do not impact the dynamic semantics of the model but they help to allocate properties
and actions for various purposes.

Associations

SubactivityState

A subactivity state represents the execution of a non-atomic sequence of steps that has some
duration (i.e., internally it consists of a set of actions and possibly waiting for events). That is,
a subactivity state is a “hierarchical action,” where an associated subactivity graph is executed.

A subactivity state is a submachine state that executes a nested activity graph. When an input
transition to the subactivity state is triggered, execution begins with the nested activity graph.
The outgoing transitions of a subactivity state are enabled when the final state of the nested
activity graph is reached (i.e., when it completes its execution), or when the trigger events occur
on the transitions.

The semantics of a subactivity state are equivalent to the model obtained by statically
substituting the contents of the nested graph as a composite state replacing the subactivity state.

Attributes

«signalflow»
ObjectFlowState

Signalflow is a stereotype of ObjectFlowState with a Signal as its
type.

contents Specifies the states that belong to the partition. They need not
constitute a nested region.

dynamicArguments An ArgListsExpression that determines the number of parallel
executions of the submachines of the state. The value must be a
set of lists of objects, each list serving as arguments for one
execution. This attribute is ignored if the isDynamic attribute is
false.

dynamicMultiplicity A Multiplicity limiting the number of parallel executions of the
actions of state. This attribute is ignored if the isDynamic attribute
is false.

isDynamic A boolean value specifying whether the state's subactivity might
be executed concurrently. It is used in conjunction with the
dynamicArguments attribute.
September 2002 OMG-UML , v1.5 Activity Graphs 2-177

2 UML Semantics
Associations

Transition

Transition is inherited from state machines.

Tagged Values

2.13.3 Well-Formedness Rules

ActivityGraph

[1] An ActivityGraph specifies the dynamics of

(i) a Package, or

(ii) a Classifier (including UseCase), or

(iii) a BehavioralFeature.

(self.context.oclIsTypeOf(Package) xor

 self.context.oclIsKindOf(Classifier) xor

 self.context.oclIsKindOf(BehavioralFeature))

ActionState

[1] An action state has a non-empty entry action.

self.entry->size > 0

[2] An action state does not have an internal transition, exit action, or a do activity.

self.internalTransition->size = 0 and self.exit->size = 0 and
self.doActivity->size = 0

[3] Transitions originating from an action state have no trigger event.

submachine (Inherited from SubmachineState) This designates an activity
graph that is conceptually nested within the subactivity state. The
subactivity state is conceptually equivalent to a composite state
whose contents are the states of the nested activity graph. The
nested activity graph must have an initial state and a final state.

usage Association Usage applies only to transitions leading into or out of an object flow
state. It has a value of uses or modifies. A value of uses indicates that the
action of the state at the other end of the transition from the object flow
state uses but does not modify the object represented by the object flow
state. A value of modifies indicates that the action of the state at the other
end of the transition from the object flow state modifies and may use the
object represented by the object flow state.
2-178 OMG-UML , v1.5 Activity Graphs September 2002

2 UML Semantics
self.outgoing->forAll(t | t.trigger->size = 0)

CallState

[1] The entry action of a call state is a single call action.

let a : Set = self.entry.action.allNestedActions in

a->size() = 1

and a->asSequence()->first().oclIsKindOf(CallOperationAction)

ClassifierInState

[1] Classifiers-in-state have no namespace contents.

self.allContents->size = 0

ObjectFlowState

[1] Parameters of an object flow state must have a type and direction compatible with classifier
or classifier-in-state of the object flow state.

let ofstype : Classifier =

(if self.type.IsKindOf(ClassifierInState)

then self.type.type else self.type);

self.parameter->forAll(parameter |

parameter.type = ofstype

 or (parameter.kind = #in

 and ofstype.allSupertypes->includes(type))

 or ((parameter.kind = #out or parameter.kind = #return)

 and type.allSupertypes->includes(ofstype))

 or (parameter.kind = #inout

 and (ofstype.allSupertypes->includes(type)

 or type.allSupertypes->includes(ofstype))))

[2] Downstream states have entry actions that accept input conforming to the type of the
classifier or classifier-in-state. The entry actions use the input parameters of the object flow
state. Valid downstream states are calculated by traversing outgoing transitions transitively,
skipping pseudo states, and entering and exiting subactivity states, looking for regular states. If
the object flow state has no parameters, then the target of downstream actions must conform to
the type of the classifier or classifier-in-state.

self.allNextLeafStates.size > 0 and

self.allNextLeafStates->forAll(s | self.isInputAction(s.entry))
September 2002 OMG-UML , v1.5 Activity Graphs 2-179

2 UML Semantics
[3] Upstream states have entry actions that provide output or return values conforming to the
type of the classifier or classifier-in-state. The entry actions use the output or return parameters
of the object flow state. Valid upstream states are calculated by traversing incoming transitions
transitively, skipping pseudo states, entering and exiting subactivity states, looking for regular
states.

self.allPreviousLeafStates.size > 0 and

self.allPreviousLeafStates->forAll(s |

self.isOutputAction(s.entry))

Additional operations

[1] The operation allNextLeafStates results in the set of states immediately downstream of
the object flow state that have the next actions that will be executed.

[2] The operation allPreviousLeafStates results in the set of states immediately upstream
of the object flow state that have the next actions that were last executed.

[3] The operation isInputAction takes a procedure as input and results in a boolean telling
whether it has an argument compatible with the object flow state.

[4] The operation isOutputAction takes a procedure as input and results in a boolean telling
whether it has a result compatible with the object flow state.

PseudoState

[1] In activity graphs, transitions incoming to (and outgoing from) join and fork pseudostates
have as sources (targets) any state vertex. That is, joins and forks are syntactically not restricted
to be used in combination with composite states, as is the case in state machines.

self.stateMachine.oclIsTypeOf(ActivityGraph) implies

((self.kind = #join or self.kind = #fork) implies

(self.incoming->forAll(t | t.source.oclIsKindOf(State) or

 source.oclIsTypeOf(PseudoState)) and

(self.outgoing->forAll(t | t.source.oclIsKindOf(State) or

 source.oclIsTypeOf(PseudoState)))))

[2] All of the paths leaving a fork must eventually merge in a subsequent join in the model.
Furthermore, multiple layers of forks and joins must be well nested, with the exception of forks
and joins leading to or from synch state. Therefore the concurrency structure of an activity
graph is in fact equally restrictive as that of an ordinary state machine, even though the
composite states need not be explicit.

SubactivityState

[1] A subactivity state is a submachine state that is linked to an activity graph.

self.submachine.oclIsKindOf(ActivityGraph)
2-180 OMG-UML , v1.5 Activity Graphs September 2002

2 UML Semantics
2.13.4 Detailed Semantics

ActivityGraph

The dynamic semantics of activity graphs can be expressed in terms of state machines. This
means that the process structure of activities formally must be equivalent to orthogonal regions
(in composite states). That is, transitions crossing between parallel paths (or threads) are not
allowed, except for transitions used with synch states. As such, an activity specification that
contains ‘unconstrained parallelism’ as is used in general activity graphs is considered
‘incomplete’ in terms of UML.

All events that are not relevant in a state must be deferred so they are consumed when they
become relevant. This is facilitated by the general deferral mechanism of state machines.

ActionState

As soon as the incoming transition of an ActionState is triggered, its entry action starts
executing. Once the entry action has finished executing, the action is considered completed.
When the action is complete then the outgoing transition is enabled.

The isDynamic attribute of an action state determines whether multiple invocations of state
might be executed concurrently, depending on runtime information. This means that the normal
activities of an action state, namely its actions, may execute multiple times in parallel. If
isDynamic is true, then the dynamicArguments attribute is evaluated at the time the state is
entered. The size of the resulting set determines the number of parallel executions of the state.
Each element of the set is a list, which is used as arguments for an execution. These arguments
can be referred to within actions (e.g. by “object[i]” denoting the ith object in a list). If the
isDynamic attribute is false, dynamicArguments is ignored. If the dynamicArguments
expression evaluates to the empty set, then the state behaves as if it had no actions. It is an error
if the dynamicArguments expression evaluates to a set with fewer or more elements than the
number allowed by the dynamicMultiplicity attribute. The behavior is not defined in this case.

Dynamic states may be nested. In this case, you can't access the outer set of arguments in the
inner nesting. If this should be necessary, arguments can be passed explicitly from the outer to
the inner dynamic state.

ObjectFlowState

The activation of an object flow state signifies that an instance of the associated classifier is
available, perhaps in a specified state (i.e., a state change has occurred as a result of a previous
operation). This may enable a subsequent action state that requires the instance as input. As
with all states in activity graphs, if the object flow state leads into a join pseudostate, then the
object flow state remains activated until the other predecessors of the join have completed.

Unless there is an explicit ‘fork’ that creates orthogonal object states, only one of an object
flow state’s outgoing transitions will fire as determined by the guards of the transitions. The
invocation of the action state may result in a state change of the object, resulting in a new object
flow state.
September 2002 OMG-UML , v1.5 Activity Graphs 2-181

2 UML Semantics
An object flow state may specify the parameter of an operation that provides the flowing object
as output, and the parameter of an operation that takes the flowing object as input. The
operations must be called in actions of states immediately preceding and succeeding the object
flow state, respectively, although pseduostates, final states, synch states, and stub states may be
interposed between the object flow state and the acting state. For example, an object flow state
may transition to a subactivity state, which means at runtime the object is passed as input to the
first state after the initial state of the subactivity graph. If no parameter is specified to take the
flowing object as input, then it is used as an action target instead. Call actions are particularly
suited to be used in conjunction with this technique because they invoke exactly one operation.

Object flow states may be used as synch states, indicated by the isSynch attribute being set to
true. In this case, outgoing transitions can fire only if an object has arrived on the incoming
transitions. Instead of a count, the state keeps a list of objects that arrive on the incoming
transitions. These objects are pulled from the list as outgoing transitions are fired. No outgoing
transitions can fire if the list is empty. All objects in the list conform to the classifier and state
specified by the object flow state. The list is not bounded as the count may be in synch states.

For applications requiring that actions or activities bring about an event as their result, use an
object flow state with a signal as a classifier. This means the action or activity must return an
instance of a signal. For multiple resulting events, transition the action or activity to a fork, and
target the fork transitions at multiple object flow states.

SubactivityState

The isDynamic, dynamicArguments, and dynamicMultiplicity attributes of a subactivity state
have a similar meaning to the same attributes of action states. They provide for executing the
submachine of the subactivity state multiple times in parallel. See semantics of ActionState.

Transition

In activity graphs, transitions outgoing from forks may have guards. This means the region
initiated by a fork transition might not start, and therefore not be required to complete at the
corresponding join. Forks and joins must be well-nested in the model to use this feature (see
rule #2 for PseudoState in Activity Graphs). The following mapping shows the state machine
meaning for such an activity graph:
2-182 OMG-UML , v1.5 Activity Graphs September 2002

2 UML Semantics
Figure 2-31

If a conditional region synchronizes with another region using a synch state, and the condition
fails, then these synch states have their counts set to infinity to prevent other regions from
deadlocking.

2.13.5 Notes

Object flow states in activity graphs are a specialization of the general dataflow aspect of
process models. Object-flow activity graphs extend the semantics of standard dataflow
relationships in three areas:

1. The operations in action states in activity graphs are operations of classifiers or types (e.g.,
‘Trade’ or ‘OrderEntryClerk’). They are not hierarchical ‘functions’ operating on a dataflow.

2. The ‘contents’ of object flow states are typed. They are not unstructured data definitions as in
data stores.

3. The state of the object flowing as input and output between operations may be defined
explicitly. The event of the availability of an object in a specific state may form a trigger for
the operation that requires the object as input. Object flow states are not necessarily stateless
as are data stores.

2.14 Actions

See Section , “Part 5 - Actions.

[guard]

Conditional
Activity
Model
Thread

Activity
Model

Thread 1

[guard][~guard]

Conditional
State

Machine
Fragment

Activity diagram
notation

Equivalent state
machine notation

Thread 1
September 2002 OMG-UML , v1.5 Actions 2-183

2 UML Semantics
Part 4 - General Mechanisms
This section defines the mechanisms of general applicability to models. This version of
UML contains one general mechanisms package, Model Management. The Model
Management package specifies how model elements are organized into models,
packages, subsystems, and UML profiles.

2.15 Model Management

2.15.1 Overview

The Model Management package is dependent on the Foundation package. It defines
Model, Package, and Subsystem, which all serve as grouping units for other
ModelElements.

Models are used to capture different views of a physical system. Packages are used
within a Model to group ModelElements. A Subsystem represents a behavioral unit in
the physical system. UML Profiles are packages dedicated to group UML extensions.

In this section it is necessary to clearly distinguish between the physical system being
modeled; that is, the subject of the model and the model element that represent the
physical system in the model. For this reason, we consistently use the term physical
system when we want to indicate the former, and the term (top-level) subsystem when
we want to indicate the latter. An example of a physical system is a credit card service,
which includes software, hardware, and wetware (people). The UML model for this
physical system might consist of a top-level subsystem called CreditCardService,
which is decomposed into subsystems for Authorization, Credit, and Billing. An
analogy with the construction of houses would be that the house would correspond to
the physical system, while a blueprint would correspond to a model, and an element
used in a blueprint would correspond to a model element.

The following sections describe the abstract syntax, well-formedness rules, and
semantics of the Model Management package.

2.15.2 Abstract Syntax

The abstract syntax for the Model Management package is expressed in graphic
notation in Figure 2-32.
2-184 OMG-UML , v1.5 Model Management September 2002

2 UML Semantics
Figure 2-32 Model Management

2.15.2.1 Dependency (as extended)

Dependencies have specific extensions for modeling UML profiles.

Stereotypes

«modelLibrary» This dependency means that the supplier package is being used as
a model library associated with a profile. The client is a package
that is stereotyped as a profile and the supplier is a non-profile
package that contains shared model elements, such as classes and
data types.

«appliedProfile» This dependency is used to indicate which profiles are applicable
to a package. Typically, the client is an ordinary package or a
model (but could be any other kind of package), while the
supplier is a profile package. This means that the profile applies
transitively to the model elements contained in the client
package, including the client package itself.

ElementImport
visibility : VisibilityKind
alias : Name
isSpecification : Boolean

GeneralizableElement
(from Core)

Subsystem
isInstantiable : Boolean

Model

ElementOwnership
(from Core)

Namespace
(from Core)

Package

ModelElement
(from Core)

*

0..1

+ownedElement

*

+namespace

0..1

*

*

*

+importedElement

*

Classifier
(from Core)
September 2002 OMG-UML , v1.5 Model Management 2-185

2 UML Semantics
2.15.2.2 ElementImport

An element import defines the visibility and alias of a model element included in the
namespace within a package, as a result of the package importing another package.

In the metamodel an ElementImport reifies the relationship between a Package and an
imported ModelElement. It allows redefinition of the name and the visibility for the
imported ModelElement; that is, the ModelElement may be given another name (an
alias) and/or a new visibility to be used within the importing Package. The default is
no alias (the original name will be used) and private visibility relative to the importing
Package.

Attributes

2.15.2.3 Model

A model captures a view of a physical system. It is an abstraction of the physical
system, with a certain purpose. This purpose determines what is to be included in the
model and what is irrelevant. Thus the model completely describes those aspects of the
physical system that are relevant to the purpose of the model, at the appropriate level
of detail.

In the metamodel, Model is a subclass of Package. It contains a containment hierarchy
of ModelElements that together describe the physical system. A Model also contains a
set of ModelElements that represents the environment of the system, typically Actors,
together with their interrelationships, such as Dependencies, Generalizations, and
Constraints.

Different Models can be defined for the same physical system, where each model
represents a view of the physical system defined by its purpose and abstraction level
(for example, an analysis model, a design model, an implementation model). Typically
different models are complementary and defined from the perspectives (viewpoints) of
different system stakeholders. For example, a use-case model may be defined from the
viewpoint of a business analyst stakeholder. Each Model is a complete description of
the physical system. When Models are nested, the container Model represents the
comprehensive view of the physical system given by the different views defined by the
contained Models.

alias The alias defines a local name of the imported ModelElement, to be
used within the Package.

isSpecification Specifies whether the ownedElement is part of the specification for
the containing namespace (in cases where specification is
distinguished from the realization). Otherwise the ownedElement is
part of the realization. In cases in which the distinction is not made,
the value is false by default.

visibility An imported ModelElement is either public, protected, or private
relative to the importing Package.
2-186 OMG-UML , v1.5 Model Management September 2002

2 UML Semantics
Stereotypes

2.15.2.4 Package

A package is a grouping of model elements.

In the metamodel Package is a subclass of Namespace and GeneralizableElement. A
Package contains ModelElements like Packages, Classifiers, and Associations. A
Package may also contain Constraints and Dependencies between ModelElements of
the Package.

Each ModelElement of a Package has a visibility relative to the Package stating if the
ModelElement is available to ModelElements in other Packages with a Permission
(«access» or «import») or Generalization relationship to the Package. An «access» or
«import» Permission from one Package to another allows public ModelElements in the
target Package to be referenced by ModelElements in the source Package. They differ
in that all public ModelElements in imported Packages are added to the Namespace
within the importing Package, whereas the Namespace within an accessing Package is
not affected at all. The ModelElements available in a Package are those in the contents
of the Namespace within the Package, which consists of owned and imported
ModelElements, together with public ModelElements in accessed Packages.

Associations

«systemModel» A systemModel is a stereotyped model that contains a collection
of models of the same physical system. A systemModel also
contains all relationships and constraints between model
elements contained in different models.

«metamodel» A metamodel is a stereotyped model denoting that the model is
an abstraction of another model; that is, it is a model of a model.
Hence, if M2 is a model of the model M1, then M2 is a
metamodel of M1. It follows then that classes in M1 are
instances of metaclasses in M2. The stereotype can be
recursively applied, as in the case of a 4-layer metamodel
architecture.

importedElement The namespace defined by a package is extended by model
elements in other, imported packages.
September 2002 OMG-UML , v1.5 Model Management 2-187

2 UML Semantics
Stereotypes

Tag Definitions

«facade» A facade is a stereotyped package that contains references to
model elements owned by another package. It is used to provide
a ‘public view’ of some of the contents of a package. A facade
does not contain any model elements of its own.

«framework» A framework is a stereotyped package that contains model
elements that specify a reusable architecture for all or part of a
system. Frameworks typically include classes, patterns, or
templates. When frameworks are specialized for an application
domain, they are sometimes referred to as application
frameworks.

«modelLibrary» A model library is a stereotyped package that contains model
elements that are intended to be reused by other packages. A
model library differs from a profile in that a model library does
not extend the metamodel using stereotypes and tagged
definitions. A model library is analogous to a class library in
some programming languages.

«profile» A profile is a stereotyped package that contains model elements
that have been customized for a specific domain or purpose
using extension mechanisms, such as stereotypes, tagged
definitions, and constraints. A profile may also specify model
libraries on which it depends and the metamodel subset that it
extends. (The latter is specified via an applicableSubset tag
definition.)

«stub» A stub is a stereotyped package that represents only the public
parts of another package.

«topLevel» TopLevel is a stereotyped package that denotes the highest level
package in a containment hierarchy. The topLevel stereotype
defines the outer limit for looking up names, as namespaces
“see” outwards. A topLevel subsystem is the top of a subsystem
containment hierarchy; that is, it is the model element that
represents the boundary of the entire physical system being
modeled.

{applicableSubset} This tag definition, which only applies to profile packages, lists
the metaelements that are used by the associated profile. The
value associated with this tag definition is a set of strings, where
each string represents the name of an applicable metaelement.

Note that the use of applicable subset does not necessarily
exclude the use of any metaelements, but clearly identifies which
ones are referenced from the associated profile. Further note that
the tag definition applies only to the immediately associated
profile. If a profile combines several other profiles using import
or generalizations, the applicable subset only applies to the
immediately associated profile. The absence of an applicable
subset tag definition means that the whole UML metamodel is
applicable.
2-188 OMG-UML , v1.5 Model Management September 2002

2 UML Semantics
2.15.2.5 Subsystem

A subsystem is a grouping of model elements that represents a behavioral unit in a
physical system. A subsystem offers interfaces and has operations. In addition, the
model elements of a subsystem are partitioned into specification and realization
elements, where the former, together with the operations of the subsystem, are realized
by the latter.

In the metamodel, Subsystem is a subclass of both Package and Classifier. As such it
may have a set of Features, which are constrained to be Operations and Receptions,
and Associations.

The contents of a Subsystem are divided into two subsets: specification elements and
realization elements. The former subset provides, together with the Operations of the
Subsystem, a specification of the behavior contained in the Subsystem, while the
ModelElements in the latter subset jointly provide a realization of the specification.
Any kind of ModelElement can be a specification element or a realization element.
The relationships between the specification elements and the realization elements can
be defined in different ways (for example, with Collaborations or «realize»
dependencies).

Attributes

2.15.3 Well-Formedness Rules

The following well-formedness rules apply to the Model Management package.

2.15.3.1 ElementImport

No extra well-formedness rules.

2.15.3.2 Model

No extra well-formedness rules.

2.15.3.3 Package

[1] No imported element (excluding Association) may have the same name or alias as any
element owned by the Package or one of its supertypes.

self.allImportedElements->reject(re |

re.oclIsKindOf(Association))->forAll(re |

(re.elementImport.alias <> ’’ implies

not (self.allContents - self.allImportedElements)->

isInstantiable States whether a Subsystem is instantiable or not. If false, the
Subsystem represents a unique part of the physical system; otherwise,
there may be several system parts with the same definition.
September 2002 OMG-UML , v1.5 Model Management 2-189

2 UML Semantics
reject(ve |

ve.oclIsKindOf (Association))->exists (ve |

ve.name = re.elementImport.alias))

and

(re.elementImport.alias = ’’ implies

not (self.allContents - self.allImportedElements)->

reject (ve |

ve.oclIsKindOf (Association))->exists (ve |

ve.name = re.name)))

[2] Imported elements (excluding Association) may not have the same name or alias.

self.allImportedElements->reject(re |

not re.oclIsKindOf (Association))->forAll(r1, r2 |

(r1.elementImport.alias <> ’’ and

r2.elementImport.alias <> ’’ and

r1.elementImport.alias = r2.elementImport.alias

implies r1 = r2)

and

(r1.elementImport.alias = ’’ and

r2.elementImport.alias = ’’ and

r1.name = r2.name implies r1 = r2)

and

(r1.elementImport.alias <> ’’ and

r2.elementImport.alias = ’’ implies

r1.elementImport.alias <> r2.name))

[3] No imported element (Association) may have the same name or alias combined with the
same set of associated Classifiers as any Association owned by the Package or one of its
supertypes.

self.allImportedElements->select(re |

re.oclIsKindOf(Association))->forAll(re |

(re.elementImport.alias <> ’’ implies

not (self.allContents - self.allImportedElements)->

select(ve |

ve.oclIsKindOf(Association))->exists(

ve : Association |

ve.name = re.elementImport.alias

and

ve.connection->size = re.connection->size and

Sequence {1..re.connection->size}->forAll(i |

re.connection->at(i).participant =

ve.connection->at(i).participant)))
2-190 OMG-UML , v1.5 Model Management September 2002

2 UML Semantics
and

(re.elementImport.alias = ’’ implies

not (self.allContents - self.allImportedElements)->

select(ve |

not ve.oclIsKindOf(Association))->exists(ve :

Association |

ve.name = re.name

and

ve.connection->size = re.connection->size and

Sequence {1..re.connection->size}->forAll(i |

re.connection->at(i).participant =

ve.connection->at(i).participant))))

[4] Imported elements (Association) may not have the same name or alias combined with the
same set of associated Classifiers.

self.allImportedElements->select (re |

re.oclIsKindOf (Association))->forAll (r1, r2 : Association |

(r1.connection->size = r2.connection->size and

Sequence {1..r1.connection->size}->forAll (i |

r1.connection->at (i).participant =

r2.connection->at (i).participant and

r1.elementImport.alias <> ’’ and

r2.elementImport.alias <> ’’ and

r1.elementImport.alias = r2.elementImport.alias

implies r1 = r2))

and

(r1.connection->size = r2.connection->size and

Sequence {1..r1.connection->size}->forAll (i |

r1.connection->at (i).participant =

r2.connection->at (i).participant and

r1.elementImport.alias = ’’ and

r2.elementImport.alias = ’’ and

r1.name = r2.name

implies r1 = r2))

and

(r1.connection->size = r2.connection->size and

Sequence {1..r1.connection->size}->forAll (i |

r1.connection->at (i).participant =

r2.connection->at (i).participant and

r1.elementImport.alias <> ’’ and

r2.elementImport.alias = ’’
September 2002 OMG-UML , v1.5 Model Management 2-191

2 UML Semantics
implies r1.elementImport.alias <> r2.name)))

[5] A Package may only own or reference Packages, Classifiers, Associations, Generalizations,
Dependencies, Comments, Constraints, Collaborations, StateMachines, Stereotypes, and
TaggedValues.

self.contents->forAll (c |
c.oclIsKindOf(Package) or
c.oclIsKindOf(Classifier) or
c.oclIsKindOf(Association or
c.oclIsKindOf(Generalization) or
c.oclIsKindOf(Dependency) or
c.oclIsKindOf(Comment) or
c.oclIsKindOf(Constraint) or
c.oclIsKindOf(Collaboration or
c.oclIsKindOf(StateMachine) or
c.oclIsKindOf(TaggedValue) or
c.oclIsKindOf(Stereotype))

 Additional Operations

[1] The operation contents results in a Set containing the ModelElements owned by or
imported by the Package.

contents : Set(ModelElement)

contents = self.ownedElement->union(self.importedElement)

[2] The operation allImportedElements results in a Set containing the ModelElements
imported by the Package or one of its parents.

allImportedElements : Set(ModelElement)

allImportedElements = self.importedElement->union(

self.parent.oclAsType(Package).allImportedElements->select(re |

re.elementImport.visibility = #public or

re.elementImport.visibility = #protected))

[3] The operation allContents results in a Set containing the ModelElements owned by or
imported by the Package or one of its ancestors.

allContents : Set(ModelElement);

allContents = self.contents->union(

self.parent.allContents->select(e |

e.elementOwnership.visibility = #public or

e.elementOwnership.visibility = #protected))

2.15.3.4 Profile

[1] The base classes of all stereotypes in a profile must be part of the applicable subset of this
profile.

self.applicableSubset->
includesAll(self.stereotypes->collect(baseClass))

[2] A profile package can only contain tag definitions, stereotypes, constraints and data types.
2-192 OMG-UML , v1.5 Model Management September 2002

2 UML Semantics
self.contents->forAll(e |
e.oclIsKindOf(Stereotype) or
e.oclIsKindOf(Constraint) or
e.oclIsKindOf(TagDefinition) or
e.oclIsKindOf (DataType))

2.15.3.5 Subsystem

[1] For each Operation in an Interface offered by a Subsystem, the Subsystem itself or at least
one contained specification element must have a matching Operation.

self.specification.allOperations->forAll(interOp |

self.allOperations->union

(self.allSpecificationElements->select(specEl|

specEl.oclIsKindOf(Classifier))->forAll(c|

c.allOperations))->exists

(op | op.hasSameSignature(interOp)))

[2] For each Reception in an Interface offered by a Subsystem, the Subsystem itself or at least
one contained specification element must have a matching Reception.

let allReceptions : set(Reception) = self.allFeatures->select(f |

f.oclIsKindOf(Reception)) in

self.specification.allReceptions->forAll(interRec |

self.allReceptions->union

(self.allSpecificationElements->select(specEl|

specEl.oclIsKindOf(Classifier))->forAll(c|

c.allReceptions))->exists

(rec | rec.hasSameSignature(interRec)))

[3] The Features of a Subsystem may only be Operations or Receptions.

self.feature->forAll(f | f.oclIsKindOf(Operation) or

f.oclIsKindOf(Reception))

[4] A Subsystem may only own or reference Packages, Classes, DataTypes, Interfaces,
UseCases, Actors, Subsystems, Signals, Associations, Generalizations, Dependencies,
Constraints, Collaborations, StateMachines, and Stereotypes.

self.contents->forAll (c |

c.oclIsKindOf(Package) or

c.oclIsKindOf(Class) or

c.oclIsKindOf(DataType) or

c.oclIsKindOf(Interface) or

c.oclIsKindOf(UseCase) or

c.oclIsKindOf(Actor) or

c.oclIsKindOf(Subsystem) or

c.oclIsKindOf(Signal) or

c.oclIsKindOf(Association) or
September 2002 OMG-UML , v1.5 Model Management 2-193

2 UML Semantics
c.oclIsKindOf(Generalization) or

c.oclIsKindOf(Dependency) or

c.oclIsKindOf(Constraint) or

c.oclIsKindOf(Collaboration) or

c.oclIsKindOf(StateMachine) or

c.oclIsKindOf(Stereotype))

Additional Operations

[1] The operation allSpecificationElements results in a Set containing the Model Elements
specifying the behavior of the Subsystem.

allSpecificationElements : Set(ModelElement)

allSpecificationElements = self.allContents->select(c |
c.elementOwnership.isSpecification)

[2] The operation contents results in a Set containing the ModelElements owned by or
imported by the Subsystem.

contents : Set(ModelElement)

contents = self.ownedElement->union(self.importedElement)

2.15.4 Semantics

2.15.4.1 Package

Figure 2-33 Package illustration - shows Package and its environment in the metamodel by
flattening the inheritance hierarchy.

The purpose of the package construct is to provide a general grouping mechanism. A
package cannot be instantiated, thus it has no runtime semantics. In fact, its only
semantics is to define a namespace for its contents. The package construct can be used
for organizing elements for any purpose; the criteria to use for grouping elements
together into one package are not defined within UML.

A package owns a set of model elements, with the implication that if the package is
removed from the model, so are the elements owned by the package. Elements with
names, such as classifiers, that are owned by the same package must have unique
names within the package, although elements in different packages may have the same
name.

There may be relationships between elements contained in the same package, and
between an element in one package and an element in a surrounding package at any
level. In other words, elements “see” all the way out through nested levels of packages.
(Note that a package with the stereotype «topLevel» defines the outer limit of this
outward visibility.) Elements in peer packages, however, are encapsulated and are not a

*

*
ModelElement

*
Package

*

*

*

Generalization
*

*

2-194 OMG-UML , v1.5 Model Management September 2002

2 UML Semantics
priori visible to each other. The same goes for elements in contained packages; that is,
packages do not see “inwards.” There are two ways of making elements in other
packages available: by importing/accessing these other packages, and by defining
generalizations to them.

An import dependency (a Permission dependency with the stereotype «import») from
one package to another means that the first package imports all the elements with
sufficient visibility in the second package. Imported elements are not owned by the
package; however, they may be used in associations, generalizations, attribute types,
and other relationships owned by the package. A package defines the visibility of its
contained elements to be private, protected, or public. Private elements are not
available at all outside the containing package. Protected elements are available only to
packages with generalizations to the package owning the elements, and public elements
are available also to importing and accessing packages. Note that the visibility
mechanism does not restrict the availability of an element to peer elements in the same
package.

When an element is imported by a package it extends the namespace of that package.
It is possible to give an imported element an alias to avoid name conflicts with the
names of the other elements in the namespace, including other imported elements. The
alias will then be the name of that element in the namespace; the element will not
appear under both the alias and its original name. An imported element is by default
private to the importing package. It may, however, be given a more permissive
visibility relative to the importing package; that is, the local visibility may be defined
as protected or public.

A package with an import dependency to another package imports all the public
contents of the namespace defined by the supplier package, including elements of
packages imported by the supplier package that are given public visibility in the
supplier.

The access dependency (a Permission dependency with the stereotype «access») is
similar to the import dependency in that it makes elements in the supplier package
available to the client package. However, in this case no elements in the supplier
package are included in the namespace of the client. They are simply referred to by
their full pathname when referenced in the accessing package. Clearly, they are not
visible to packages in turn accessing or importing this package.

A package can have generalizations to other packages. This means that the public and
protected elements owned or imported by a package are also available to its children,
and can be used in the same way as any element owned or imported by the children
themselves. Elements made available to another package by the use of a generalization
are referred to by the same name in the child as they are in the parent. Moreover, they
have the same visibility in the child as they have in the parent package. Relationships
between the ancestor package and other model elements are also inherited by the child
package.

A package can be used to define a framework, specifying a reusable architecture for all
or part of a system. Frameworks may include reusable classes, patterns or templates.
When frameworks are specialized for an application domain, they are sometimes
referred to as application frameworks.
September 2002 OMG-UML , v1.5 Model Management 2-195

2 UML Semantics
2.15.4.2 Profile

A profile stereotype of Package contains one or more related extensions of standard
UML semantics (refer to Section 2.6, “Extension Mechanisms,” on page 2-77). These
are normally intended to customize UML for a particular domain or purpose. Profiles
can contain stereotypes, tag definitions, and constraints. They can also contain data
types that are used by tag definitions for informally declaring the types of the values
that can be associated with tag definitions.

In addition, a profile package can specify a related model library and identify a subset
of the UML metamodel that is applicable for the profile. In principle, profiles merely
refine the standard semantics of UML by adding further constraints and interpretations
that capture domain-specific semantics and modeling patterns. They do not add any
new fundamental concepts.

Relationships between profiles

A profile package can have the usual relationships with other packages such as
generalization, import, and access. These have the usual semantics. They are useful to
profile designers who may want to import elements from one profile into another, or to
combine two or more profiles. However, care should be taken to combine these in a
consistent way. For example, extensions from different profiles may be incompatible
and their respective constraints may contradict each other. In this revision of UML, no
formal mechanisms are defined to verify that a combination of two or more profiles is
mutually consistent.

Profile generalization

Generalization of profiles is a relationship between a profile and a more general
profile. The more specific profile must be fully consistent with the more general
profile; that is, it has all the same tag definitions, stereotypes, and constraints, and may
add further refinements, which must not contradict its parent. Note that the subset of
UML defined as applicable by a profile is not inherited by specializing profiles,
whereas relationships to model libraries are.

Access and import dependencies between profiles

Profiles can have access and import dependencies with the usual semantics. This
allows elements in one profile to access or use elements in the related profiles. An
applied profiles dependency will allow a client package to use all stereotypes and tag
definitions accessible by the supplier package. As in all other types of packages, a
profile can own other profiles with standard semantics of ownership and accessibility.

Applying a profile to a package

A UML model can be based on a number of different UML profiles. The applicable
profiles are identified by specially stereotyped «appliedProfile» dependencies from the
UML model package to the appropriate profile packages. This declaration enables the
UML model to access the stereotypes and tag definitions of these profiles.
2-196 OMG-UML , v1.5 Model Management September 2002

2 UML Semantics
2.15.4.3 Subsystem

Figure 2-34 Subsystem illustration - shows Subsystem and its environment in the
metamodel by flattening the inheritance hierarchy.

The purpose of the subsystem construct is to provide a grouping mechanism for
specifying a behavioral unit of a physical system. Apart from defining a namespace for
its contents, a subsystem serves as a specification unit for the behavior of its contained
model elements.

The contents of a subsystem are defined in the same way as for a package, thus it
consists of owned elements and imported elements, with unique names or aliases within
the subsystem. The contents of a subsystem are divided into two subsets: 1) specification
elements and 2) realization elements. The specification elements, together with the
operations and receptions of the subsystem, are used for giving an abstract specification
of the behavior offered by the realization elements. The collection of realization elements
model the interior of the behavioral unit of the physical system. Consequently,
subsystems contained in the realization part represent subordinate subsystems; that is,
subsystems at the level below in the containment hierarchy, hence owned by the current
subsystem.

The specification of a subsystem thus consists of the specification elements together
with the subsystem’s features (operations and receptions). It specifies the behavior
performed jointly by instances of classifiers in the realization subset, without revealing
anything about the contents of this subset. The specification is typically made in terms
of model elements such as use cases and/or operations, although other kinds of model
elements like classes, interfaces, constraints, relationships between model elements,
state machines may also be used. Use cases are used to specify complete sequences
performed by the subsystem; that is, by instances of its contained classifiers interacting
with its surroundings. Operations are suitable to represent simpler subsystem services
that are used independently of each other; that is, not in any particular order.

A subsystem has no behavior of its own. All behavior defined in the specification of
the subsystem is jointly offered by the elements in the realization subset of the
contents. In general, since subsystems are classifiers, they can appear anywhere a
classifier is expected. It follows that, since the subsystem itself has no behavior of its
own, the requirements posed on the subsystem in the context where it occurs are
fulfilled by the realization of the subsystem.

The correspondence between the specification and the realization of a subsystem can
be specified in several ways, including collaborations and «realize» dependencies. A
collaboration specifies how instances of the realization elements cooperate to jointly
perform the behavior specified by a use case, an operation, etc. in the subsystem
specification; that is, how the higher level of abstraction is transformed into the lower

InterfaceBehavioralFeature

*

*

Generalization
*

Subsystem

**

*

ModelElement

*
*

SubsystemInstance
September 2002 OMG-UML , v1.5 Model Management 2-197

2 UML Semantics
level of abstraction. A stimulus received by an instance of a use case (higher level of
abstraction) corresponds to an instance conforming to one of the classifier roles in the
collaboration receiving that stimulus (lower level of abstraction). This instance
communicates with other instances conforming to other classifier roles in the
collaboration, and together they perform the behavior specified by the use case. All
stimuli that can be received and sent by instances of the use cases are also received and
sent by the conforming instances, although at a lower level of abstraction. Similarly,
application of an operation of the subsystem actually means that a stimulus is sent to a
contained instance that performs a method.

There are two ways of communicating with a subsystem, either by sending stimuli to
the subsystem itself to be re-directed to the proper recipient inside the subsystem, or by
sending stimuli directly to the recipient inside the subsystem. In the first case, an
association is defined with the subsystem itself to enable stimuli sending. (In the
abstract syntax, this is handled by a single subsystem instance being connected by links
corresponding to this association, receiving stimuli sent to the subsystem, and re-
directing them to instances within the subsystem instance. Hence the subsystem
instance is the “runtime representative” of the subsystem. Note that this subsystem
instance still does not perform any of the behavior specified in the subsystem
specification.) How stimuli sent to the subsystem are re-directed to internal instances is
not defined but left as a semantic variation point.

Communicating with a subsystem by sending stimuli directly to instances within the
subsystem requires that the classifiers of these instances are available within the
sender’s namespace so that they can be connected by associations. This can be
achieved by import or access permissions. Importing and accessing subsystems is done
in the same way as with packages, using the visibility property to define whether
elements are public, protected, or private to the subsystem. Both the specification part
and the realization part of a subsystem may include imported elements.

A subsystem can have generalizations to other subsystems. This means that the public
and protected elements in the contents of a subsystem as well as operations and
receptions are also available to its heirs. Furthermore, relationships between an
ancestor subsystem and other model elements are inherited by specializing subsystems.
In a concrete (non-abstract) subsystem all elements in the specification, including
elements from ancestors, are completely realized by cooperating realization elements,
as specified with, for example, a set of collaborations. This may not be true for abstract
subsystems.

A subsystem may offer a set of interfaces. This implies that for each operation defined
in an interface, the subsystem offering the interface must have a matching operation,
either as a feature of the subsystem itself or of a specification element. The
relationship between interface and subsystem is not necessarily one-to-one. Interfaces
of a subsystem are usually contained in the same namespace as the subsystem itself,
but may also be contained in the specification of the subsystem. In the latter case,
elements using these interfaces must have an import or access relationship with the
subsystem to gain access to the interfaces.
2-198 OMG-UML , v1.5 Model Management September 2002

2 UML Semantics
In cases when the physical system has several parts with the same definition, the
subsystem is specified to be instantiable. The parts are then instances of this
subsystem. Note, however, that all behavior specified for the subsystem is still
performed by instances contained in the subsystem instances, not by the subsystem
instances themselves.

2.15.4.4 Model

Figure 2-35 Model illustration - shows Model and its environment in the metamodel by
 flattening the inheritance hierarchy.

A model is a description of a physical system with a certain purpose, such as to
describe logical or behavioral aspects of the physical system to a certain category of
readers. Examples of different kinds of models are ‘use case,’ ‘analysis,’ ‘design,’ and
‘implementation,’ or ‘computational,’ ‘engineering,’ and ‘organizational’ each
representing one view of a physical system.

Thus, a model is an abstraction of a physical system. It specifies the physical system
from a certain vantage point (or viewpoint); that is, for a certain category of
stakeholders (for example, designers, users, or orderers of the system), and at a certain
level of abstraction, both given by the purpose of the model. A model is complete in
the sense that it covers the whole physical system, although only those aspects relevant
to its purpose; that is, within the given level of abstraction and vantage point, are
represented in the model. Furthermore, it describes the physical system only once; that
is, there is no overlapping; no part of the physical system is captured more than once
in a model.

A model consists of a containment hierarchy where the top-most package or subsystem
represents the boundary of the physical system. This package/subsystem may be given
the stereotype «topLevel» to emphasize its role within the model. It is possible to have
more than one containment hierarchy within a model; that is, the model contains a set
of top-most packages/subsystems each being the root of a containment hierarchy. In
this case there is no single package/subsystem that represents the physical system
boundary.

The model may also contain model elements describing relevant parts of the system’s
environment. The environment is typically modeled by actors and their interfaces. As
these are external to the physical system, they reside outside the package/subsystem
hierarchy. They may be collected in a separate package, or owned directly by the
model. These model elements and the model elements representing the physical system
may be associated with each other.

A model may be a specialization of another model via a generalization relationship.
This implies that all public and protected elements in the ancestor are also available in
the specialized model under the same name and interrelated as in the ancestor.

PackageModelElement Model

**
September 2002 OMG-UML , v1.5 Model Management 2-199

2 UML Semantics
A model may import or access another model. The semantics is the same as for
packages. However, some of the actors of the supplier model may be internal to the
client. This is the case, for example, when the imported model represents a lower layer
of the physical system than the client model represents. Then some of the actors of the
lower layer model represent the upper layer. The conformance requirement is that there
must be classifiers in the client whose instances may play the roles of such actors.

The contents of a model is the transitive closure of its owned model elements, like
packages, classifiers, and relationships, together with inherited and imported elements.

There may be relationships between model elements in different models, such as
refinement and trace. A trace; that is, an abstraction dependency with the stereotype
«trace» indicates that the connected (sets of) model elements represent the same
concept. Trace is used for tracing requirements between models, or tracing the impact
on other models of a change to a model element in one model. Thus traces are usually
non-directional dependencies. Relationships between model elements in different
models have no impact on the model elements’ meaning in their containing models
because of the self-containment of models. Note, though, that even if inter-model
relationships do not express any semantics in relation to the models, they may have
semantics in relation to the reader or in deriving model elements as part of the overall
development process.

Models may be nested (for example, several models of the same physical system may
be collected in a model with the stereotype «systemModel»). The models contained in
the «systemModel» all describe the physical system from different viewpoints, the
viewpoints not necessarily disjoint. The «systemModel» also contains all inter-model
relationships. A «systemModel» constitutes a comprehensive specification of the
physical system.

A large physical system may be composed by a set of subordinate physical systems
together making up the large physical system. In this case each subordinate physical
system is described by its own set of models collected in a separate «systemModel».
This is an alternative to having each part of the physical system defined as a
subsystem.

2.15.5 Notes

In UML, there are three different ways to model a group of elements contained in
another element; by using a package, a subsystem, or a class. Some pragmatics on their
use include:

• Packages are used when nothing but a plain grouping of elements is required.

• Subsystems provide grouping suitable for top-down development, since the
requirements on the behavior of their contents can be expressed before the
realization of this behavior is defined. Furthermore, from a bottom-up perspective,
the specification of a subsystem may also be seen as a provider of “high level APIs”
of the subsystem.

• Classes are used when the container itself should have instances, so that it is
possible to define composite objects.
2-200 OMG-UML , v1.5 Model Management September 2002

2 UML Semantics
As Subsystem and Model both are Packages in the metamodel, all three constructs can
be combined arbitrarily to organize a containment hierarchy. For example, a Subsystem
may be defined using a set of Models, in which case these Models are contained in the
Subsystem. Another example is a set of components defined by Subsystems, collected
in a Package defining a reuse library.

It is a tool issue to decide how many of the imported elements must be explicitly
referenced by the importing package; that is, how many ElementImport links to
actually implement. For example, if all elements have the default visibility (private)
and their original names in the importing package, the information can be retrieved
directly from the imported package.

If a tool does not support the separation of specification and realization elements for
Subsystem, then the value of the isSpecification attribute for ElementOwnership should
be false by default. See the Core package, where ElementOwnership is defined, for
details.

The issue of how to represent the runtime presence of a Subsystem has been solved by
introducing SubsystemInstance, even for a non-instantiable Subsystem. An alternative,
less intuitive, solution would be to have the metaclass Subsystem inherit the metaclass
Instance, thus getting the desired characteristics.

Because this is a logical model of the UML, distribution or sharing of models between
tools is not described.

It is expected that tools will manage presentation elements, in particular diagrams, that
are attached to model elements.

Part 5 - Actions
This section defines the syntax and semantics of executable actions and procedures, including
their run-time semantics. This part contains one package, Actions. The Actions package defines
the various kinds of actions that may compose a procedure.
September 2002 OMG-UML , v1.5 Model Management 2-201

2 UML Semantics
2.16 Action Package

The actionpackage structure is shown in the figure below.

Figure 2-36 Action package

See “The Actions” on page 207.for description of packages.

2.17 Actions Overview

The section provides an overview of the actions that will be used by modelers.

Composite
Actions

Computation
Actions

Action
Foundation

Messaging
Actions

Collection
Actions

Jump Actions

Read Write
Actions

Association Actions

(from Read Write Actio...)

Attribute Actions
(from Read Write Actio...)

Object Actions
(from Read Write Actio...)

Other Actions
(from Read Write Actio...)

Variable Actions
(from Read Write Actio...)

Filter

(from Collection Actions)

Iterate

(from Collection Actions)

Map
(from Collection Actions)

Reduce
(from Collection Actions)
2-202 OMG-UML , v1.5 Action Package September 2002

2 UML Semantics
2.17.1 Action Metamodel

The classes defined in this package play the same role as the classes in the remainder of the
UML metamodel. Just as the classes Class and Attribute provide a definition for the meaning of
these concepts and the relationships between them, so a class CreateObjectAction in the action
metamodel provides a precise definition for the concept of creating an object. Figure 1 shows a
portion of the action metamodel that deals with creating, destroying and reclassifying objects. It
shows several subclasses of the general class Action that are related to other classes in the UML
metamodel to form a whole that a modeler can use to build complete, executable specifications.

One role of the action metamodel specifically is to define all the actions that a modeler can use.
Figure 2-36 shows the actions CreateObjectAction, DestroyObjectAction and
ReclassifyObjectAction, each of which is defined in detail in the action package. The
metamodel further asserts that a CreateObjectAction requires the specification of a classifier,
the one to be created, and that the action also produces a single result, OutputPin. This class
captures the concept of the result of the CreateObjectAction, which can then be manipulated by
other actions. The action metamodel then, together with its supporting class descriptions and
well-formedness rules, declares what actions exist and how they relate to other concepts
required to support actions.

A user model uses instances of classes from the metamodel. The name “customer” describes an
instance of Class. A user model also contains anonymous instances of actions. A modeler can
create an instance of a metamodel class, such as “customer” as an instance of “Class”, using an
interactive graphical tool or other means. Similarly, a complier can create instances of actions
from a user model expressed in a surface programming language. Figure 2-37 shows an
instance diagram for a statement such as “Customer := new Customer” in a developer model.
Execution of the statement creates an instance of class Customer and binds the new instance to

Figure 2-36 An fragment of the metamodel for actions

PrimitiveAction
(from A ct ion Founda tion)

DestroyObjectAction

InputPin
(from Action Foundation)

ReclassifyObjectAction

OutputPin
(from Act ion Founda tion)

Classifier
(from Core)

CreateObjectAction

1

0..1

+/input 1

0..1

+/ input

1

0..1

1

0..1 0..*0.. *

+newClassifier
0..*0..*

0..*

+oldClassifier 0..*0..*

0.. *

1

0..1

+/ result 1

0..1

1

0..*

+classifier

1

0..*
September 2002 OMG-UML , v1.5 Actions Overview 2-203

2 UML Semantics
a variable called “customer”. To designate the result of the action, the developer model attaches
an instance of OutputPin to an instance of the CreateObjectAction. An instance of DataFlow
connects the users of a value (InputPins) to the producer of a value (OutputPin) within the user
model.

In summary, the metaclasses in the Action Package play the same role and have the same
properties as classes in other packages comprising UML.

2.17.2 Design Principles and Rationale

The section outlines the design principles that animate the specification, thus providing the
design rationale.

Interface to Other UML Packages

This package defines the interface the interface to other UML packages in terms of a procedure.
A procedure is a group of actions caused to execute as a unit. Examples include the body of a
method of a class, a group of transition actions, and so on. This package relies on the rest of
UML to define the semantics for state machines and other uses of procedures, and therefore to
define when a procedure executes. The action semantics defines the behavior of the actions in
the procedure and exactly what data is accessible to the procedure once triggered.

Figure 2-37 An Instance Diagram showing Actions in a developer’s model.

customer:Class:CreateObjectAction

:OutputPin

:DataFlow

:InputPin

:WriteVariableAction

newCustomer:Variable

class

result

source destination value

variable
2-204 OMG-UML , v1.5 Actions Overview September 2002

2 UML Semantics
Undefined Semantics

When this package leaves semantics “undefined,” this means that it leaves the semantics to be
defined by other packages in UML, or if UML does not define it, to the implementation. There
are several cases where semantics may be left undefined by this package:

• There is no general agreed-upon meaning.

• The meaning is ambiguous in the part of UML that should define it.

• The action or execution foundation is not able to support the desired semantics yet.

An example of the first case is that no semantics is defined for using a create-object action to
instantiate an abstract class. An example of second is using a write-attribute action on an
ordered attribute without specifying an insertion point. An example of the third is a target scope
of “classifier” for attributes and association ends. These cases of undefined semantics are
described by well-formedness rules applying to the user model, and the execution rules
applying to runtime execution.

The fact that no semantics is given for these situations does not mean that users cannot define
their own. Even though this package sometimes uses the value-laden term “ill-formed” for these
models, it is a purely technical term and should not be taken to mean this specification excludes
semantics from ever being defined for these cases. For example, some users might want to
instantiate abstract classes for purposes of testing the root classes of their model. Or some may
want the lack of insertion point in write-attribute action to mean that the value is inserted at the
end. Finally, some users may even want to extend the action semantic foundation to support the
“classifier” target scope. These users could agree on semantics among themselves that covers
their needs and does not conflict with this specification. That is perfectly consistent with the
action semantics and UML in general.

Specification and Software Structure

At the very simplest, actions need access to data, they need to transform and test data, and
actions may require sequencing. A simple, sequential model could be adequate relative to a
sequential computing environment, but it is not adequate today because it is unreasonably costly
to map to today’s distributed computing environments. Consequently, the specification language
has to include concepts of distributed, concurrent execution. This specification therefore allows
for several (logical) threads of control executing at once and synchronization mechanisms to
ensure that procedures execute in a specified order. Semantics based on concurrent execution
can then be mapped easily into a distributed implementation.

On the other hand, the fact that a specification language allows for concurrently executing
objects does not necessarily imply a distributed software structure. Some implementations may
group together objects into a single task and execute sequentially—so long as the behavior of
the implementation is the same as the specification.

The implication is that the action semantics do not require the specification of software
components, such as tasking structures, or of different forms of transfer of control, such as
remote procedure calls vs. messages. Indeed the specification language need not actually
specify class structure: the data and behavior of a “class” in the specification may not be
rendered as a class in the implementation at all.
September 2002 OMG-UML , v1.5 Actions Overview 2-205

2 UML Semantics
In short, the modeler can define concurrent, distributed abstract behavior using actions, but not
software structure.

Mappings

There are potentially many ways of implementing the same specification, and any
implementation that preserves the information content and behavior of the specification is
acceptable. Because the implementation can have a different structure from that of the
specification, there is a mapping between the specification and its implementation. A one-to-
one mapping would implement each class as a class and each state machine directly. But the
mapping need not be one-to-one: an implementation may not use classes, or it might choose a
different set of classes from the original specification.

The mapping may be carried out by hand by overlaying physical models of computers and tasks
for implementation purposes, or the mapping could be carried out automatically. This
specification neither provides the overlays, nor does it provide for code generation explicitly,
but the specification makes both approaches possible.

Primitives

The action semantics defines simple, primitive constructs. These primitive actions are defined in
such a way as to enable the maximum range of mappings. Specifically, we define the primitive
actions so that they either carry out a computation or access object memory, and never both.
This approach enables clean mappings to a physical model, even those with data organizations
different from that suggested by the specification. In addition, any re-organization of the data
structure will leave the specification of the computation unaffected.

A particular action language could implement each semantic construct one-to-one, or it could
define higher-level, composite constructs to offer the modeler both power and convenience.
These higher-level constructs do not need to be defined as a part of the semantics, because they
already exist as composites of primitives.

Primitive actions may be grouped into composite actions, including control actions such as
conditionals, loops, etc. In addition, a surface language may map higher-level constructs to
lower-level action model constructs. For example, in a composition association where the
deletion of an instance implies the deletion of all its components, the specification defines the
delete action to remove only the single instance, and the specification requires further deletions
for each of the component instances. A surface language could choose to define a delete-
composition operation as a single unit as a shorthand for several deletions that cascade across
other associations.

This specification, then, expresses the fundamental semantics in terms of primitive behavioral
concepts that are conceptually simple to implement. The semantics do not define any “magic”
that takes places behind the scenes. Modelers can work in terms of higher-level constructs as
provided by their chosen surface language or notation.
2-206 OMG-UML , v1.5 Actions Overview September 2002

2 UML Semantics
Execution Engines

The semantic primitives are defined to enable the construction of multiple execution engines,
each of which may have different performance characteristics. A model compiler builder can
optimize the structure of the software to meet specific performance requirements, so long as the
semantic behavior of the specification and the implementation remain the same. For example,
one engine might be fully sequential within a single task, while another may separate the
classes into different processors based on potential overlapping of processing, and yet others
may separate the classes in a client-server, or even a three-tier model. .

The modeler can provide “hints” to the execution engine when the modeler has special
knowledge of the domain solution that could be of value in optimizing the execution engine.
For example, instances could—by design—be partitioned to match the distribution selected, so
tests based on this partitioning can be optimized on each processor. The execution engines are
not required to check or enforce such hints. An execution engine can either assume that the
modeler is correct, or just ignore it. An execution engine is not required to verify that the
modeler’s assertion is true.

2.17.3 The Actions

This section provides an overview of the various actions that can be included in developer
models. Related actions are organized into sections that correspond to subsequent chapters.

Foundation

Traditional programming languages overspecify sequence because actions, even within the
same procedure, can potentially execute concurrently on different machines. For example, some
execution engines might rely on a file server, and execute all data accesses on that separate
machine, but over-specifying sequence inhibits such re-organization of the actions. The issue
here is not concurrency of actions per se, but rather the requirement to be able to re-organize
the actions for an efficient implementation.

This specification therefore treats all actions as executing concurrently unless explicitly
sequenced by a flow of data or control. In addition, each action is defined so that it is free of
any context that describes how it used, so that data access and other computations are two
separate primitive actions connected together when required, and each action is unaware of the
source or destination of the data.

To meet these goals, this specification defines the concept of a data flow. A data flow carries
data between two actions and in so doing effectively sequences the actions. Hence, we may
execute a read action to access some data, flow that data to a computation action that computes
the square, and then flow that result to a write action. The three actions have to execute in this
order because each one cannot execute until the previous one produces its data.

The technical reasons for this choice are first that data flow makes this form of sequencing
explicit. Second, because data flows are produced only once (as a result of a specific execution
of an action), we may make assertions about the values on the data flow for verification and
translation purposes.
September 2002 OMG-UML , v1.5 Actions Overview 2-207

2 UML Semantics
A data flow connects to other components via pins. Each data flow has a source that is the
output pin of some other element, typically an action, and each data flow has a destination that
is an input pin to some other element.

This specification also provides the ability to read and write variables local to the procedure for
upward compatibility with existing languages.

Finally, the specification provides for control flows between actions for explicit sequencing that
does not rely on data flow.

Composite Actions

This specification provides for conditionals and iteration. In both cases, there is a need to group
actions together so they may be executed (or not) as unit. Such groupings may be nested, and
may accept and receive control flows. Data flows are routed transparently to the actions
involved. The presence of concurrency also affects how these traditional structures operate.

A conditional action comprises a group of clauses that execute concurrently, subject to optional
execution ordering constraints among them. Each clause has two parts: a test and a body. A test
produces a Boolean value. If the value is true, the associated body may be executed. If the value
is false, the body is not executed and clauses dependent on the given clause may execute their
tests. If there are no constraints among a set of clauses, they may be tested concurrently.
Potentially more than one test may produce a true value during execution, but only one body is
executed. If more than one clause yields a true test, the body of exactly one of them is
nondeterministically chosen for execution.

The modeler may, of course, constrain the sequencing of the tests so that when one test
evaluates to true, no further tests are evaluated, and the structure then behaves like a
conventional if-then-else. The modeler may also assert that only one test is ever true by design
of the tests (that is, they are mutually exclusive), so once a test has evaluated to true, no further
tests need to be evaluated (even in the absence of explicit sequencing). An execution engine is
not required to verify explicitly a modeler’s assertion of mutual exclusion.

Some kinds of iteration require sequential execution, for example, a regression that takes the
outputs of one cycle and feeds it as inputs to the next. This kind of iteration is managed by the
loop action. It comprises a single clause that, in turn, comprises a test and a body. The body is
executed repetitively while the test is true. The body of a loop accepts a set of input values and
produces a set of output values. The output values of one iteration of the body become the input
values for the next iteration of the loop. These values are known as the loop variables.
(Iterations that scan the elements of a collection are handled by collection actions. These
include both concurrent scans and sequential scans. See below.)

Read and Write Actions

Objects, attributes, links, and variables have values that are available to actions. Objects have
classifiers and objects can be created and destroyed; attributes and variables have values; links
may be created and destroyed, and they have link ends, and qualifier values; all of which are
available to actions. Read actions get values, while write actions modify values and create and
destroy objects and links. Read and write actions share the structures for identifying the
attributes, links, and variables that they are accessing.
2-208 OMG-UML , v1.5 Actions Overview September 2002

2 UML Semantics
Read actions do not modify the values they access, while write actions, as a general policy, have
the most minimal effect possible. For example, creating an object does not execute constructors.
Languages requiring additional semantics can define higher-level actions on the primitive ones
given here. Unlike read actions, write actions may leave semantics unspecified in some cases.
No semantics is usually given when an action violates those aspects of static UML modeling
that constrain runtime behavior. For example, no semantics is given for creating an instance of
an abstract class. The only exception is minimum multiplicity, which is given a semantics
equivalent to the lower multiplicity being zero. Modelers of language bindings can assign their
own semantics for undefined cases.

Computation Actions

Computation actions transform a set of input values to produce a set of output values. These
actions work directly on values and produce values; they embody mathematical functions. They
do not interact with object memory: they do not read or write attribute or link values. They do
not interact with other objects or other executions, so their control is entirely self-contained.
These actions supply the primitive functions out of which computations are constructed.

This specification allows for the incorporation of primitive functions, such as mathematical
functions or string manipulations, that may be gathered together to form a profile for specific
uses, but it does not define a set of primitive functions as a part of the specification. This allows
the actions to be extensible.

Collection Actions

Collection actions permit the application of an action to a set of data elements, possibly in
parallel. They avoid the need for explicit indexing and extracting of elements from collections,
avoiding the overspecification of control that would otherwise be necessary.

Each collection action contains a subaction, an embedded action that is executed once for each
element in the input collection. There are four kinds of collection action. The map action
applies a subaction in parallel to each of the elements of a collection of data, resulting in an
output that is a collection of the same size and shape. The filter action selects a subset of the
elements in a collection into a new collection of the same shape, based on a boolean result of
the subaction applied to each element. The iterate action applies a subaction repeatedly to each
of the elements in a collection, accumulating the effects in loop variables. The reduce action
repeatedly applies a binary subaction to pairs of adjacent elements in a collection, implicitly
replacing a pair of elements by the result, until the final result is a single element of the type in
the collection. The binary subaction must be associative, therefore it may be applied in parallel
to many pairs of elements, because the exact order of application will not affect the final result.
For example, summation or matrix multiplication are reduction operators.

There is also a separate loop action that carries out actions repetitively subject to an arbitrary
test. The iteration action can be regarded as a specialization of the loop in which a separate
element of the collection is selected for input to each iteration and the while-test fails when all
elements have been processed.
September 2002 OMG-UML , v1.5 Actions Overview 2-209

2 UML Semantics
Messaging Actions

These actions exchange messages among objects. An initial message from one object to another
is called a request. The sender of a request may simply continue execution immediately without
concern for the behavior invoked by the request (an asynchronous request, or send), or it may
choose to suspend execution until the activity invoked by the request reaches a well-defined
point and sends a reply message back to the requestor, with optional return values (a
synchronous request, or call). If the request is synchronous, the behavior of the receiver must
have a well-defined reply point; if the request is asynchronous, a reply is optional and will be
ignored. The receiver may handle a request in various ways based on its organization, including
procedure execution and triggering a state machine. The requestor need not be aware of how the
request will be handled. The messaging model covers a wide range of ways to match behavior
to requests, including state machine triggers, fixed procedures, class-based method lookup,
method combination (such as before-after methods), object-based delegation (as in self), and so
on. In all cases, the effect is processed by a distinct context from the context of the requestor
and the messaging information is transmitted among requestor and target by value. This
messaging model fully supports distributed processing without special mechanisms. This model
unifies operations and signals into a single concept.

Jump Actions

All flow of control for a procedure could use Dijkstra-style, fully nested flow-of-control
constructs, but this style can be awkward and obscure when dealing with unusual or secondary
conditions that do not follow the main line. Programming languages include constructs such as
break, continue, and exceptions for dealing with these situations. When a non-mainline situation
occurs, the normal flow of control is abandoned and a different flow of control, specified in the
program, is taken. The UML jump construct unifies these nonlinear flow-of-control
mechanisms while providing the functionality found in most modern programming languages.

2UMLSemantics

2.16 Action Conventions

This describes the structure and conventions applied in the chapters that describe actions.

2.16.1 Chapter Structure

Each chapter begins with a brief introduction that outlines the content of the chapter, the theme
behind it, and any high-level design decisions or criteria that guide the chapter.

The following several sections in each chapter introduce the key abstractions for readers. The
material is organized for understanding, not for detailed reference. The purpose is to give the
reader an intuitive feel for the concepts, and, particularly, to show how they work together and
the reason that they are needed. These sections strive for clarity at the expense of detail, and
they are not normative. Examples, diagrams, and partial models help present concepts. The
normative specifications appear in the precise descriptions of classes in subsequent chapters.
2-210 OMG-UML , v1.5 Action Conventions September 2002

2 UML Semantics
Metamodel diagrams of the actions are included in these conceptual sections. These are
normative and are the basis of the interchange format.

The final sections of each chapter (with titles “... Classes”) define the actions in alphabetical
order. Each class section covers the semantics of the class, including its attributes and
associations, inputs and outputs, static well-formedness rules, and additional OCL operations.
These sections are normative. The format used is the subject the next section of this chapter.

2.16.2 Description of a Class

The formal class descriptions begin with a the technical meaning of the class. If it is an action,
it describes what the action does. It calls out all semantic features, unless detailed aspects are
given in the semantic section.

The following subsections are lists with specific formats for their contents.

• Attributes

• Associations

• Inputs

• Outputs

• Well-formedness rules

• Additional operations

A subsection is omitted if it has no elements, except for Inputs and Outputs, which are included
for all concrete action classes and omitted for abstract action classes.

Attributes

This subsection lists all attributes of the class, including their types and multiplicity.

For enumerations that are used as the type of only one attribute, a list of enumeration literals
may follow, one to a line.

• name: type [multiplicity] A description of the attribute. For enumerations:

foo—description of the literal

bar—description of the literal

Inherited attributes are omitted.

Associations

This subsection lists all associations that have end names opposite from the class being
described. If an association has no opposite end name, it is omitted. All associations are
described in at least one direction. For example:

• endName: TargetClassName [multiplicity]
Description of the association in the target direction
September 2002 OMG-UML , v1.5 Action Conventions 2-211

2 UML Semantics
Inherited associations ends are omitted unless they are derived. Associations are
sometimes derived from more general ones to limit the kinds of classes that can
participate. The parent and association end from which an end is derived are given
at the beginning of the description:

• derivedEndName : TargetClassName [multiplicity]
First, in parentheses, give the name of the parent class and association end using the notation
Class:endName. Then describe the association.

The following is an example from CreateLinkObjectAction:

• result [1..1] : OutputPin [1..1]
(Derived from Action:outputPin) Gives the output pin on which the result is put.

Inputs

In describing an action, it is necessary to refer to the values that are delivered to the action on
its input pins and sent by the action on its output pins. The action metamodel in Section 2.17,
“Action Foundation, defines the association of an abstract action with a set of input pins and a
set of output pins. Each kind of action requires a specific set of inputs and produces a specific
set of outputs. For example, a read-attribute action has a single pin to which the object to be
read is supplied and a single output pin that holds the value that is read. For clarity, the action
metamodel contains derived associations that delineate the specific set of input and output pins
required for an action. These are listed in the Associations section.

For additional clarity, the input and output pins are also listed in separate sections that give
information normally spread out in the metamodel and well-formedness rules. This section lists
the pins by the name of the corresponding derived association end. For each derived pin
association, the multiplicity is given resulting from combining the multiplicity of the
association at the pin end and the multiplicity of the pin itself. The type of the pin itself is not
always constant, so is not given. The description gives any static constraints on the typing of
the input pins that are in the well-formedness rules.

This is an example from AddAttributeValueAction:

• value : RuntimeInstance [1..1]
(Inherited from WriteAttributeAction) Value of attribute to add. Its type is the same as the
type of the attribute.

Inherited pins are included and the parent class from which they are inherited is given at the
beginning of the description in parentheses.

• inputName : type [multiplicity]
(Inherited from Foo) Description of inherited pin.

Here’s the more general format:

• inputName [multiplicity] : type
First, in parentheses, give the name of the parent class from which the pin is inherited, if any.
Then describe the pin, including any constraints on the type given in the well-formedness
rules.
2-212 OMG-UML , v1.5 Action Conventions September 2002

2 UML Semantics
Sometimes getting to a pin from an action requires navigating more than one association. In this
case, the entire navigation path is given using the OCL dot operator. The multiplicity of the
association at the pin end in this case should actually be a combination of all the multiplicities
navigating from the action to the pin, and reflect well-formedness constraints on those
multiplicities that do not depend on the user model.

Here’s an example from CreateLinkAction:

• endData.qualifier.value : RuntimeInstance [0..*]
(Inherited from LinkAction) Gives the qualifier value of an association end if the end is
qualified. It is the same type as the qualifier attribute. See LinkEndData.

In the above example, the qualifier value is reached from a CreateLinkAction by navigating
through the endData association, then the qualifier association, then the value association.

The order in which the input pins are listed specifies the order in which pins must be linked to
the action. This represents well-formed rules on the action model. For example, suppose an
action has two input pins with derived association end names “object” and “value”. If the pins
are listed in that order, then the corresponding well-formedness rules on the action model are:

[1] self.object = self.inputPin.at(1)

[2] self.value = self.inputPin.at(2)

The well-formedness formally specify derivation of the pin associations.

This subsection is included for concrete action classes even if there are no input pins, with the
text “None.” It is not included for abstract action classes.

Outputs

This subsection lists the output pins using the same format as input pins. The well-formedness
rules represented by the listing order are also the same, except they apply to output pins instead
of input pins.

Well-formedness Rules

This subsection lists static constraints on user models. The constraints are expressed first in
English, then in OCL. The constraints do not cover aspects already expressed in the model,
such as association multiplicity. Well-formedness rules defined for a class are inherited by all
its subclasses.

Additional Operations

This section defines additional OCL operations that apply to the class. These also apply to all
the descendants of the class.

Semantics

This section contains more detailed specification of semantics if needed. It is primarily for
actions that go through intermediate states of execution.
September 2002 OMG-UML , v1.5 Action Conventions 2-213

2 UML Semantics
2.17 Action Foundation

This section describes the structure of procedures and actions in the UML metamodel. The
foundational concepts discussed in this chapter apply to all kinds of actions. The details of
specific kinds of actions are described in subsequent chapters.

2.17.1 Action Specification

An action is the fundamental unit of behavior specification. An action takes a set of inputs and
converts them into a set of outputs, though either or both sets may be empty. In addition, some
actions modify the state of the system in which the action executes. The inputs to an action may
be obtained from the results of other actions, and the outputs of the action may be provided as
inputs to other actions, some of which have the sole purpose of reading or writing object
memory.

Figure 2-38 Action foundation model

ModelElement

PrimitiveAction

Classifier
Pin

multiplicity : Multiplicity
ordering : OrderingKind 0..10..*

+type

0..10..*

ModelElement

DataFlow

ControlFlow

Procedure

language : Name
body : String
isList : Boolean

InputPin

1 1

+destination

1

+flow

1
0..*

0..1

+result 0..*

{ordered}

+procedure
0..1

OutputPin
1

0..*

+source

1

+flow0..*

0..*

0..1

+argument 0..*
{ordered}

+procedure
0..1

Action

isReadOnly : Boolean

0..*

1

+consequent

0..*

+predecessor 1

1

0..*

+successor

1

+antecedent0..*

1

0..1

+action 1

0..1

0..*

0..1

+inputPin 0..*
{ordered}

+action

0..1

0..*

0..*

+/availableInput

0..*

0..*

0..1 0.. *

+action

0..1

+outputPin

0.. *{ordered}

0..*0..*

+/availableOutput

0..*0..*
2-214 OMG-UML , v1.5 Action Foundation September 2002

2 UML Semantics
Pins

An action takes some input values, possibly accesses the state of the containing system,
performs some processing, possibly modifies the state of the system, and produces some set of
output values. The required inputs and outputs of an action are specified as pins of the action.

A pin specifies the type and multiplicity of values that may be held by the pin. A pin may hold
multiple values, subject to the specified multiplicity. Each of the values held by a pin must
conform to the type specified for the pin. This type conformance is determined as follows.

• If the specified type is a primitive type, then the pin can only hold primitive values of the
given type.

• If the specified type is an enumeration type, then the pin can only hold enumeration values of
the given type.

• If the specified type is a data type other than a primitive or enumeration type, then the pin
can hold values of the given type or any specialization of the given type.

• If the specified type is a classifier other than a data type, then the pin can hold object
identities that have the given type or a specialization of the given type.

Input pins are the connection points for delivering the input values to actions. Output pins are
the connection points for obtaining the output values from actions. The types and multiplicities
of the input and output pins of an action are constrained by the form of the action. For example,
an action that reads a certain attribute has an output pin with the type and multiplicity of that
attribute, while an action that writes to an attribute has an input pin with the type and
multiplicity of that attribute. An action that calls an operation has (possibly empty) sets of input
and output pins with types and multiplicities corresponding to the input and output parameters
of the operation.

The entire context for an action is represented in its pins, including the “current object” which
is also passed to an action on a pin. There is no “back door” by which an action can access
objects implicitly.

Note – The types of the input and output pins of an action form the input and output
“signature” of the action. The signature is modeled by derivation from the types of the
input and output pins; it is not modeled explicitly. Some actions impose constraints on
the types of some of their pins.

Data Flow

A data flow from an output pin to an input pin indicates that an output value of one action is
used as an input value of another action. Data flows link chains of actions without having to
store values temporarily.

A single output pin can be connected to zero or more input pins, but each input pin can have at
most one connection. Thus, inputs pins are “single assignment” data holders—once they receive
a value, this value does not change. In other words, normal dataflow connections allow “fan
out”, but not “fan in.”
September 2002 OMG-UML , v1.5 Action Foundation 2-215

2 UML Semantics
The input pin that is the destination of a data flow must conform to the output pin that is the
source of the flow: the type of the output pin is the same as or a descendant of the type of the
input pin, and all cardinalities allowed by the multiplicity of the output pin are allowed by the
multiplicity of the input pin. For example, if the type of the output pin is money, and the type
of the input pin is real, and money is a descendant of real, then the types conform.

Control Flow

A control flow indicates an ordering constraint between a predecessor action and a successor
action without explicit data flow. A predecessor action must complete execution before its
successor action can execute. Such control constraints are often required for actions that affect
object memory, such as when a value written to an attribute by one action is to be read by a
subsequent action. Control flow specifies the order of actions that require such constraints.

Other actions create or destroy objects, communicate among objects, or have external effects
outside the system. Control flow is used to order these actions as well. Control flow represents
an implicit potential communications path among actions—through object memory, by signal
transmission, or outside of the system.

Traditional programming languages have implicit control flows between each statement, but
they overspecify execution order. The model defined here permits control flows, data flows, and
concurrent actions as needed.

A data flow implies a control dependency in the sense that an executing action cannot consume
an input value during execution until it has been produced by the source action. Control
sequencing is implicit between actions connected by data flows; it is unnecessary to include
explicit control flows between such actions.

The network of actions connected by data and control flows forms an acyclic directed graph
because an action cannot be both a predecessor and successor of another at the same time.

Primitive Actions

A primitive action is one that cannot be decomposed into other actions. Primitive actions
include purely mathematical functions, such as arithmetic and string functions; actions that
work on object memory, such as read actions and write actions; and actions related to object
interaction, such as messaging actions. Each kind of primitive action has a form that
specifically defines sets of input and output pins. The details of the various kinds of primitive
actions are discussed in later chapters in this part.

Procedures

Within a user model, actions may be nested at various levels. The highest-level such grouping
is the procedure. A procedure is a set of actions that may be attached as a unit to other parts of
the user model, for example, as the body of a method. Conceptually a procedure takes a single
request object as argument and produces a single reply object as result. Both the type and the
attributes of the request object and the reply object may convey information. As a convenience,
if the isList flag is true, the procedure may be written with multiple arguments and results; the
attributes of the request object are automatically unmarshalled into a list of arguments, and a
2-216 OMG-UML , v1.5 Action Foundation September 2002

2 UML Semantics
list of results are automatically marshalled into a reply object; the type of the request and reply
objects are implicitly generated for each such procedure. All uses of procedures may have an
argument (or arguments, if the isList flag is true), corresponding to the input parameters.
Procedures executed as the result of synchronous calls may have a result (or results, if the isList
flag is true); procedures executed as a result of asynchronous invocations do not have results
(or rather, if they do have result pins, the results are ignored). See Section 2.22, “Messaging
Actions.

The arguments supply values to the action by output pins within the procedure, and each one
may be connected to zero or more inputs of the action. Similarly, the results are represented as
input pins within the procedure, and each one must be connected to exactly one output of the
action. The data flow connections then follow the normal connection rules for input and output
pins. The types of the actual arguments to a procedure can be descendants of the declared types.
The types of the actual results of a procedure can be descendants of the declared types.

As with any action, the pins on a procedure action must match the types and multiplicities of
the corresponding parameters supplied to the method, or the supplemental data items on the
triggering event.

Procedures can have a textual specification entered in the body attribute, with the kind of
specification given in the language attribute.

2.17.2 Action Execution Model

An action execution corresponds to an individual execution of a particular action. Similarly, a
procedure execution is an individual run-time execution of a procedure. Each action in a
procedure may execute zero, one, or more times for each procedure execution, depending on
the use of composite and collection actions.

Execution is not instantaneous, but takes place over a period of time. Procedures and other
groupings of actions must be executed in a number of steps, including control of the execution
of nested actions. Thus, procedure and action executions, in general, require the maintenance of
state information over time.

Pin Values

Both procedures and actions have pins that get values during procedure and action execution. A
pin value represents the value of a single pin at a specific point in the execution of a procedure
or action. There may actually be a collection of instance values associated with a pin value,
consistent with the multiplicity of the corresponding pin.

Action Execution

The action semantics place no restriction on the relative execution order of two or more actions,
unless they are explicitly constrained by data flow or control flow relationships. Hence every
action within a procedure may execute at once, though a specific execution engine may actually
perform the executions sequentially or in parallel.

The execution of an action proceeds through a life cycle whose stages are as follows. These
stages can be understood in terms of the constraints they place on the action execution at
September 2002 OMG-UML , v1.5 Action Foundation 2-217

2 UML Semantics
various points in its history.

• Waiting. An action execution may be created at any time after the procedure execution for its
containing procedure is created. On creation, an action execution has the status waiting and
no pin values.

• Ready. An action execution with status waiting becomes ready on the completion of the
execution of all prerequisite actions (that is all actions that are the sources of data flows or
predecessors of control flows into the action becoming ready). This synchronization captures
the ordering in time between the completion of prerequisite action executions and the
readying of their target. The values of the input pins of the target action execution are
determined by the values of the output pins from the prerequisite action executions for
actions that are the sources of data flows. (Enclosing composite actions may also place
constraints on the execution of nested actions—for instance, conditional execution.)

• Executing. Once it is ready, an action execution eventually begins executing. An action need
not begin executing immediately upon being ready and the action semantics do not determine
the specific time delay (if any) between becoming ready and actually executing. For a
primitive action, there will be only one executing step in the history of the execution.
However, a composite action may require several steps to complete execution.

• Complete. When it has finished executing, the action execution becomes complete. The action
execution then has pin values for all output pins of the action as well as all input pins. The
specific semantics of each kind of action determine how these output pin values are
computed. After the output values from a completed execution have been copied, there is no
longer any way for another execution to access the completed execution. Because a
completed execution is inaccessible, the action semantics does not supply any clean up or
garbage collection rules, as they cannot affect the outcome of the computation.

This life cycle may be depicted informally using a statechart diagram, as shown in Figure 2-39.

Procedure Execution

A procedure execution also has four statuses.

• Ready. A procedure execution begins with status ready. Input parameters are passed to the
procedure as values of its argument pins. These are captured as pin values that must be
associated with the procedure execution on its creation. (Procedure executions are generally
created as the direct or indirect result of messaging actions.)

• Executing. Once it is ready, a procedure execution eventually beings executing. A procedure
need not begin executing immediately upon being ready and the action semantics do not
determine the specific time delay (if any) between becoming ready and actually executing.
When a procedure beings executing, it causes the start of the execution of the nested action.

• Returning. When its nested action has completed execution, it transitions to the status
returning. At this point the procedure execution has pin values for all the result pins of the
procedure. In the specification of the procedure, the result pins are connected by data flows to
the output pins of actions within the procedure. This specification and the procedural context
of completed action executions within the procedure execution then determine the values for
the result pins. If the procedure execution was triggered by a messaging action, then it may
package its results for transmission back to the invoker.
2-218 OMG-UML , v1.5 Action Foundation September 2002

2 UML Semantics
• Complete. Once the procedure execution has completed returning, it becomes complete.

This life cycle may be depicted informally using a statechart diagram, as shown in Figure 2-39.

A procedure execution acts as a context for all action executions nested directly or indirectly
within it. This contextual information includes the following.

• Host. A procedure may execute as the result of the invocation of a method or an event
occurrence triggering a transition. The host of the execution is the instance that owns the
invoked method or the state machine for the transition. The host remains frozen throughout
the execution. (There is no host instance for procedures associated with a method with
classifier scope or for procedures acting as expressions.)

• Action executions. A procedure is the root of a tree of current action executions. Each of
these action executions can reference its parent action execution. However, it is generally not
possible to determine statically which actions within the procedure will actually execute, or
even at all. The current set of action executions nested within a procedure execution will
generally change over time. Nevertheless, this set provides the ability to map from the

Figure 2-39 Life cycle for action execution

waiting

ready

executing

c omplete

/ s tar t execut io n

whe n(all p rerequisit es are satisf ied)

when(execution complete)

Behavior while executing
is determine d by each
kind of ac tion.
September 2002 OMG-UML , v1.5 Action Foundation 2-219

2 UML Semantics
specification of an action within a procedure to the specific, current execution of that action
within the context of a given procedure execution (if, of course, that action is currently
executing at all).

Note – A UML constraint contains an expression that can be modeled using a
procedure with a Boolean result. However, when such procedures should be executed
and what should be done when they fail is not a simple question. Some apply at all
times, but most can be violated during the actions of a transition. Some may be valid
after certain actions. Currently, the action semantics specification does not attempt to
verify or enforce user-defined constraints that are made invalid by actions. In effect,
such constraints are considered to be design statements and the system implementer is
obliged to ensure that they are not violated.

Figure 2-40 The life cycle for procedure execution

Ready

Executing

Returning

Complete

/ start execution of
nested action

when(nested action
execution is complete) /

copy output values to results

when(return is complete)
2-220 OMG-UML , v1.5 Action Foundation September 2002

2 UML Semantics
2.17.3 Action Foundation Classes

Action

An action is the fundamental unit of behavior specification. An action takes a set of input
values and uses them to produce a set of output values, though either or both sets may be
empty. If both inputs and outputs are missing, the action must have some kind of fixed,
nonparameterized effect on the system state, or be performing some effect external to the
system. Actions may access or modify accessible, mutable objects. A reference to an object to
read or write is an input of the action. Composite actions may include data-transformation
actions as well as object-access actions.

An action may have a set of incoming data flows as well as a set of explicit control flow
dependencies on predecessor actions. An action will not begin execution until all of its input
values (if any) have been produced by preceding actions and all predecessor actions have
completed.The completion of the execution of an action may enable the execution of a set of
successor actions and actions that take their inputs from the outputs of the action. Actions come
in various kinds, each of which has its own formation rules. An action must be one of those
kinds.

Attributes
• isReadOnly : Boolean

If true, then this action must not make any changes to variables outside the action or to object
memory. (This is an assertion, not an executable property. It may be used by an execution
engine to optimize model execution. If the assertion is violated by the action, then the model
is ill-formed.)

Associations
• antecedent : ControlFlow [0..*]

The set of control flows that must be enabled before this action can execute.

• availableInput : InputPin [0..*]
(Derived from Action::inputPin) The set of all input pins available to be the destinations of
data flows entering the action. Such pins must not have data flows from pins within the
action. The derivation rule is defined for each kind of action.

• availableOutput : OutputPin [0..*]
(Derived from Action::outputPin) The set of all output pins available to be the sources of data
flows leaving the action. These pins may also be connected by data flows to input pins within
the action. The derivation rule is defined for each kind of action.

• consequent : ControlFlow [0..*]
The set of control flows that are enabled when this action finishes executing.

• inputPin : InputPin [0..*]
The ordered set of input pins owned by the action, which act as connection points for
providing values consumed by the action
September 2002 OMG-UML , v1.5 Action Foundation 2-221

2 UML Semantics
• outputPin : OutputPin [0..*]
The ordered set of output pins owned by the action, which act as connection points for
obtaining values generated by the action.

Well-Formedness Rules
[1] There must be no cycles in the graph of actions and flows, where a cycle is defined as a path

that begins and ends at the same action and a path is constructed from directed edges between
actions, with control flows traversed from predecessor action to successor action and data
flows traversed from the action of the source pin to the action of the destination pin. A control
flow from or to a group action is treated as being a set of control flows from or to each action
within the group action.

not self.allSuccessors()−>includes(self)

Note – This is a necessary but not sufficient condition to prevent ill-formed control
cycles. There are additional conditions related to conditional and loop actions that are
handled as well-formedness rules for those kinds of actions.

Additional Operations
[1] This operation returns the set of all immediately nested actions of this action. The actual set

returned is defined in concrete descendants of Action.

nestedActions() : Set(Action)

[2] This operation returns all nested actions of an action, nested to any depth.

allNestedActions() : Set(Action)

allNestedActions() = self.nestedActions()−>union(self.nestedActions().allNestedActions())

[3] This operation returns the set of immediate subactions of this action, whose output pins may be
directly connected to the input pins of actions outside this action. The actual set returned is
defined in concrete descendants of Action. (This is only intended to include subactions that are
“visible” through a “porous” boundary, which currently includes only the subactions of
GroupAction).

subactions() : Set(Action)

[4] This operation returns all subactions of an action, nested to any depth.

allSubactions() : Set(Action)

allSubactions() = self.subactions()−>union(self.subactions().allSubactions())

[5] This operation returns the set of all input and output pins of an action.

allPins() : Set(Pin)

allPins() = self.inputPin−>union(self.outputPin)−>asSet()

[6] This operation returns true if the action is a subaction, at any depth, of another given action.

isSubaction(otherAction: Action):Boolean

isSubaction(otherAction) = otherAction.allSubactions()−>includes(self)

[7] This operation returns the set of actions whose execution must complete before this action can
execute: the source actions in data flows and predecessor actions in control flows.

prerequisites() : Set(Action)

prerequisites() = self.inputPin.flow.source.action−>union(self.antecedent.predecessor)
2-222 OMG-UML , v1.5 Action Foundation September 2002

2 UML Semantics
[8] This operation returns all the actions which are destinations of data flows or successors of con-
trol flows leaving an action. A control flow from or to a group action is treated as being a set of
control flows from or to each action within the group action.

successors() : Set(Action)

successors() = self.outputPin.flow.destination.action

−>union((self.consequent.successor−>union(self.group.consequent.successor))

−>collect(a : Action | a.subactions()−>including(a)))−>asSet()

[9] This operation returns the transitive closure of all data-flow and control-flow successors
(defined as above) of an action.

allSuccessors() : Set(Action)

allSuccessors() = self.successors()−>union(self.successors().allSuccessors()−>asSet()

Semantics

An action execution represents the general run-time behavior of executing an action within a
specific context. Action is an abstract class, therefore all action executions may be executions
of specific kinds of actions.

[1] An action execution is created with status waiting with no pin values initialized. The action has
the same procedural context as the action execution that created it. For the top-level action exe-
cution in a procedure, a procedural context is created with empty slots for all of the variable
values or data flow values that may be created during an execution of a procedure. All action
executions within a procedural execution share the same procedural context, that is, they share
access to the same set of variable and data flow values.

[2] An action execution that is waiting becomes ready when all its data flow and control flow pre-
requisites have satisfied, at which point it obtains input pin values from each of its data-flow
sources. After all the values have been obtained, the action execution begins executing.

[3] An action continues executing until it has completed. Details of execution are given under the
description of each particular kind of action.

[4] When completed, an action execution produces values on all its output pins and terminates exe-
cution. The action execution satisfies control flow or data flow prerequisites for any other
potential action executions that depend on it or one of its data values.

ControlFlow

A control flow is a sequencing dependency between two actions. The successor action of the
flow may not execute until the predecessor action has completed execution.

Associations
• predecessor : Action [1..1]

The action that must finish executing before the successor can execute.

• successor : Action [1..1]
The action that cannot execute until the predecessor completes execution.
September 2002 OMG-UML , v1.5 Action Foundation 2-223

2 UML Semantics
Semantics

An action execution has a control flow prerequisite on each action execution in the same
procedural context for which the respective actions have a successor-predecessor relationship.
The prerequisite is satisfied when the predecessor action execution has completed execution.

DataFlow

A data flow carries values from a source output pin to a destination input pin. When a value is
generated on the source pin, it is copied to the destination pin. The source pin must therefore
conform in type and multiplicity to the destination pin

Associations
• destination : InputPin [1..1]

The input pin that receives the data carried by the flow.

• source : OutputPin [1..1]
The output pin that provides the data carried by the flow.

Well-Formedness Rules

Note – Since UML does not provide any standard classifier that is the ancestor of all
other classifiers, untyped pins can be used for the purpose of accepting input of “any”
type.

[1] The type of the source pin must be the same as or a descendant of the type of the destination
pin. An untyped pin has a type that is an ancestor of any classifier.

self.destination.type−>isEmpty()

or (self.source.type−>notEmpty()

and (self.source.type = self.destination.type

or self.destination.type.allParents()−>includes(self.source.type)))

Note – The operation “allParents” is defined for GeneralizableElement.

[2] All cardinalities allowed by the multiplicity of the source pin must be allowed by the multiplic-
ity of the destination pin.

self.source.multiplicity.compatibleWith(self.destination.multiplicity)

Semantics

An action execution e corresponding to action a has a data flow prerequisite on each output pin
p for which the output pin p is connected to any input pin of a. The prerequisite is satisfied
when the output pin p holds a value within the same procedural context as the action execution
e.
2-224 OMG-UML , v1.5 Action Foundation September 2002

2 UML Semantics
InputPin

An input pin holds input values to be consumed by an action. An input pin may be the
destination for exactly one data flow. The input pin receives its values from the source output
pin of the data flow.

Associations
• action : Action [0..1]

The action that owns the pin as an input. This value only applies to Actions.

• flow : DataFlow [1..1]
The data flow for which this input pin is the destination.

• procedure : Procedure [0..1]
The procedure that owns the pin as a result. This value only applies to Procedures.

Well-Formedness Rules
[1] An input pin must be owned by either an action or a procedure but not both.

self.action−>size() + self.procedure−>size() = 1

Semantics

An input pin holds a potential value within each procedural context holding an execution of the
action to which the pin is an input. When the procedural context is created, all input values are
initially empty. Input values are initialized just before the execution of their action.

OutputPin

An output pin holds output values generated by an action. A single output pin may have several
data-flow connections to several input pins. In this case, the output pin provides a copy of its
value to each of the associated input pins.

Associations
• action : Action [0..1]

The action that owns the pin as an output. This value only applies to Actions.

• flow : DataFlow [1]
The data flow for which this output pin is the source.

• loop : LoopAction [0..1]
The loop action that owns the pin as a loop variable (see the discussion under Composite
Actions). This value only applies if the pin is a loop variable.

• procedure : Procedure [0..1]
The procedure that owns the pin as an argument. This value only applies to Procedures.

Well-formedness rules
[1] An output pin must be owned by exactly one of an action (as an input), a loop action (as a loop

variable) or a procedure (as a result).

self.action−>size() + self.loop->size() + self.procedure−>size() = 1
September 2002 OMG-UML , v1.5 Action Foundation 2-225

2 UML Semantics
Semantics

An output pin holds a potential value within each procedural context holding an execution of
the action to which the pin is an output. When the procedural context is created, all output
values are initially empty, except those output values initialized as parameters of the overall
procedure. Output values are initialized at the completion of execution of their action.

Pin

A pin is a connection point for delivering input values to or obtaining output values from an
action. Any values passing through the pin must conform to the type of the pin and have
cardinalities allowed by the multiplicity of the pin. (A pin without a type specification can hold
any value.) Pin is completely specialized into input and output pins.

Attributes
• multiplicity : Multiplicity [1..1]

A specification of the number of values a pin may hold at any one time.

• ordering : OrderingKind [1..1]
Indicates whether the set of values held by this pin is to be considered ordered or not.

Associations
• type : Classifier [0..1]

A classifier specifying the allowed classifiers of values passing through the pin. The actual
classifier of a value must conform to the type specification of the pin.

Semantics

See InputPin and OutputPin.

PrimitiveAction

A primitive action is one that does not contain any nested actions, so all available inputs and
outputs of the action are pins directly owned by the action.

Well-Formedness Rules
[1] The available inputs of a primitive action are the input pins of the action.

self.availableInput = self.inputPin−>asSet()

[2] The available outputs of a primitive action are the output pins of the action.

self.availableOutput = self.outputPin−>asSet()

Note – PrimitiveAction is really only defined as a convenience to provide a common
definition of these well-formedness rules for all kinds of primitive actions.

Additional Operations
[1] A primitive action has no subactions. (The subactions operation is defined for each kind of

action.)
2-226 OMG-UML , v1.5 Action Foundation September 2002

2 UML Semantics
subactions() : Set(Action)

subactions() = Set{}

Semantics

See Action for the general rules of starting and finishing execution. See the particular kind of
action for the rules of executing the action and producing output values.

Procedure

A procedure is a set of actions that may be attached as a unit to other parts of the user model.
The behavior of the procedure is specified using an action, which is usually composite. When it
is activated, a procedure execution receives a request object from the caller; during its
execution it produces a reply object which is returned to the caller as the result. The procedure
has a single input pin for the request object and a single result pin for the reply object. If the
isList flag is set in the action, the procedure may have multiple argument and result pins; the
request object is broken apart into an ordered list of arguments, one per attribute of the request
object; and the reply object is composed from an ordered list of results, one per attribute of the
reply object. This option presents the inputs and outputs to the procedure in the traditional
fashion as a list of explicit parameters, although they are composed into a request object and a
reply object for use by the invocation action.

Pins of procedures have two directions: in and out, while method and operation parameters
have direction in, out, inout, and return. Since parameters and pins are ordered on methods and
procedures respectively, the parameters of methods can be matched to pins on procedures
unambiguously, assuming the last output pin is matched to the return parameter. Parameters of
kind in and inout match input pins, while parameters of kind out, inout, and return match output
pins.

Attributes
• body : String

A textual representation of the procedure in the named surface language. (Presumably the
procedure is the result of parsing this representation, though that correspondence cannot be
guaranteed by the rules of the metamodel.)

• language : Name
The name of the language in which the textual procedure body is represented. (This language
name should follow the conventions for language names in UML, as described for the
language attribute of Expression.)

• isList: Boolean
If true, the request is presented to the procedure as a list of zero or more separate argument
pins and the result is delivered as a list of zero or more separate result pins; if false, there is
a single argument pin that receives the request object and a single result pin that receives the
reply object.

Associations
• action : Action [1..1]

The action that provides the behavioral specification of the procedure.
September 2002 OMG-UML , v1.5 Action Foundation 2-227

2 UML Semantics
• argument : OutputPin [0..*]
if isList is true: The ordered set of output pins representing procedure arguments.
if isList is false: One output pin representing the request object. Any extra pins are ignored.

• result : InputPin [0..*]
if isList is false: The ordered set of input pins representing procedure results.
if isList is true: One input pin representing the reply object. Any extra pins are ignored.

Well-Formedness Rules
[1] All available inputs of the action of a procedure must be the destinations of flows, the sources

of which are arguments of the procedure.

self.argument−>includesAll(self.action.availableInput.flow.source)

[2] All results of a procedure must be the destination of flows, the sources of which are available
outputs of the action of the procedure.

self.action.availableOutput−>includesAll(self.result.flow.source)

[3] If the arguments/results are presented as request/reply objects, there must be exactly one argu-
ment pin and exactly one result pin.

self.isList implies (self.argument->size = 1 and self.result->size = 1

Semantics

A procedure execution is a single execution of a procedure as a result of its invocation by a
call, the firing of a state machine transition, or some other means that might be defined in the
future.A procedure in a user model may correspond to many procedure executions over time or
at the same time. Each is an independent execution of the procedure.

A procedure execution maintains the context for all action executions within the procedure
execution. It ties together all of the action executions and values corresponding to a single
execution of a procedure. It represents a logical memory space with slots for variable values,
data flow values, and action execution states. A procedure execution could be implemented in
many different ways; the reader should not assume that it must be implemented directly as
described.

[1] When a procedure is invoked, a procedure execution is created. For each argument pin of the
procedure, an output pin value in the procedure execution is initialized with a value copied
from the corresponding argument value in the invocation. All other input and output pins and
variables in the procedure are initialized to empty values. For each action in the procedure, the
procedure execution contains an action execution in the waiting state.

[2] After a procedure execution has been initialized, the execution of its nested action is placed in
the ready state and begins execution. The effects of this execution eventually work their way
through the entire procedure. When all of the subordinate actions have completed, the execu-
tion of the top-level nested action will be complete.

[3] When the execution of the top-level nested action is complete, the procedure execution must
wrap up: If the procedure invocation was asynchronous and not repliable, the execution is com-
plete. If the procedure invocation was asynchronous and repliable, the (possibly empty set of)
output values corresponding to result output pins of the procedure are formed into a result
object that is transmitted to the object whose action invoked the procedure. If the procedure
invocation was synchronous, the (possibly empty set of) output values corresponding to result
2-228 OMG-UML , v1.5 Action Foundation September 2002

2 UML Semantics
output pins of the procedure are formed into a result object that is returned to the action execu-
tion that invoked the procedure.

2.18 Composite Actions

Composite actions are recursive structures that permit complex actions to be composed from
simpler actions. A composite action can contain other composites as well as primitive actions.
The leaves of the tree of action decomposition are primitive actions. The composite actions
discussed in this section also provide for control structures beyond explicit data flows and
control flows.

2.18.1 Composite Action Specification

This section gives a schematic description of the structure and behavior of composite actions.
Figure 2-41 shows the model for these actions. Section 2.18.3 provides the formal definitions
of all the classes shown in Figure 2-41.

There are three kinds of composite action, each of which is treated in turn in the following
subsections. Group actions group actions into larger units for use in procedures, conditionals,
and loops. Conditional actions provide for contingent execution of subactions depending on a
run-time test. All branches must have the same outputs. Loop actions permit the repeated
execution of a subaction depending on a repeated run-time test, with outputs of one iteration
used as inputs for the next iteration.

Available Inputs and Outputs

A composite action may have input and output pins of its own that allow data flows to be
connected directly to the composite action as a whole. However, composite actions may also
allow some data flow connections to “cross the boundary” of the composite action and connect
directly to pins on subactions within the composite. This allows the subactions so connected to
access values computed in the context of the composite action, similar to the way in which
scoped languages in an inner scope to access variables defined in an enclosing scope.

The union of the set of input pins owned by a composite action and the set of input pins of
subactions that may be the destination of data flows with sources outside the composite is
called the set of available inputs of the composite action. Similarly, the union of the set of
output pins owned by a composite action and the set of output pins of subactions that may be
the source of data flows with destinations outside the composite is called the set of available
outputs of the composite. The specification of each kind of composite action defines what the
available inputs and outputs are for that kind of action.

The concept of available inputs and outputs is important because when a composite action is
viewed from the outside as a black box, it is the complete sets of available inputs and outputs
that provide the allowable connection points to the action for data flows. Thus, the available
inputs and outputs for a composite are generally defined in terms of the available inputs of its
September 2002 OMG-UML , v1.5 Composite Actions 2-229

2 UML Semantics
subactions, without any need to “look inside” the subactions if they are themselves composites.
By definition, the available inputs and outputs of a primitive action are simply the input and
output pins owned by that action.

Group Action

The simplest form of composite action is the group action. A group action composes a set of
subordinate actions into a higher-level unit. The actions may form a sequence, a concurrent set,
or some combination of both.

Figure 2-41 Composite actions metamodel

ModelElement
(from Core)

ConditionalAction

isDeterminate : Boolean

OutputPin
(from Action Foundation)

LoopAction

0..*

0..1

+loopVariable

0..* {ordered}

+loop0..1

Clause

1..*

0..1

+clause1..*

0..1

1

0..*

+testOutput
1

0..*

0.. *

0..*

+bodyOutput0.. *
{ordered}

0..*

1

0..1

+clause1

0..1

0..*

0..*

+predecessorClause
0..*

+successorClause
0..*

Action
(from Action Foundation)

1 0..1

+body

1 0..1

1 0..1

+test

1 0..1

GroupAct ion

mustIsolate : Boolean

0..*

0..1

+subaction

0..*

+group

0..1

Variable

multiplicity : Multiplicity
ordering : OrderingKind

1

0..*

+scope 1

+variable 0..*

Classifier
(from Core)

0..* 0..10..*

+type

0..1

Element
(from Core)

xor
2-230 OMG-UML , v1.5 Composite Actions September 2002

2 UML Semantics
A group action does not own any pins of its own. Data flows are not connected to a group
action, instead they may “cross the boundary” of a group action to connect to input and output
pins of actions within the group, making the boundary of the group action “porous”. A group
action does not encapsulate its contents, rather this approach to grouping focuses on
convenience in organizing a computation, not encapsulation or decomposition.

Since an input pin may be the destination of only one data flow, the available inputs of a group
action are just the available inputs of its subactions that are not connected to other actions
within the same group. Output pins, however, may be the source for multiple data flows, so the
available outputs of a group action include all the available outputs of all the subactions.

Group actions as a whole can be predecessors and successors in control flows, so they provide
the ability to synchronize the execution of groups of actions. A control flow whose destination
is a group action requires that the predecessor must complete before any action within the group
action may begin. A control flow whose source is a group action requires that all actions within
the group action must complete before the successor may begin.

Control flows may also cross the boundary of a group action. These control flows are in
addition to any control flows to or from the group action itself. A subordinate action may
execute if it has all of its data inputs and all of its control flow inputs and if the group action
itself has all of its control flow inputs. Similarly, an external successor of a subordinate action
must wait until the subordinate action is complete, but it need not wait for the entire group
action to complete (unless it is also a successor of the group action as a whole).

Conditional Action

A conditional action provides the conditional execution of contained actions depending on the
result of test actions.

A conditional action consists of some number of clauses, each of which has an embedded test
action and body action. Each clause designates an output pin of its test action as the test output.
If it evaluates to true, the body is executed. Each clause designates a bank of output pins from
its body that have conforming types and multiplicities to the output pins of the conditional
action. In this way, the conditional action will produce the same types of output values,
regardless of which clause body executes. If the body of a specific clause executes, then the
values of the bank of output pins designated by the clause become the values of the output pins
of the overall conditional action.

Conditional actions provide the only points of “fan in” of data flow. This fan in within a
conditional action does not violate the single assignment principle, since only one of the body
actions can execute during any execution of the conditional action, so the each conditional
output pin will receive only one value. Also, since exactly one body action must execute, each
conditional output pin will always receive a value.

A conditional action has no explicit input pins of its own. However, the inputs for all test
actions must come from outside the conditional action. The inputs for a body action may come
from either outside the conditional action, or from the outputs of the test action in the same
clause (there are no data flows allowed between test and body actions in different clauses). The
different test and body actions may or may not use the same input values. Thus, the available
inputs of a conditional action include all available inputs of all test actions and the available
inputs of body actions that are not already connected to the outputs of test actions.
September 2002 OMG-UML , v1.5 Composite Actions 2-231

2 UML Semantics
The output pins of a body action may not be directly connected to input pins outside the body
action. The output pins of test actions may not be connected to input pins outside the clause.
There are no explicit data flows from the output pins of the clauses to the output pins of the
overall conditional action (since data flows can only connect output to input pins). The
connection is implicit in the structure of the conditional action itself. Thus the only available
outputs of a conditional action are the output pins explicitly owned by the conditional.

The clauses of a conditional action may have noncyclic predecessor-successor relationships
among them. Clauses with no predecessor-successor relationships may execute their test actions
concurrently. If more than one of these is true, only one body action will execute, but its
selection is indeterminate. If the tests are not guaranteed to be exhaustive, the user may provide
a default action with a test of “true” as a successor of all other tests. A conditional is not
required to have an explicit “else” clause, but the modeler must ensure that at least one test
action is true or the model is incorrect.

Note – One exception is allowed to the “exactly one body action must execute” rule. In
the case that the conditional action has no output pins, then it is allowable for no body
actions to execute (i.e., for all test actions to fail). In this case, any effect of the
conditional action is by affecting object memory or the external world. This is
equivalent to providing an “else” clause with an empty body.

In cases when the tests in a conditional will be both exhaustive and mutually exclusive by
design, the conditional action can be explicitly tagged as being “determinate.” In this case,
exactly one concurrent test action must evaluate to true. Determinism is an assertion by the
designer—if it is not correct, the model is ill formed. It can be achieved either by complete,
explicit sequencing of the test actions or through the designer’s knowledge that tests that are not
sequenced are mutually exclusive. The latter case does not imply a need for the run-time system
to test that the other tests do indeed evaluate to false—the developer has the responsibility to
guarantee mutual exclusion.

Loop Action

The final kind of composite action is the loop action. The loop action provides for repeated
execution of a contained action so long as a test action results in an appropriate value.

A loop action contains a single clause with a test action and a body action. The body action is
executed repeatedly as long as the test action yields “true”. The test and the body actions have
access to the values of a set of “loop variables,” which are represented as an ordered set of
output pins owned by the loop action.

The loop variables may be connected to input pins of the test and body actions, thus providing
the “current values” of the loop variables during a loop iteration. The clause designates a set of
output pins within its body subaction. The types of these pins must conform to the types and
multiplicities of corresponding loop variables. At the completion of execution of the body
action, the values of these pins become the values of the loop variable pins for the next iteration
of the loop.

The loop action also has a list of input pins and a list of output pins. Both lists must conform to
the loop variable pins and the body output pins. Before the first execution of the loop clause,
the values of the loop inputs become the values of the loop variables. During each iteration, the
2-232 OMG-UML , v1.5 Composite Actions September 2002

2 UML Semantics
test action of the clause is executed. If its designated test output pin is false, then the values of
the loop variable pins become the values of the output pins of the loop action, and the execution
of the loop is complete. If the test value is true, the body action of the clause is executed. When
it is complete, the body output values become the new values of the loop variables.

The loop variables are not explicitly “reassigned” in the body action. Instead, the input and
output pins for the body action hold the “old values” and the “new values” of the loop variables,
respectively, during a single iteration. This preserves the single-assignment principle. There are
no explicit dataflow connections from the loop input pins to the loop variable pins, from the
body output pins to the loop variable pins, or from the loop variable pins to the loop output
pins. The dataflow is implicit, based on the structure of the loop action itself.

During execution of a loop action, the test action and the body action have access to output pins
outside the loop action. For any one execution of the loop, the value on one of these pins will
be fixed during all the iterations of the loop. Thus, the available inputs of a loop action include
the input pins explicitly owned by the loop action, the available inputs of the test action that are
not connected to loop variables and the available inputs of the body action that are not
connected to loop variables or output pins of the test action.

The output pins of the body action may not be directly connected to input pins outside the body
action. The output pins of test actions may not be connected to input pins outside the single
clause of the loop action. There are no explicit data flows from the output pins of the clause to
the loop variables (since data flows can only connect output to input pins). The connection is
implicit in the structure of the loop action itself. Thus the only available outputs of a loop
action are the output pins explicitly owned by the loop.

Local Variables

In addition to data flows, it is also possible to pass data between actions using local variables.
A local variable is a slot for values shared by the actions within a group but not accessible
outside it. The output of one action may be written to a variable and used as the input to a
subsequent action, providing an indirect communication path.

The inclusion of variables supports both traditional imperative programming and data-flow
programming, as well as mixtures of the two styles. In an imperative style, the result of an
action is placed in an object attribute or a local variable, and a subsequent action retrieves it.
Because there is no explicit relationship between the actions, they must be sequenced by a
control flow. And because there may be many reads and writes to a particular attribute or
variable, there is a danger of conflict that must be considered and prevented by the specifier.

In a purely imperative style in which each action is considered to operate on local variables, the
UML action model uses data flows to connect read-variable or write-variable actions to the
action actually performing the computation on these variables. The data flows in this case can
be considered purely formal, and the different actions are otherwise disconnected and
communicate by values in variables.

In such an imperative style, local variables can also be used instead of data-flow outputs from
conditional actions or loop variables in loop actions. For instance, the body of each clause of a
conditional would update the variables that it changes and leave the others unchanged. Since
there are no data-flow results from any clause, or from the conditional as a whole, all clauses
automatically meet the conditional of having outputs consistent with the conditional outputs.
September 2002 OMG-UML , v1.5 Composite Actions 2-233

2 UML Semantics
Isolation

Because of the concurrent nature of the execution of actions within and across procedures, it
can be difficult to guarantee the consistent access and modification of object memory.

For example, suppose the temperature and pressure attributes of a tank object are being
periodically updated by consistent sensor readings. Another procedure may involve reading
these attributes in order to compute some current properties of the contents of the tank. But
reading both attributes requires two separate read actions. It is possible that a concurrent update
of the tank attributes could be interleaved with the two reads, resulting in the temperature and
pressure values read not being consistent.

As another example, consider reading a list of account balances, adding a fee amount to each
one and then updating each balance. Any concurrent change to a balance before the fee update
is complete could result in an inconsistent state. Further, concurrent accesses to the list could
result in inconsistencies, with some balances updated but not others.

In order to avoid these problems, it is necessary to isolate the effects of a group of actions from
the effects of actions outside the group. This is indicated by setting the mustIsolate attribute to
“true” on a group action. If a group action is isolated, then any object used by an action within
the group cannot be accessed by any action outside the group until the group action as a whole
completes. Any concurrent actions that would result in accessing such objects are required to
have their execution deferred until the completion of the group action.

In the first example above, if the read actions on the temperature and pressure attributes are
wrapped in a group action with mustIsolate set to “true”, then the temperature and pressure
values read are assured to be consistent, since no changes can intervene between the two reads.
Similarly, if an isolated group is used for the second action, then the update is assured to be
consistent, since no action outside the group can change the list until the update is complete.

Note – The term “isolation” is used here in the sense used in traditional transaction
terminology. An execution engine may achieve any required isolation using locking
mechanisms, or it may simply sequentialize execution to avoid concurrency conflicts.
Isolation is different than the property of “atomicity”, which is the guarantee that a
group of actions either all complete successfully or have no effect at all. Atomicity
generally requires a rollback mechanism to prevent committing partial results. This is
beyond the scope of what can be guaranteed by the basic action semantics.

2.18.2 Composite Action Execution

Clause Execution

Figure 2-42 shows the life cycle for the execution of a clause. Unlike an action, a clause does
not have prerequisites, but it may have other predecessor clauses, which must be clauses in the
same conditional action (a loop action has only one clause, which therefore may not have any
predecessors). If a clause has one or more predecessors, then it must wait for these to complete.
However, a clause only moves out of this waiting status if all of its predecessor clauses have
completed with “false” outputs.
2-234 OMG-UML , v1.5 Composite Actions September 2002

2 UML Semantics
If all the predecessor clauses of a clause complete with “false” outputs, then the clause’s test
action is executed (assuming all data-flow prerequisites of the test action are satisfied). Once
the test action has completed, then the clause either passes or fails the test, depending on the
result of the test-action execution. The body of a clause is not automatically executed if the
clause passes, since multiple clauses may pass in a conditional, but only one body is executed.

The execution of clauses is separately modeled to capture the above special behavior associated
with clause predecessors. Since only a clause in a conditional action may have other clauses as
predecessors, clause execution need only be explicitly modeled for conditional actions. For loop
actions, clauses simply provide a convenient syntactic grouping of the test and body actions of
the loop and have no semantic significance.

Figure 2-42 Life cycle for clause execution

waiting

testing

passed failed

[testOutput is true] [testOutput is false]

ready

when(Test action execution is complete)

when(All predecessors have failed)
/ Execute test action
September 2002 OMG-UML , v1.5 Composite Actions 2-235

2 UML Semantics
Conditional Action Execution

Figure 2-43 shows the life cycle for the execution of a conditional action. As with a group
action, a conditional action may only have control-flow prerequisites. Once these are satisfied,
the clauses of the conditional action may begin executing. Once the clauses have completed
execution, then the body of exactly one clause with status passed is executed, and the outputs of
this body action become the outputs of the conditional action. (The one exception is in the case
of a conditional action that has no outputs, in which case it is allowable for no clauses to pass.)

We need to interpret “clause execution complete” carefully, as the tests of some clauses may
never be executed, because one of its predecessors was successful or one or more of its
predecessors never executed tests themselves. Thus, clause execution may be considered
complete when every clause satisfies one of these following:.

• The clause has the status passed.

• The clause has the status failed.

• The clause has the status waiting and at least one predecessor with the status passed or
waiting. (A clause with no predecessor clauses cannot meet this condition and therefore must
execute in the “first wave”.)
2-236 OMG-UML , v1.5 Composite Actions September 2002

2 UML Semantics
Since the execution of the clause tests must complete before a body is executed, there will be
multiple steps in the history of a conditional execution in which it has the status executing.
These correspond to the similarly named substates of the state executing shown in Figure 2-43.

Figure 2-43 Life cycle for conditional-action execution

waiting

ready

execut ing

executingClauses

executingBody

tes tingClauses

complete

when(A ll prerequis ites are satisfied)

executingClauses

/ S tart c lause executions

executingBody

when(Body execution complete) /
Copy the out puts of t he body to t he

conditional outputs

tes tingClauses

when(C lause
execut ions complete)

[No clauses passed
and the conditional

has no outputs]

[A t leas t one clause passed]
/ Execute the body of one of

the clauses that passed
September 2002 OMG-UML , v1.5 Composite Actions 2-237

2 UML Semantics
Loop Action Execution

Figure 2-44 shows the life cycle for the execution of a loop action. A loop action may have
both control-flow and data-flow prerequisites, since a loop action may directly own input pins.
Once these prerequisites have been satisfied, the values of the loop-action input pins are copied
to the loop variables as their initial values and the loop test is executed. If the test output is
“true:”, then the loop body is executed, its outputs are copied to the loop variables and the test
is executed again. This continues until the loop test fails, in which case the loop variables are
copied to the loop outputs and the loop is complete
2-238 OMG-UML , v1.5 Composite Actions September 2002

2 UML Semantics
The iterative nature of a loop execution potentially results in a whole sequence of steps in its
execution history in which it has the status executing. A loop execution with this status will
cycle between the substatuses executingTest, testing and executingBody (corresponding to the
states in Figure 2-44) until the test fails, at which point it will move to status complete.

Figure 2-44 The life cycle for loop-action execution

waiting

ready

executing

execut ingTest

executingBody

t esting

complete

when(All prerequisites are satis fied)

execut ingTest

executingBody

/ Copy loop inputs to loop variables;
Execute claus e test

t esting

when(Body execution
complete) / Copy body

outputs to loop variables;
Execute c lause tes t

when(Test execution
complete)

[tes tOutput is true] /
Execute body

[tes tOutput is false] /
Copy loop variables to

loop outputs
September 2002 OMG-UML , v1.5 Composite Actions 2-239

2 UML Semantics
2.18.3 Composite Action Classes

Clause

A clause is a part of a conditional or loop action. A clause contains a test action and a body
action. Both are arbitrary actions (usually group actions) subject to connectivity constraints
described under the various composite actions. The execution of the body action is contingent
on the corresponding test action producing a “true” value. The clause specifies one output pin
of the test action, which must have type Boolean; the body action is only executed if this output
produces the value “true” after execution of the test action. (Additionally, for a conditional,
only one clause body is executed even if more than one of their tests is true.) The outputs of a
clause are an ordered subset of the outputs of the body action. No other output of the body
action may be connected outside the clause.

Clauses within a conditional action may be linked by a set of (noncyclic) predecessor/successor
relationships. The test action of a clause may not execute unless all the predecessors of the
clause not only have completed execution, but have also “failed”. These relationships thus act,
in effect, as specialized kinds of control flows. Neither the test or body actions of a clause can
participate in any normal, explicit control flows.

During execution of an enclosing loop action, a test action may not execute for the first time
unless all predecessors of the loop action have executed. It may not execute for a subsequent
time unless the previous execution of the body action is complete, that is, there is an implicit
control flow between the execution of a body action and the next iteration of the test action.

In a conditional or a loop action, a body action may not execute until its test action completes
and yields “true”.

Associations
• test : Action [1..1]

The action whose Boolean result (designate by testOutput) must be true for execution of the
body action to proceed.

• testOutput : OutputPin [1..1]
The output pin of the test action whose value is the test result. If this value evaluates to
“true”, the body action may begin execution.

• body : Action [1..1]
The action whose execution is contingent on the result of the test action being true.

• bodyOutput : OutputPin [0..*]
The ordered set of outputs of the body that are considered to be results of the clause.

• predecessorClause : Clause [0..*]
The set of clauses that must fail before this clause can execute its test action.

• successorClause : Clause [0..*]
The set of clauses that cannot execute their test actions unless this clause fails.
2-240 OMG-UML , v1.5 Composite Actions September 2002

2 UML Semantics
Well-Formedness Rules
[1] The available outputs of the test action of a clause may not be connected to destinations outside

the clause.

self.test.subactions().availableInput−>union(self.body.availableInput)
−>includesAll(self.test.availableOutput.flow.destination)

[2] The available outputs of the body action of a clause may not be connected to destinations out-
side the body action.

self.body.subactions().availableInput−>includesAll(self.body.availableOutput.flow.destination)

[3] The testOutput of a clause must be an available output of the test action.

self.test.availableOutput−>includes(self.testOutput)

[4] The testOutput pin must conform to type Boolean and multiplicity 1..1.

self.testOutput.type = booleanType and

self.testOutput.multiplicity.range−>size = 1 and

self.testOutput.multiplicity.range−>forAll(r : MultiplicityRange | r.lower = 1 and r.upper = 1)

Note – The term “booleanType” is used here to indicate the Boolean enumeration type
(instance of Enumeration).

[5] None of the actions within the test action of a clause (if any) may have control-flow connec-
tions with actions outside the test action.

self.test.allSubactions()−>forAll(action : Action |

action.antecedent.predecessor−>union(action.consequent.successor)−>forAll(a : Action |
a.isSubaction(self.test))

[6] None of the actions within the body action of a clause (if any) may have control-flow connec-
tions with actions outside the body action.

self.body−>allSubactions()−>forAll(action : Action |

action.antecedent.predecessor−>union(action.consequent.successor)−>forAll(a:Action |
a.isSubaction(self.body))

[7] The test action of a clause may not participate in control flows.

self.test.antecedent−>isEmpty() and self.test.consequent−>isEmpty()

[8] The body action of a clause may not participate in control flows.

self.body.antecedent−>isEmpty() and self.body.consequent−>isEmpty()

[9] The body outputs of a clause must be available outputs of the body of the clause.

self.body.availableOutput−>includesAll(c.bodyOutput)

[10] There cannot be any cycles in the predecessor/successor relationships among clauses.

self.allClauseSuccessors()−>excludes(self)

Additional Operations
[1] This operation returns the transitive closure of all successors of this clause.

allClauseSuccessors() : Set(Clause)

allClauseSuccessors() = self.successorClause−
>union(self.successorClause.allClauseSuccessors()−>asSet())

[2] This operation returns the available inputs of the test and body actions of a clause that are avail-
able outside the clause.
September 2002 OMG-UML , v1.5 Composite Actions 2-241

2 UML Semantics
clauseInputs() : Set(InputPin)

clauseInputs() = self.body.availableInput−>reject(i : InputPin | self.test.availableOutput-
>includes(i.flow.source))

−>union(self.test.availableInput)

Semantics

A clause is executed as part of a conditional action or a loop action. See those action for a
description of how the clause is used in each case.

ConditionalAction

A conditional action consists of a set of one or more clauses, exactly one of whose bodies is
executed during any execution of the conditional action. If more than one clause has a test that
yields “true”, exactly one of the corresponding body actions is selected for execution, but it is
unspecified which one. (If the conditional action is declared to be determinate, this is an
assertion that exactly one concurrent clause test will yield true.) The clause must have an
ordered list of output pins that conform to the ordered list of output pins of the conditional. This
list must be drawn from accessible outputs of the body action. The only outputs of the
conditional action accessible outside it are the output pins directly owned by the conditional
action.

Attributes
• isDeterminate : Boolean

If true, then whenever the conditional action is executed, the execution of exactly one test
action must result in “true”. (This is an assertion, not an executable property. If the assertion
is violated by the action, the model is ill formed.)

Associations
• clause : Clause[1..*]

The set of clauses contained in the conditional action.

Inputs

none (There are no explicit input pins. Embedded actions may have input pins that are available
inputs of the conditional action).

Outputs
• testOutput: Boolean [1..*]

[These output pins are referenced by the Clause in the ConditionalActon but are not owned
by it. They are owned by test actions within the clause] A value used to control execution of
the conditional body. If the value of a testOutput pin is true at the completion of execution of
the test action of a clause, then the body action of the clause is a candidate for execution.
Regardless of the number of clauses that produce true values, only one body action will be
executed. The manner of selecting among multiple candidates is indeterminate. A test action
may begin execution only if all of its predecessorClauses in the conditional action have
2-242 OMG-UML , v1.5 Composite Actions September 2002

2 UML Semantics
completed execution and the value of all of their testOutput pins is false. If no clause
produces a true test value during an execution of the conditional action, the model is ill
formed.

• bodyOutput: T [1..*], where T are user classes
[These output pins are referenced by the Clause in the ConditionalActon but are not owned
by it. They are owned by test actions within the clause] The output values produced by the
conditional body. The list of output pins for each clause must be equal in number and
respective types to the list of output pins for the conditional action. At the completion of
execution of the body action of the one clause selected for execution, the values on the output
pins designated by that clause are copied onto the output pins of the conditional action.

• output: T [0..*], where T are the same user classes as in bodyOutput
[These output pins are owned by the ConditionalAction.] A list of zero or more values that
are the only available outputs of the conditional action. At the completion of execution of the
conditional action, each output pin has a value equal to the corresponding output pin of the
clause that executed.

Note: There are no available outputs of the conditional action except for the explicit output pins
of the action itself.

Well-Formedness Rules
[1] Each clause of a conditional action must have a number of outputs equal to the number of out-

put pins of the conditional action. Each output of a clause must conform in type and multiplic-
ity to the corresponding output of the conditional.

self.clause−>forAll(c : Clause |

c.output−>size() = self.outputPin−>size()

and Sequence{1..c.output−>size()}−>forAll(i : Integer |

let cOutput : OutputPin = c.output−>at(i) in

let selfOutput : OutputPin = self.outputPin−>at(i) in

(cOutput.type = selfOutput.type

or cOutput.type.allParents()−>includes(selfOutput.type))

and cOutput.multiplicity.compatibleWith(selfOutput.multiplicity))

[2] The predecessors and successors of a clause in a conditional action must be clauses in the same
conditional action.

self.clause−>includesAll(self.clause.predecessor−>union(self.clause.successor))

[3] A conditional action owns no input pins.

self.inputPin−>isEmpty()

[4] The available inputs of a conditional action are the union of the available inputs from all the
clauses of the conditional action.

self.availableInput = self.clause.clauseInputs()

[5] The available outputs of a conditional action are the output pins of the conditional action.

self.availableOutput = self.outputPin−>asSet()

[6] There may be no path from a conditional action to any action within the conditional action
(where a path is defined as in rule [1] for Action and includes both data flows and control
flows).
September 2002 OMG-UML , v1.5 Composite Actions 2-243

2 UML Semantics
self.allSuccessors()−>excludesAll(self.clause.test.allSubactions()−
>union(self.clause.body.allSubactions()))

Additional Operations
[1] The nested actions of a conditional action are the test and body actions of its clauses.

nestedActions() : Set(Action)

nestedActions() = self.clause.test−>union(self.clause.body)−>asSet()

[2] A conditional action has no subactions.

subactions() : Set(Action)

subactions() = Set{}

A conditional execution represents the execution of a conditional action.

Semantics

A conditional execution represents the execution of a conditional action.

[1] When the control and data flow prerequisites of a conditional action are satisfied, it enables its
clauses.

[2] Any clause lacking a predecessor clause may begin execution of its test subaction immediately.
The test subactions of multiple clauses may execute concurrently. The test subaction of a
clause with predecessors may execute if the execution of the test actions of all of its predeces-
sor clauses completed and yielded false values for all test actions.

[3] If the test action of any clause yields a true value, the body action of that clause may be exe-
cuted. If multiple test actions yield true values, nevertheless only one body action will be exe-
cuted, but the choice of which one to execute is not specified.

[4] When a body action completes execution, the values on the pins designated by the bodyOutput
association from the clause containing the body action are copied to the output pins of the con-
ditional action. Note that the list of bodyOutput pins and the list of output pins of the condi-
tional action must match (well formedness rule on the action).

[5] If all clauses have been tested and no test value has been true, and the conditional action has no
output pins, then the conditional execution completes execution and the control flow prerequi-
site is satisfied on any successor actions.If no test value has been true and the conditional
action has one or more output pins, then the conditional action is ill formed and the behavior of
the condition action is undefined. This represents an error in the model.

GroupAction

A group action represents a simple composition of a set of subactions. A group action does not
own any pins of its own, but data-flow connections may (generally) be made from actions
outside the group to pins owned by actions within the group action. The group action as a
whole may participate in control flows and actions within the group action may also participate
in control flows with actions outside the group action. There is an implicit control flow from the
group action to each action within it; this is important only if there is a control flow to the
group action. Similarly, there is an implicit control flow from each action in the group action to
the group action; this is important only if there is a control flow from the group action. Finally,
a set of local variables can be declared in association with a group action. The group action
serves as the scope for use of the variables.
2-244 OMG-UML , v1.5 Composite Actions September 2002

2 UML Semantics
Attributes
• mustIsolate : Boolean

If true, then the actions in the group execute in isolation.

Associations
• subaction : Action [0..*]

The set of actions contained in the group.

• variable : Variable [0..*]
The set of variables declared with the group as their scope.

Inputs

none(A group action has available inputs, but no explicit input pins. Its embedded actions may
have input pins.)

Outputs

none (A group action has available outputs, but no explicit output pins. Its embedded actions
may have output pins.)

Well-Formedness Rules
[1] A group action does not own any pins.

self.outputPin−>isEmpty() and self.inputPin−>isEmpty()

[2] The set of available inputs of a group action is the union of the available inputs of all the subac-
tions of the group action not connected within the group action to an available output of a sub-
action of the group action.

self.availableInput = self.subaction.availableInput−>asSet()−>reject(i : InputPin |
self.subaction.availableOutput.includes(i.flow.source))

[3] The set of available outputs of a group action is the union of the available outputs of all the sub-
actions of the group action.

self.availableOutput = self.subaction.availableOutput−>asSet()

Additional Operations
[1] The nested actions of a group action are its subactions.

nestedActions() : Set(Action)

nestedActions() = self.subaction

[2] A group action has explicit subactions.

subactions() : Set(Action)

subactions() = self.subaction

Semantics

Figure 2-45 shows the life cycle for the execution of a group action. As with any action, a
group execution becomes ready when the execution of all its prerequisite actions have
completed. Since a group action does not directly own any inputs itself, it can only have
control-flow prerequisites. The subactions within a group action may not start executing until
September 2002 OMG-UML , v1.5 Composite Actions 2-245

2 UML Semantics
the group execution as a whole is ready. A subaction may have its own prerequisite data and
control flows that must be satisfied before the subaction may execute. In this sense, the group
action is an additional prerequisite for all its subactions.

The group execution maintains its executing status until all its subactions have completed. As
individual subaction executions within the group execution complete, they trigger any data or
control flows attached directly to them, independently of the completion of the group action as
a whole. However, control flows with the group action itself as their source will not be triggered
until the group execution reaches the complete status.

A group action may also act as the scope for a set of local variables. The execution of the group
action must therefore also maintain the state of those variables. A variable value associates a
sequence of values with the variable, consistent with the multiplicity of the variable. As with
pin values, the association of a variable with the instance values is via intermediate variable
elements, which allow for the possibility of the variable containing duplicate values, and the
ordering of these elements is only significant if the variable is marked as ordered.

[1] A group action begins execution when all of its control flow prerequisites are satisfied. (A
group action may not have data flow prerequisites.) When a group action begins execution, any

Figure 2-45 Life cycle for group-action execution

waiting

ready

executing

complete

when(A ll prerequis ites are satisfied)

/ C reate var iables and start execu tion o f subact ions

when(Subaction executions complete)
/ Des troy variables
2-246 OMG-UML , v1.5 Composite Actions September 2002

2 UML Semantics
variables declared in its scope are created with undefined values and all of its subactions are
enabled. Any subactions without control or data flow prerequisites may begin execution imme-
diately. Subactions with control or data flow prerequisites must wait until the prerequisites are
satisfied.

[2] When all of the subactions have completed execution, the execution of the group action is com-
plete. The values of any variables declared in its scope are destroyed. Any control flow prereq-
uisites in which the group action is a predecessor are satisfied. (A group action may not have
data flow outputs.)

Note – The execution model does not currently formalize the semantics of group
actions with mustIsolate = true.

LoopAction

A loop action contains a single clause whose test action and body action are executed
repeatedly as long as the test action yields “true”. A list of output pins acts as “loop variables”
for the loop action. The loop variables are not directly available outside the loop. Input pins of
the overall loop action provide initial values that are copied into these loop variables before the
first iteration of the loop. As output pins, the loop variables may be connected to available
inputs of the test and body actions using normal data flows, to provide the “old values” of the
loop variables during an iteration. The outputs of the loop clause provide “new values” that are
copied to the loop variables at the completion of an iteration. The test is executed after the
initial values are copied to the loop variables, and after each execution of the body action. The
body action is executed only if the test yields true. When the loop terminates, the final values
of the loop variables are copied to the regular output pins of the loop action, which are the only
available outputs for the loop action as a whole.

Associations
• clause : Clause [1..1]

The clause that contains the test and body actions for the loop.

• loopVariable : OutputPin [0..*]
The set of loop-action output pins that act as loop variables for the loop. These are owned
directly by the loop action, but they are not available outside the loop.

Inputs
• loopVariableInput: T [0..*], where T are user classes

[These input pins are owned by the LoopAction itself.] An ordered list of input pins holding
values. Each pin can have a different type. The number and irrespective types of the pins
must match the loop variable pins. These pins represent the initial values for the loop
variables. During the first execution of the subaction, the loop variable pins hold copies of the
values on the corresponding loop variable input pins.

Outputs
• result: T [0..*], where T are the classes as in loopVariableInput

[These output pins are owned by the loop action itself.] An ordered list of output pins holding
collections of output values. The number and type of each pin must match the corresponding
September 2002 OMG-UML , v1.5 Composite Actions 2-247

2 UML Semantics
loop variable input pin and loop variable pin. When the execution of the loop action is
complete (because the test condition is false), the output pins have values equal to the values
on the corresponding bodyOutput pins on the final execution of the body action. If the
testOutput is false on first execution of the clause (which consequently does not execute the
body action), the result pins have values equal to the values on the loopVariableInput pins.

• loopVariable: T [0..*], where T are the same classes as in loopVariableInput
[These output pins are owned directly by the LoopAction. These are internal output pins,
visible only within the LoopAction itself.] An ordered list of output pins holding collections of
output values. The number and type of each pin must match the corresponding loop variable
input pin and result pin. During the first execution of the body action, the loopVariable pins
have values equal to the values of the corresponding loopVariableInput pins. On each
subsequent execution of the body action, each loopVariable pin has a value equal to the value
of the corresponding body action output pin at the completion of the previous execution of
the body action. The values of the loopVariable pins are available inputs of actions nested
within the clause, including its test action and body action.

• bodyOutput: T [0..*], where T are the same classes as in loopVariableInput
[These output pins are owned by actions nested within the body action of the clause of the
LoopAction. They are visible only within the LoopAction itself.] An ordered list of output pins
holding collections of output values. The number and type of each pin must match the
corresponding loop variable input pin and result pin. At the completion of each execution of
the body action, each pin holds a value computed within the body action from its available
inputs, including loop variable values. The value of each bodyOutput pin determines the
value of the corresponding loopVariable pin on the subsequent execution of the body action
and the corresponding result pin if the body action does not execute subsequently. The
bodyOutput values are not otherwise available outside the body action itself.

• testOutput : Boolean

[These output pins are owned by an action nested within the test action of the loop action. They are
visible only within the LoopAction.] An output pin holding a Boolean value computed within the
test action of the clause of the loop action. During each iteration of the loop, the test action executes
and the value on the testOutput pin determines whether the execution of the loop action is com-
plete. If the value is false, execution is complete. If the value is true, the body action is executed
again.

Well-Formedness Rules
[1] The clause of a loop action must have the same number of outputs as the number of loop vari-

ables of the loop and each clause output in the ordered list must conform to the corresponding
loop variable in type and multiplicity.

self.clause.output−>size() = self.loopVariable−>size()

and Sequence{1..clause.output−>size()}−>forAll(i : Integer |

let clauseOutput : OutputPin = clause.output−>at(i) in

let v : OutputPin = self.loopVariable−>at(i) in

(clauseOutput.type = v.type or clauseOutput.type.allParents()−>includes(v.type))

and clauseOutput.multiplicity.compatibleWith(v.multiplicity))

[2] A loop action must have the same number of inputs pins as loop variables and each input pin
must conform to the corresponding loop variable in type and multiplicity.

self.inputPin−>size() = self.loopVariable−>size()
2-248 OMG-UML , v1.5 Composite Actions September 2002

2 UML Semantics
and Sequence{1..self.inputPin−>size()}−>forAll(i : Integer |

let p : InputPin = self.inputPin−>at(i) in

let v : OutputPin = self.loopVariable−>at(i) in

(p.type = v.type or p.type.allParents()−>includes(v.type)

and p.multiplicity.compatibleWith(v.multipicity))

[3] A loop action must have the same number of output pins as the number of loop variables and
each loop variable in the ordered list must conform to the corresponding output pin (in order)
in type and multiplicity.

self.outputPin−>size() =self. loopVariable−>size()

and Sequence{1..self.outputPin−>size()}−>forAll(i : Integer |

let p : OutputPin = outputPin−>at(i) in

let v : OutputPin = loopVariable−>at(i) in

(v.type = p.type or v.type.allParents()−>includes(p.type))

and v.multiplicity.compatibleWith(p.multipicity))

[4] The clause of a loop action may not have predecessors or successors.

self.clause.predecessor−>isEmpty() and self.clause.successor−>isEmpty()

[5] The set of available inputs of a loop action is the union of the loop-action input pins and the
available inputs of the clauses of the loop action that are not connected to loop variables.

self.availableInput = self.inputPin−>union(self.clause.clauseInputs()

−>reject(i : InputPin | self.loopVariable−>includes(i.flow.source)))

[6] The available outputs of a loop action are the output pins of the loop action.

self.availableOutput = self.outputPin

[7] There may be no path from a loop action to any action within the loop action (where a path is
defined as in Rule [1] under Action).

self.allSuccessors()−>excludesAll(self.clause.test.allSubactions()−
>union(self.clause.body.allSubactions()))

Additional operations
[1] The nested actions of a loop action are its test and body actions.

nestedActions() : Set(Action)

nestedActions() = Set{self.clause.test, self.clause.body}

[2] A loop action has no subactions.

subactions() : Set(Action)

subactions() = Set{}

Semantics
[1] When all control flow and data flow prerequisites of a loop action are satisfied, the execution of

the loop begins. All of the values on input pins of the loop execution are copied into a set of
loop variable values s owned by the loop execution. The execution of the clause owned by the
loop action begins.

[2] When the execution of a clause begins, its test subaction is executed.

[3] When the test action has completed execution, if the test action yields a false value for its test-
Output pin, the loop execution completes. The values of the loop variables are copied to the
loop output pins.
September 2002 OMG-UML , v1.5 Composite Actions 2-249

2 UML Semantics
[4] When the test action has completed execution, if the test action yields a true value, the body
action of the clause is executed. Before execution begins, any control flow conditions, data
flow values, or variables in the scope of the action from any previous iterations of the body
action are cleared.

[5] When the body action has completed execution, the values on the output pins of the body action
are copied to the values of the loop variables. Then the test action is executed again.

Variable

A variable is the specification of a data slot that represents a local variable shared by the actions
within a group. There are actions to write and read variables. These actions are treated as side
effect actions, similar to the actions to write and read object attributes and associations. There
are no automatic sequencing constraints among actions that access the same variable. Such
actions must be explicitly sequenced by control flows (unless their sequencing follows from
other constraints anyway).

Any values contained by a variable must conform to the type of the variable and have
cardinalities allowed by the multiplicity of the variable. A variable without a type specification
can hold any value.

Attributes
• multiplicity : Multiplicity

A specification of the number of values a variable execution may hold at any one time.

• ordering : OrderingKind
Indicates whether the set of values held by this variable is to be considered ordered or not.

Associations
• scope : GroupAction [1..1]

The group action that owns the variable.

• type : Classifier [0..1]A classifier specifying the allowed classifiers of values held by the
variable. The actual classifier of a value must conform to the type specification of the
variable.

Additional Operations
[1] This operations checks whether the given action is within the scope of this variable.

isAccessibleBy(a : Action) : Boolean

isAccessibleBy(a) = self.scope.allNestedActions()−>includes(a)

2.19 Read and Write Actions

Objects, attributes, links, and variables have values that are available to actions. Objects have
classifiers and they can be created and destroyed; attributes and variables have values; links can
be created and destroyed, have object ends and qualifier values; all of which are available to
actions. Read actions get values, while write actions modify values and create and destroy
2-250 OMG-UML , v1.5 Read and Write Actions September 2002

2 UML Semantics
objects and links. Read and write actions share the structures for identifying the attributes,
links, and variables they access. Objects, attributes, links, and variables each have their own
section in this chapter.

Following the philosophy of providing simple actions from which languages can compose
powerful constructs, read actions do not modify the values they access, while write actions have
the minimum possible effect. For example, creating an object does not execute constructors.
Languages requiring higher-level semantics can define higher-level actions from the primitive
ones given here.

When an action violates those aspects of static UML modeling that constrain runtime behavior,
the semantics is left undefined. For example, an attempt to create an instance of an abstract
class is undefined: some languages may make this action illegal, others may create a partial
instance for testing purposes. The semantics are also left undefined in situations that require
classes as values at runtime. The only exception is minimum multiplicity, which is defined to be
equivalent to the lower multiplicity being zero. Runtime situations violating minimum
multiplicity do not conform to their model, but are necessary to allow intermediate stages of
initializing runtime objects. The modeler must determine when minimum multiplicity should be
enforced.

2.19.1 Object Actions

The only properties an object has directly are its classes and whether it exists or not. All the
other aspects of an object are handled through other elements, such as attributes, and
associations. This section covers the direct properties of objects. CreateObjectAction creates an
object that conforms to a statically specified classifier and puts it on an output pin at runtime.
DestroyObjectAction destroys the object on its input pin at runtime. When the object is also a
link object, the link is also destroyed with the same semantics as a DestroyLinkAction.
ReclassifyObjectAction adds and removes statically specified classifiers to and from the object

Figure 2-46 Object Action metamodel

PrimitiveAction
(fromAction Foundation)

DestroyObjectAction

InputPin
(from Acti on Foundat io n)

OutputPin
(from Action Foundation)

InputPin
(from Acti on Foundat io n)

1

0..1

+/input 1

0..1

ReadIsClassifiedObjectAction

isDirect : Boolean

1

0..1

+/input 1

0..1

1

0..1

+/result 1

0..1

ReclassifyObjectAction

isReplaceAll : Boolean

1

0..1

+/input

1

0..1

OutputPin
(from Action Foundation)

Classifier
(from Core)

1

+classifier

1

0..*

0..*

+newClassifier
0..*

0..*

0..*

0..*

+oldClassifier 0..*

0..*

CreateObjectAction

1

0..1

+/result 1

0..1

1

0..*

+classifier

1

0..*
September 2002 OMG-UML , v1.5 Read and Write Actions 2-251

2 UML Semantics
given on its input pin at runtime. It supports adding and removing multiple classifiers at a time.
No constructors or destructors are executed by the object actions, nor is there any effect on the
state machines of the object. It has the option of removing all existing classifiers of the object
before new ones are added. ReadIsClassifiedObject determines whether an object is classified
by a classifier that is specified at modeling time, either as a direct instance or indirect
descendant of the classifier. The actions on objects in general are applicable to link objects. See
descriptions of classes for more information on their semantics.

2.19.2 Attribute Actions

Attributes have values that can be read or written, as modeled in Figure 2-47. The abstract
metaclass AttributeAction statically specifies the attribute being accessed. The object to access
is specified dynamically, by referring to an input pin on which the object will be placed at
runtime. The type of the value of this pin is the classifier that owns the specified attribute, and
the value’s multiplicity is 1..1.

When an attribute is read with ReadAttributeAction, the values of the attribute of the input
object are placed on the output pin of the action. The type and ordering of the output pin are the
same as the specified attribute. The multiplicity of the attribute must be compatible with the
multiplicity of the output pin. For example, the modeler can set the multiplicity of this pin to
support multiple values even when the attribute only allows a single value. This way the action
model will be unaffected by changes in the multiplicity of the attribute.

Figure 2-47 Attribute action metamodel

InputPin
(f rom Acti on Foundat ion)

AttributeAction 10..1

+/object

10..1Attribute
(from Core)

0.. *1 0.. *

+attribute

1

PrimitiveAction
(f rom Action Found ati on)

OutputPin
(from Action Foundation)

ReadAttributeAction

1

0..1

+/result 1

0..1

RemoveAtt ributeValueAction

WriteAt tributeAction

InputPin
(f rom Acti on Foundat ion)

1

0..1

+/value1

0..1

AddAttributeValueAction
isReplaceAll : Boolean

0..1
0..1

+/ insertAt

0..1
0..1

ClearAttributeAction
2-252 OMG-UML , v1.5 Read and Write Actions September 2002

2 UML Semantics
Adding a value with AddAttributeValueAction has the option of removing existing values of the
attribute beforehand, even if the value already exists. Attributes can also have all values
removed with no new values added, using ClearAttributeAction.

The semantics of adding a value that violates the maximum multiplicity of the attribute is
undefined. Removing a value succeeds even when that violates the minimum multiplicity—the
same as if the minimum were zero. The same applies to clearing the attribute. The modeler
must determine when minimum multiplicity of attributes should be enforced

Values of an attribute may be ordered or unordered, even if the multiplicity maximum is 1. The
insertion point for adding new values to ordered attributes is specified at runtime by an
additional input pin. The insertion point is a positive integer giving the position to insert the
value, or the special value unlimited, to insert at the end. Reinserting an existing value at a new
position moves the value to that position. (This works because attribute values are sets.) The
insertion point is required for ordered attributes and omitted for unordered attributes.

The semantics of actions that read and write attributes with classifier ownerScope or
targetScope is undefined.

The attributes of an object may change over time due to dynamic classification. However, the
attribute specified in an attribute action is inherited from a single classifier, and it is assumed
that the object passed to an attribute action is classified by that classifier directly or indirectly.
The attribute is referred to as a user model element, so it is uniquely identified, even if there are
other attributes of the same name on other classifiers.

2.19.3 Association Actions

In the following discussion, “associations” does not include those modeled with association
classes, unless specifically indicated. Similarly, a “link” is not a link object unless specifically
indicated. The actions on objects in general are applicable to link objects. The term “link end
object” or “end object”refers to the object participating in a link at a particular end. The
semantics of actions that read and write associations that have any end with classifier
targetScope is undefined.
September 2002 OMG-UML , v1.5 Read and Write Actions 2-253

2 UML Semantics
Identifying a Link

A link cannot be passed as a runtime value to or from an action. Instead, a link is identified by
its end objects and qualifier values, as required. This requires more than one piece of data,
namely, the static end in the user model, the object on the end, and the qualifier values for that
end. These pieces are brought together around LinkEndData. Each association end is identified
separately with an instance of the LinkEndData class.

For write actions, all association ends must have a corresponding input pin so that all end
objects are specified when creating or deleting a link. An input pin identifies the end object by
being given a value at runtime. It has the type of the association end and multiplicity of 1..1,
since a link always has exactly one object at its ends.

Read actions omit exactly one input pin for an object end. The model, shown in Figure 2-48,
therefore abstracts the association to an input to be optional.

When a qualifier must be specified, the input pin for the qualifier attribute has a type given by
that qualifier, and multiplicity of 1..1.

Figure 2-48 Link identification metamodel

rimi ti veA ct ion
(from Action Foundation)

InputPin
(from Action Foundation)

QualifierValue0..1

1

0..1

+/value 1

Link Action

Attribute
from Core)

0..* 10..*

+qualifier

1

Association
from Core)

LinkEndData
0..10..1 0..1

+/value

0..1

1

0..*

1

+qualifier0..*

2..*

1

+endData2..*

1

AssociationEnd
(from Core)

0..1

n

+associationEnd0..1

+qualifiern
{ordered}

2..*

1

+connection2..*

1

0..* 10..*

+end

1

2-254 OMG-UML , v1.5 Read and Write Actions September 2002

2 UML Semantics
Navigating Across an Association

Navigation of a binary association requires the specification of the source end of the link.The
target end of the link is not specified. When qualifiers are present, one navigates to a specific
end by giving objects for the source end of the association and qualifier values for all the ends.
These inputs identify a subset of all the existing links of the association that match the end
objects and qualifier values. The result is the collection of objects for the end being navigated
towards, one object from each identified link.

Figure 2-49 shows the model for a ReadLinkAction, generalized for n-ary associations. One of
the link-end data must have an unspecified object (the “open” end). The result of the action is a
collection of objects on the open end of links of the association, such that the links have the
given objects and qualifier values for the other ends and the given qualifier values for the open
end. This result is placed on the output pin of the action, which has a type and ordering given
by the open end. The multiplicity of the open end must be compatible with the multiplicity of
the output pin. For example, the modeler can set the multiplicity of this pin to support multiple
values even when the open end only allows a single value. This way the action model will be
unaffected by changes in the multiplicity of the open end. The semantics are defined only when
the open end is navigable, and visible to the host object of the action.

Figure 2-49 Read-link action metamodel

Link Action LinkEndData1 2.. *1

+endData

2.. *

OutputPin
(from Act ion Foundation)

ReadLinkAction 10..1

+/ result

10..1

Primi tiveAct ion
(from Action Foundation)
September 2002 OMG-UML , v1.5 Read and Write Actions 2-255

2 UML Semantics
Reading Link Objects

Link objects are instances of association classes. They have their own identity because they are
objects, so it is possible to read the end objects and qualifier values of a link object in a more
direct fashion than for ordinary links. Figure 2-50 shows the model for link object reading
actions.

ReadLinkObjectEndAction reads a link object to retrieve an end object. The association end to
retrieve the object from is given statically, and the link object to read is provided on the input
pin at run time. ReadLinkObjectQualifierAction determines the association end through a
qualifier attribute, which UML restricts to being on exactly one association end, and returns the
value of the qualifier attribute. For both actions, the input and output pins have multiplicity 1..1.
Qualifier attributes must have exactly one value. The type of the output pin is the type of the
specified association end for ReadLinkObjectEndAction, and the type of the qualifier attribute
for ReadLinkObjectQualifierAction.

Figure 2-50 Read link object action metamodel

AssociationEnd
(from Core)

ReadLinkObjectEndAction

0..1

+end

0..1

Attribute
(from Core)

0.. 1 n

+associationEnd

0.. 1

+qualifier

n{ordered}

utputPin
(from Ac tion Foundation)

1

..1

+/result

1

..1

InputPin
(from Action Foundation)

1

0..1

+/object

1

0..1

ReadLinkObjectQualifierAction

0..1

1

0..1

+qualifier1

1

0.. 1

+/result

1

0.. 1

1

0..1

+/object

1

0..1

PrimitiveAction
(from A ction Foundation)
2-256 OMG-UML , v1.5 Read and Write Actions September 2002

2 UML Semantics
Writing Links

Figure 2-51 shows the classes for creating and destroying links. Both inherit the elements for
identifying associations from LinkAction (see Subsection ”Identifying a Link”). Both inherit
well-formedness rules from WriteLinkAction.

CreateLinkAction can be used to create links and link objects. In neither case is the created link
object returned. This has the happy effect of requiring no change of the action if the association
is changed to an association class or vice versa. CreateLinkAction uses a specialization of
LinkEndData called LinkEndCreationData, to support ordered associations and for replacing all
links at an end. The insertion point is specified at runtime by an additional input pin, which is
required for ordered association ends and omitted for unordered ends. The insertion point is a
positive integer giving the position to insert the link, or the special value unlimited, to insert at
the end. Reinserting an existing end at a new position moves the end to that position.

CreateLinkAction also supports the destruction of existing links of the association that connect
any of the objects of the new link. When the link is created, this option is available on an end-
by-end basis, and causes all links of the association emanating from the specified ends to be
destroyed before the new link is created.

Figure 2-51 Write link action metamodel

DestroyLinkAction

WriteLinkAction

OutputPin
(f rom Ac tion Foundation)

CreateLinkObjectAction
10..1

+/result

10..1

LinkEndData

LinkAction

2..*

1
+endData

2..*

1

PrimitiveAction
(from Action Foundation)

CreateLinkAction

InputPin
(f rom Action Foundation)

LinkEndCreationData

isReplaceAll : Boolean

2..* 1

+/endData

2..* 1

0..1

0..1

+/ins ertAt0..1

0..1

InputPin
(f rom Ac tion F oundation)

Association
(f rom C ore)

ClearAssociationAction

1

0..1

+/object 1

0..1

1

0..1

+association 1

0..1
September 2002 OMG-UML , v1.5 Read and Write Actions 2-257

2 UML Semantics
CreateLinkObjectAction is exclusively for creating links of association classes. It returns the
created link object. DestroyLinkAction deletes links, including link objects.
ClearAssociationAction destroys all links of an association in which an object given at runtime
participates.

Creating a link that violates the maximum multiplicities of the association has undefined
semantics. The semantics of destroying a link that violates the minimum multiplicities of the
association is that same as if the minimum were zero, that is, the link is destroyed. The modeler
must determine when minimum multiplicity of associations should be enforced.

2.19.4 Variable Actions

Variables have values that can be read or written, as modeled in Figure 2-52. The abstract
metaclass VariableAction statically specifies the variable being accessed. Variable actions can
only access variables within the procedure of which the action is a part.

When a variable is read with ReadVariableAction, the values of the variable are placed on the
output pin of the action. The type and ordering of the output pin are the same as the specified
variable. The multiplicity of the variable must be compatible with the multiplicity of the output
pin. For example, the modeler can set the multiplicity of this pin to support multiple values
even when the variable only allows a single value. This way the action model will be unaffected
by changes in the multiplicity of the variable.

Adding a value with AddVariableValueAction has the option of removing existing values of the
variable beforehand, even if the value already exists. Variables can also have all values removed
with no new value added, using ClearVariableAction.

The semantics of adding a value that violates the maximum multiplicity of the variable is
undefined. Removing a value succeeds even when that violates the minimum multiplicity—the
same as if the minimum were zero. The same applies to clearing the variable.

Values of a variable may be ordered or unordered, even if the multiplicity maximum is 1. The
insertion point for adding new values to ordered variables is specified at runtime by an
additional input pin. The insertion point is a positive integer giving the position to insert the
2-258 OMG-UML , v1.5 Read and Write Actions September 2002

2 UML Semantics
value, or the special value unlimited, to insert at the end. Reinserting an existing value at a new
position moves the value to that position. (This works because variable values are sets.) The
insertion point is required for ordered variables and omitted for unordered variables.

2.19.5 Other Actions

Additional actions support navigation to the object hosting the action, reading of the extent of a
classifier, and starting the state machines of an object. Figure 2-53 shows the model for these
actions. Every action is ultimately a part of some procedure, which is in turn is attached in
some way to the specification of a classifier—for example as the body of a method or as part of
a state machine. When the procedure executes, it does so in the context of some specific host
instance of that classifier. ReadSelfAction produces this host instance on its output pin. The type
of the output pin is the classifier to which the procedure is statically associated.
ReadExtentAction reads the current extent of a given classifier. StartObjectStateMachineAction
puts the state machines of an object in their top state, if they have not been there already. This
can only be used once per object. CallProcedureAction starts a procedure passing inputs, and
waiting for outputs if it is synchronous.

Note – The extent of a classifier is the set of all instances of a classifier that exist at
any one time. It is not generally practical to require that reading the extent produce all
the instances of the classifier that exist in the entire universe. Rather, any real
execution engine will manage only a limited subset of the theoretical extent of any

Figure 2-52 Variable action metamodel

PrimitiveAction
(from Action Foundation)

Variable
(from Composite Actions)

VariableAction 10..*

+variable

10..*

OutputPin
(from Action Foundation)

ReadVariableAction

1

0..1

+/result 1

0..1

RemoveVariableValueAction

WriteVariableAction

InputPin
(from Action Foundation)

1

0..1

+/value 1

0..1

AddVariableValueAction

isReplaceAll : Boolean

0..1

0..1

+/insertAt

0..1

0..1

ClearVariableAction
September 2002 OMG-UML , v1.5 Read and Write Actions 2-259

2 UML Semantics
classifier and may actually manage multiple distributed extents for any one classifier.
It is not formally specified in general by the execution semantics which managed
extent is actually read by a read-extent action.

.

2.19.6 Additional OCL Operations for Read and Write Actions

Some additional OCL operations are defined for this chapter.

Action
[1] procedure operates on Action. It returns the procedure containing the action.
procedure() : Procedure;
procedure = if self.Procedure→size() > 0 then self.Procedure else self.group.procedure() endif

Procedure
[1] hostClassifier operates on Procedure. It returns the classifier hosting the procedure. This is the

classifier on which the procedure is defined as a method, action in a state machine, sender of a
message in a collaboration, or sender of a stimulus in a CollaborationInstance.

hostClassifier() : Classifier;
hostClassifier = if self.Method->size() > 0

then self.Method.owner
else if self.State->size() > 0

then self.oclAsType(StateVertex).hostClassifier()
else if self.Transition->size() > 0

Figure 2-53 Other action metamodel

ReadSelfActionClass ifier
(from Core)

ReadExtentAction
1 0..1

+classifier

1 0..1

PrimitiveAction
(from Acti on Foun datio n)

StartObjectStateMachineAction

OutputPin
(from Action Foundation)

1

0..1

+/result

1

0..1

1

0..1

+/result1

0..1

InputPin
(from Action Foundation)

1

0..1

+/input1

0..1

CallProcedureAct ion

isSynchronous : Boolean

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1
Procedure

(from Common Behavior)
11 +procedure

+/ input +/output
2-260 OMG-UML , v1.5 Read and Write Actions September 2002

2 UML Semantics
then self.Transition.source.hostClassifier()
else if self.Message->size()>0

then self.Message.sender.base
else if self.Stimulus->size>0

then self.Stimulus.sender.classifier
endif

endif
endif

endif

[2] hostElement operates on Procedure. It returns the “innermost” element in the user model that is
hosting the procedure. This will be either a Method, State, Transition, Message, or Stimulus.

hostElement() : ModelElement;
hostElement = if self.Method->size() > 0

 then self.Method
 else if self.State->size() > 0

 then self.State
 else if self.Transition->size() > 0

 then self.Transition
else if self.Message->size()>0

then self.Message
else if self.Stimulus->size>0

then self.Stimulus
endif

endif
 endif

 endif
 endif

StateVertex
[1] hostClassifier operates on StateVertex. It returns the classifier hosting the state machine of the

vertex.
hostClassifier() : Classifier;
hostClassifier = if self.top->size() > 0

then if self.top.context.oclIsType(Classifier)
then self.top.context
endif

else self.container.hostClassifier()
endif

2.19.7 Read and Write Action Classes

AddAttributeValueAction

This action adds values to attributes. Attributes are potentially multi-valued. It also supports the
removal of existing values of the attribute before the new value is added. If the new value
already exists, then it is not removed under this option. Otherwise, adding an existing value has
no effect.

The semantics is undefined for adding a value that violates the upper multiplicity of the
attribute. The semantics is undefined for adding a new value for an attribute with changeability
frozen after initialization of the owning object.
September 2002 OMG-UML , v1.5 Read and Write Actions 2-261

2 UML Semantics
Adding values to ordered attributes requires an insertion point for a new value using the
insertAt input pin. The pin is of type UnlimitedInteger. A positive integer less than or equal to
the current number of values means to insert the new value at that position in the sequence of
existing values, with the integer one meaning the new value will be first in the sequence. A
value of unlimited for insertAt means to insert the new value at the end of the sequence. The
semantics is undefined for a value of zero or an integer greater than the number of existing
values. The insertAt input pin does not exist for unordered attributes. Reinserting an existing
value at a new position moves the value to that position.

Attribute
• isReplaceAll : Boolean [1..1]

Specifies whether existing values of the attribute of the object should be removed before
adding the new value.

Associations
• insertAt : InputPin [0..1]

(Derived from Action:inputPin) Gives the position at which to insert a new value or move an
existing value in ordered attributes. This pin is omitted for unordered attributes.

Inputs
• value : T [1..1], where T is self.attribute.type

(Inherited from WriteAttributeAction) Value of attribute to add. Its type is the same as the
type of the attribute.

• insertAt : UnlimitedInteger [0..1]
Position at which to insert a new value or move an existing value in ordered attributes. This
pin is omitted for unordered attributes.

• object : U [1..1], where U is self.attribute.owner
(Inherited from AttributeAction) Object to which to add a value. Its type is the same as the
type of the owner of the attribute being written.

Outputs

None.

Well-formedness rules
[1] Actions adding a value to ordered attributes must have a single input pin for the insertion point

with type UnlimitedInteger and multiplicity of 1..1, otherwise the action has no input pin for
the insertion point.

let insertAtPins : Collection = self.insertAt in
if self.attribute.ordering = #unordered
then insertAtPins->size() = 0
else let insertAtPin : InputPin = insertAts->asSequence()->first() in

insertAtPins->size() = 1
and insertAtPin.type = UnlimitedInteger
and insertAtPin.multiplicity.is(1,1))

endif
2-262 OMG-UML , v1.5 Read and Write Actions September 2002

2 UML Semantics
AddVariableValueAction

This action adds values to variables. Variables are potentially multi-valued. It also supports the
removal of existing values of the attribute before the new value is added. If the new value
already exists, then it is not removed under this option. Otherwise, adding an existing value has
no effect.

The semantics is undefined for adding a value that violates the upper multiplicity of the
variable.

Adding values to ordered variables requires an insertion point for a new value using the insertAt
input pin. The pin is of type UnlimitedInteger. A positive integer less than or equal to the
current number of values means to insert the new value at that position in the sequence of
existing values, with the integer one meaning the new value will be first in the sequence. A
value of unlimited for insertAt means to insert the new value at the end of the sequence. The
semantics is undefined for a value of zero or an integer greater than the number of existing
values. The insertAt input pin does not exist for unordered variables. Reinserting an existing
value at a new position moves the value to that position.

Attributes

isReplaceAll : Boolean [1..1]
Specifies whether existing values of the variable should be removed before adding the new
value.

Associations
• insertAt : InputPin [0..1]

(Derived from Action:inputPin) The input pin giving the position at which to insert values
into an ordered variable. This pin is omitted for unordered variables.

Inputs
• value : T [1..1] , where T is self.variable.type

(Inherited from WriteVariableAction) Value to add. Its type is the same as the type of the
variable.

• insertAt : UnlimitedInteger [0..1]
The position at which to insert values into an ordered variable. This pin is omitted for
unordered variables.

Outputs

None.

Well-formedness rules
[1] Actions adding values to ordered variables must have a single input pin for the insertion point

with type UnlimitedInteger and multiplicity of 1..1, otherwise the action has no input pin for
the insertion point.

let insertAtPins : Collection = self.insertAt in
if self.variable.ordering = #unordered
then insertAtPins->size() = 0
September 2002 OMG-UML , v1.5 Read and Write Actions 2-263

2 UML Semantics
else let insertAtPin : InputPin = insertAts->asSequence()->first() in
insertAtPins->size() = 1
and insertAtPin.type = UnlimitedInteger
and insertAtPin.multiplicity.is(1,1))

endif

AttributeAction (abstract)

An attribute action operates on a statically specified attribute of some classifier. The action
requires an object on which to act, provided at runtime through an input pin. The semantics is
undefined for accessing an attribute that violates its visibility. The semantics is undefined for
attributes with ownerScope or targetScope equal to classifier.

Attributes

isSynchronous: Boolean [1..1]
Specifies whether the execution of the action waits for the started procedure to finish before
continuing.

Associations
• attribute : Attribute [1..1]

Attribute to be read.

• object : InputPin [1..1]
(Derived from Action:inputPin) Gives the input pin from which the object whose attribute is
to be read or written is obtained. Must be of the same type as the attribute.

Well-formedness rules
[1] The attribute must have an ownerScope of instance.
self.attribute.ownerScope = #instance

[2] The attribute must have a targetScope of instance.
self.attribute.targetScope = #instance.

[3] The type of the input pin is the same as the type of the object owning the attribute.
self.object.type = self.attribute.owner

[4] If the action has an input pin, then its multiplicity must be 1..1.
self.object→forall(multiplicity.is(1,1))

[5] Visibility of attribute must allow access to the object performing the action.
let host : Classifier = self.procedure().hostClassifier() in

self.attribute.visibility = #public
or host = self.attribute.owner.type
or (self.attribute.visibility = #protected and host.allSupertypes→includes(self.owner.type)))

CallProcedureAction

This action starts a statically-specified procedure, passing inputs, and waiting for outputs if it is
synchronous.
2-264 OMG-UML , v1.5 Read and Write Actions September 2002

2 UML Semantics
Associations
• calledProcedure: Procedure [1..1]

Procedure to be started.

• input: InputPin [0..*]
(Derived from Action:inputPin) Gives the input pin from which is obtained the inputs for
starting the procedure.

• output: OutputPin [0..*]
(Derived from Action:outputPin) Gives the output pin from which is obtained the outputs of
a synchronously started procedure.

Inputs
• input: T [0..*], where T matches the order and types of the procedure inputs.

Outputs

output: T [0..*], where T matches the order and types of the procedure outputs.

Well-formedness rules
[1] Asynchronous calls can have no ouput pins.
self.isSynchronous = #false implies self.output->size() = 0

[1] The number, type, and order of the input and output pins must be the same as the number, type,
and order of the procedure inputs and outputs.

self.input->size() = self.calledProcedure.argument->size()
and Sequence {1..self.input->size()}

-> forAll (i:Integer |
let inputi = self.input->at(i) in
let argi = self.calledProcedure.argument->at(i) in

inputi.type = argi.type)
and self.output->size() = self.calledProcedure.result->size()
and Sequence {1..self.calledProcedure.result->size()}

- > forAll (i:Integer |
let outputi = self.output->at(i) in
let resulti = self.calledProcedure.result>at(i) in

outputi.type = resulti.type)

ClearAssociationAction

This action destroys all the links of an association in which a particular object participates. This
action has a statically-specified association end. It has an input pin for a runtime object that
must be of the same type as at least one of the association ends of the association. All links of
the association in which the object participates are destroyed even when that violates the
minimum multiplicity of any of the association ends. If the association is a class, then link
object identities are destroyed.

Associations
• association : Association [1..1]

Association to be cleared.
September 2002 OMG-UML , v1.5 Read and Write Actions 2-265

2 UML Semantics
• object : InputPin [1..1]
(Derived from Action:inputPin) Gives the input pin from which is obtained the object whose
participation in the association is to be cleared.

Inputs
• object : T [1..1], where T is the type of at least one of self.association.end.participant

The object on which to clear the association. It must be of the same type as at least one of the
association ends of the association.

Outputs

None.

Well-formedness rules
[1] The type of the input pin must be the same as the type of at least one of the association ends of

the association.
self.association->exists(connection.participant = self.object.type)

[2] The multiplicity of the input pin is 1..1.
self.object.multiplicity.is(1,1)

ClearAttributeAction

This action removes all values of an attribute. All values are removed even when that violates
the minimum multiplicity of the attribute. The semantics is undefined if the attribute
changeability is addonly, or the attribute changeability is frozen after initialization of the object
owning the attribute, unless the attribute has no values.

Inputs
• object : T [1..1], where T is self.attribute.owner

(Inherited from AttributeAction) The object on which to clear the attribute. It must be of the
same type as the owner of the attribute.

Outputs

None.

ClearVariableAction

This action removes all values of a variable. All values are removed even when that violates the
minimum multiplicity of the variable.

Inputs

None

Outputs

None.
2-266 OMG-UML , v1.5 Read and Write Actions September 2002

2 UML Semantics
CreateLinkAction

This action creates a link or link object for an association or association class. This action has
no output pin, because links are not necessarily values that can be passed to and from actions.
When the action creates a link object, the object could be returned on output pin, but it is not
for consistency with links. This allows actions to remain unchanged when an association is
changed to an association class or vice versa. The semantics of CreateLinkObjectAction applies
to creating link objects with CreateLinkAction.

This action also supports the destruction of existing links of the association that connect any of
the objects of the new link. This option is available on an end-by-end basis, and causes all links
of the association emanating from the specified ends to be destroyed before the new link is
created. If the link already exists, then it is not destroyed under this option. Otherwise,
recreating an existing link has no effect.

The semantics is undefined for creating a link for an association class that is abstract. The
semantics is undefined for creating a link that violates the upper multiplicity of one of its
association ends. A new link violates the upper multiplicity of an end if the cardinality of that
end after the link is created would be greater than the upper multiplicity of that end. The
cardinality of an end is equal to the number of links with objects participating in the other ends
that are the same as those participating in those other ends in the new link, and with qualifier
values on all ends the same as the new link, if any.

The semantics is undefined for creating a link that has an association end with changeability
frozen after initialization of the other end objects, unless the link being created already exists.
Objects participating in the association across from an unfrozen end can have links created as
long as the objects across from the frozen ends are still being initialized. This means that
objects participating in links with two or more frozen ends cannot have links created unless all
the linked objects are being initialized.

Creating ordered association ends requires an insertion point for a new link using the insertAt
input pin of LinkEndCreationData. The pin is of type UnlimitedInteger with multiplicity of 1..1.
A pin value that is a positive integer less than or equal to the current number of links means to
insert the new link at that position in the sequence of existing links, with the integer one
meaning the new link will be first in the sequence. A value of unlimited for insertAt means to
insert the new link at the end of the sequence. The semantics is undefined for value of zero or
an integer greater than the number of existing links. The insertAt input pin does not exist for
unordered association ends. Reinserting an existing end at a new position moves the end to that
position.

Associations
• endData : LinkEndCreationData [2..*]

(Derived from LinkAction:endData) Specifies ends of association and inputs.

Inputs
• endData.value : T [2..*], where T are self.endData.end.participant

(Inherited from LinkAction) Gives the object at the association end. It is of the same type as
the end.
September 2002 OMG-UML , v1.5 Read and Write Actions 2-267

2 UML Semantics
• endData.qualifier.value : U [0..*], where U are self.endData.end.qualifier.type
(Inherited from LinkAction) Gives the qualifier value of an association end if the end is
qualified. It is the same type as the qualifier attribute. See LinkEndData.

• endData.insertAt : UnlimitedInteger [0..1]
Gives insertion point for ordered association ends. This pin is omitted for unordered ends.

Outputs

None.

Well-formedness rules
[1] The association cannot be an abstract class.
not (if self.association().oclIsKindOf(Classifier) then (true = self.association().isAbstract) else false endif)

[2] The end data must be LinkEndCreationData.
self.endData->forall(oclIsKindOf(LinkEndCreationData))

CreateLinkObjectAction

This action creates a link object. It inherits the semantics of CreateLinkAction, except that it
operates on association classes to create a link object. The additional semantics over
CreateLinkAction is that the new or found link object is put on the output pin. If the link
already exists, then the found link object is put on the output pin. The semantics of
CreateObjectAction applies to creating link objects with CreateLinkObjectAction.

Associations
• result [1..1] : OutputPin [1..1]

(Derived from Action:outputPin) Gives the output pin on which the result is put.

Inputs
• endData.value : T [2..*], where T are self.endData.end.participant

(Inherited from CreateLinkAction) Gives object at association end. It is of the same type as
the end.

• endData.qualifier.value : U [0..*], where U are self.endData.end.qualifier.type
(Inherited from CreateLinkAction) Gives qualifier values of an association end. They are the
same type as the qualifier attribute. See LinkEndData.

• endData.insertAt : UnlimitedInteger [0..1]
(Inherited from CreateLinkAction) Gives insertion point for ordered association ends. This
pin is omitted for unordered ends.

Outputs
• result : V [1..1], where V is self.endData.end.association

The link object created of the same type as the association of the action.

Well-formedness rules
[1] The association must be an association class.
2-268 OMG-UML , v1.5 Read and Write Actions September 2002

2 UML Semantics
self.association().oclIsKindOf(Classifier)

[2] The type of the result pin must be the same as the association of the action.
self.result.type = self.association()

[3] The multiplicity of the output pin is 1..1.
self.result.multiplicity.is(1,1)

CreateObjectAction

This action instantiates a concrete classifier. The new object is created, and the classifier of the
object is set to the given classifier. The new object is returned as the value of the action. The
action has no other effect. In particular, no constructors are executed, no initial expressions are
evaluated, and no state machines transitions are triggered. The new object has no attributes
values and participates in no links.

The semantics is undefined for creating objects from abstract classifiers or from association
classes.

Associations
• classifier : Classifier [1..1]

Classifier to be instantiated.

• result : OutputPin [1..1]
(Derived from Action:outputPin) Gives the output pin on which the result is put.

Inputs

None.

Outputs
• result : T [1..1], where T is self.class

The created object. The type of the runtime object is the classifier specified for the action.

Well-formedness rules
[1] The classifier cannot be abstract.
not (self.classifier.isAbstract = true)

[2] The classifier cannot be an association class
not self.classifier.oclIsKindOf(AssociationClass)

[3] The classifier of the result pin must be the same as the classifier of the action.
self.result.type = self.classifier

[4] The multiplicity of the output pin is 1..1.
self.result.multiplicity.is(1,1)

DestroyLinkAction

This action destroys a link or a link object. Link objects can also be destroyed with
DestroyObjectAction.
September 2002 OMG-UML , v1.5 Read and Write Actions 2-269

2 UML Semantics
The link is specified in the same way as link creation, even for link objects. This allows actions
to remain unchanged when their associations are transformed from ordinary ones to association
classes and vice versa.

Destroying a link that does not exist has no effect. The semantics of DestroyObjectAction
applies to destroying a link that has a link object with DestroyLinkAction.

The semantics is undefined for destroying a link that has an association end with changeability
addonly, or frozen after initialization of the other end objects, unless the link being destroyed
does not exist. Objects participating in the association across from an unfrozen end can have
links destroyed as long as the objects across from the frozen ends are still being initialized. This
means that objects participating in links with 2 or more frozen ends cannot have links destroyed
unless all the linked objects are being initialized.

Inputs
• endData.value : T [2..*], where T are self.endData.end.participant

(Inherited from LinkAction) Gives the object at the association end. It is of the same type as
the end.

• endData.qualifier.value : U [0..*], where U are self.endData.end.qualifier.type
(Inherited from LinkAction) Gives the qualifier value of an association end if the end is
qualified. It is the same type as the qualifier attribute. They are the same type as the qualifier
attribute. See LinkEndData.

Outputs

None.

DestroyObjectAction

This action destroys an object. The object may be a link object, in which case the semantics of
DestroyLinkAction also applies.

The classifiers of the object are removed as its classifiers, and the object is destroyed. The
action has no other effect. In particular, no destructors are executed, no state machines
transitions are triggered, and references to the objects are unchanged.

Destroying an object that is already destroyed has no effect.

Associations
• input : InputPin [1..1]

(Derived from Action:inputPin) The input pin providing the object to be destroyed.

Inputs
• input : T [1..1], where T is any class.

The object to be destroyed. There is no restriction on its type, other than it must be a class.

Outputs

None.
2-270 OMG-UML , v1.5 Read and Write Actions September 2002

2 UML Semantics
Well-formedness rules
[1] The multiplicity of the input pin is 1..1.
self.input.multiplicity.is(1,1)

[2] The input pin has no type.
self.input.type->size() = 0

LinkAction (abstract)

A link action creates, destroys, or reads links. A link is identified by its end objects and
qualifier values, if any. The semantics is undefined for links of associations that have
targetScope equal to classifier on any end.

Associations
• endData : LinkEndData [2..*]

Data identifying link ends.

Well-formedness rules
[1] The association ends of the link end data must all be from the same association and include all

and only the association ends of that association.
self.endData->collect(end) = self.association()->collect(connection))

[2] The association ends of the link end data must have targetScope of instance.
self.endData->forall(end.targetScope = #instance)

[3] The input pins of the action are the same as the pins of the link end data, qualifier values, and
insertion pins.

self.inputPin->asSet() =
let ledpins : Set = self.endData->collect(value)->union(self.endData.qualifier.value) in

if self.oclIsKindOf(LinkEndCreationData)
then ledpins->union(self.endData.oclAsType(LinkEndCreationData).insertAt)
else ledpins

Additional operations
[1] association operates on LinkAction. It returns the association of the action.
association();
association = self.endData->asSequence().first().end.association

LinkEndCreationData

LinkEndCreationData is not an action. It is part of the metamodel that identifies links. It
comprises a set of values that identifies one end of a link to be created by CreateLinkAction or
CreateLinkObjectAction. It is required for specifying ordered association ends and for replacing
all links at an end. See also CreateLinkAction.

Attributes
• isReplaceAll : Boolean [1..1]

Specifies whether existing classifiers of the object should be removed before adding the new
classifiers.
September 2002 OMG-UML , v1.5 Read and Write Actions 2-271

2 UML Semantics
Associations
• insertAt : InputPin [0..1]

Specifies where the new link should be inserted for ordered association ends, or where an
existing link should be moved to. The type of the input is UnlimitedInteger. This pin is
omitted for association ends that are not ordered.

Well-formedness rules
[1] LinkEndCreationData can only be end data for CreateLinkAction or one of its specializations.
self.LinkAction.oclIsKindOf(CreateLinkAction)

[2] Link end data for ordered association ends must have a single input pin for the insertion point
with type UnlimitedInteger and multiplicity of 1..1, otherwise the link end data has no input
pin for the insertion point.

let insertAtPins : Collection = self.insertAt in
if self.end.ordering = #unordered
then insertAtPins->size() = 0
else let insertAtPin : InputPin = insertAts->asSequence()->first() in

insertAtPins->size() = 1
and insertAtPin.type = UnlimitedInteger
and insertAtPin.multiplicity.is(1,1))

endif

LinkEndData

LinkEndData is not an action. It is part of the metamodel that identifies links. It identifies one
end of a link to be read by a ReadLinkAction or written by the children of WriteLinkAction.

Associations
• end : AssociationEnd [1..1]

Association end for which this link-end data specifies values.

• value : InputPin [0..1]
Input pin that provides the specified object for the given end. This pin is omitted if the link-
end data specifies an “open” end for reading.

• qualifier : QualifierValue [0..*]
Specifies qualifier attribute/value pairs of the given end.

Well-formedness rules
[1] The qualifiers include all and only the qualifiers of the association end.
self.qualifier->collect(qualifier) = self.end.qualifier

[2] The type of the end object input pin is the same as the type of the association end.
self.value.type = self.end.participant

[3] The multiplicity of the end object input pin must be “1..1”.
self.value.multiplicity.is(1,1)

[4] The end object input pin is not also a qualifier value input pin.
self.value->excludesAll(self.qualifier.value)
2-272 OMG-UML , v1.5 Read and Write Actions September 2002

2 UML Semantics
QualifierValue

QualifierValue is not an action. It is part of the metamodel that identifies links. It gives a single
qualifier within a link end data specification. See LinkEndData.

Associations
• qualifier : Attribute [1..1]

Attribute representing the qualifier for which the value is to be specified.

• value : InputPin [1..1]
Input pin from which the specified value for the qualifier is taken.

Well-formedness Rules
[1] The qualifier attribute must be a qualifier of the association end of the link-end data.
self.LinkEndData.end->collect(qualifier)->includes(self.qualifier)

[2] The type of the qualifier value input pin are the same as the type of the qualifier attribute.
self.value.type = self.qualifier.type

[3] The multiplicity of the qualifier value input pin is “1..1”.
self.value.multiplicity.is(1,1)

ReadAttributeAction

This action reads the values of an attribute, in order if the attribute is ordered.

Associations
• result: OutputPin [1..1]

(Derived from Action:outputPin) Gives the output pin on which the result is put.

Inputs
• object : T [1..1], where T is a self.attribute.owner

(Inherited from AttributeAction:object) Object whose attribute is to be read. The type of the
runtime object is the same as the type of the owner of the attribute.

Outputs
• result : U [1..1], where U is self.attribute.type

Value of the attribute. It is of the same type as the attribute. The multiplicity of the attribute
must be compatible with the multiplicity of this pin.

Well-formedness Rules
[1] The type and ordering of the result output pin are the same as the type and ordering of the

attribute.
self.result.type = self.attribute.type
and self.result.ordering = self.attribute.ordering

[2] The multiplicity of the attribute must be compatible with the multiplicity of the output pin.
self.attribute.multiplicity.compatibleWith(self.result.multiplicity)
September 2002 OMG-UML , v1.5 Read and Write Actions 2-273

2 UML Semantics
ReadExtentAction

This action reads the runtime objects of any classifier that may have instances. It reads all
instances, direct and indirect.

Association
• classifier : Classifier [1..1]

The classifier whose extent is to be read.

Inputs

None.

Outputs
• result : T [1..1], where T is self.classifier

The runtime objects of the classifier.

Well-formedness Rules
[1] The action has no input pins.
self.pinValue→size() = 0

[2] The type of the result output pin is the classifier.
self.result.type = self.classifier

[3] The multiplicity of the result output pin is “0..*”.
self.result.multiplicity.is(0,#unlimited)

ReadIsClassifiedObjectAction

This action tests an object’s classification against a statically specified class. It returns true if
the object input to the action is classified by the specified classifier with no intervening classes
between the object and the specified classifier. It returns true if the isDirect attribute is false and
the object input to the action is classified by the specified classifier, either directly or with
intervening classifiers. Otherwise, it returns false.

Attributes
• isDirect : Boolean [1..1]Indicates whether the classifier must directly classify the input

object.

Associations
• classifier : Classifier [1..1]

The classifier for testing classification of the input object.

• input : InputPin [1..1]
(Derived from Action:inputPin) The input pin on which to test classification.

• result : OutputPin [1..1]
(Derived from Action:ouputPin) The output pin on which the result is put.
2-274 OMG-UML , v1.5 Read and Write Actions September 2002

2 UML Semantics
Inputs
• input : T [1..1], where T is any class

The object on which to test classification. There is no restriction on its type, other than it
must be a class.

Outputs
• result : Boolean [1..1]

The result of testing the classification of the input object.

Well-formedness rules
[1] The multiplicity of the input pin is 1..1.
self.input.multiplicity.is(1,1)

[2] The input pin has no type.
self.input.type->size() = 0

[3] The multiplicity of the output pin is 1..1.
self.result.multiplicity.is(1,1)

[4] The type of the output pin is Boolean
self.result.type = Boolean

[5] If isDirect is false, then generalization between classifiers must be statically defined.
This rule is not formalized.

ReadLinkAction

This action navigates links of an association towards one end. For example, it navigates the link
of a binary association from a source object to the objects at the other end of links of the
association inwhich that source object participates. The end towards which navigation occurs is
the one that does not have an input pin to take its object (the “open” end). The objects put on
the result output pin are the ones participating in the association at the open end, conforming to
the specified qualifiers, in order if the end is ordered. The semantics is undefined for reading a
link that violates the navigability or visibility of the open end.

Associations
• result : OutputPin [0..*]

(Derived from Action:outputPin) The pin on which are put the objects participating in the
association at the end not specified by the inputs.

Inputs
• endData.value : T [1..*], where T are self.endData.end.participant

(Inherited from LinkAction) Gives the object at an association end. It is of the same type as
the end. See LinkEndData.

• endData.qualifier.value : U [0..*], where U are self.endData.end.qualifier.type
(Inherited from LinkAction) Gives the qualifier value of an association end if the end is
qualified. It is the same type as the qualifier attribute. See LinkEndData.
September 2002 OMG-UML , v1.5 Read and Write Actions 2-275

2 UML Semantics
Outputs
• result : V [0..*], where V are self.endData.end.association.connection[open end].participant,

where [open end] designates the end of the association not included in the inputs.
The objects participating in the association at the end not specified by the inputs. The type of
the identities are the same as the type of the open association end. The multiplicity of the
association end must be compatible with the multiplicity of this pin.

Well-formedness Rules
[1] Exactly one link-end data specification (the “open” end) must not have an end object input pin.
self.endData->select(ed | ed.value->size() = 0)->size() = 1

[2] The type and ordering of the result output pin are same as the type and ordering of the open
association end.

let openend : AssociationEnd = self.endData->select(ed | ed.value->size() = 0)->asSequence()->first().end in
self.result.type = openend.type
and self.result.ordering = openend.ordering

[3] The multiplicity of the open association end must be compatible with the multiplicity of the
result output pin.

let openend : AssociationEnd = self.endData->select(ed | ed.value->size() = 0)->asSequence()->first().end in
openend.multiplicity.compatibleWith(self.result.multiplicity)

[4] The open end must be navigable.
let openend : AssociationEnd = self.endData->select(ed | ed.value->size() = 0)->asSequence()->first().end in

openend.isNavigable = true

[5] Visibility of the open end must allow access to the object performing the action.
let host : Classifier = self.procedure().hostClassifier() in
let openend : AssociationEnd = self.endData->select(ed | ed.value->size() = 0)->asSequence()->first().end in

openend.visibility = #public
or self.endData->exists(oed | not oed.end = openend

and (host = oed.end.participant
 or (openend.visibility = #protected

and host.allSupertypes->includes(oed.end.participant))))

ReadLinkObjectEndAction

This action reads the object on an end of a link object.

Associations
• end : AssociationEnd [1..1]

Link end to be read.

• object : InputPin [1..1]
(Derived from Action:inputPin) Gives the input pin from which the link object is obtained.

Inputs
• object : T [1..1], where T is self.end.association

Link object being read. The type of the runtime object is the same as the association owning
the association end being read.
2-276 OMG-UML , v1.5 Read and Write Actions September 2002

2 UML Semantics
Outputs
• result : U [1..1], where U is self.end.participant

Object participating in the link at the specified end.

Well-formedness Rules
[1] The association of the association end must be an association class.
self.end.Association.oclIsKindOf(AssociationClass)

[2] The ends of the association must all have instance targetScope.
self.end.Association.connections->forall(targetscope = #instance)

[3] The type of the object input pin is the association class that owns the association end.
self.object.type = self.end.Association

[4] The multiplicity of the object input pin is “1..1”.
self.object.multiplicity.is(1,1)

[5] The type of the result output pin is the same as the type of the association end.
self.result.type = self.end.participant

[6] The multiplicity of the result output pin is 1..1.
self.result.multiplicity.is(1,1)

ReadLinkObjectQualifierAction

This action reads a qualifier value on an end of a link object.

Associations
• qualifier : Attribute [1..1]

The attribute representing the qualifier to be read.

• object : InputPin [1..1]
(Derived from Action:inputPin) Gives the input pin from which the link object is obtained.

Inputs
• object : T [1..1], where T is self.end.association

The link object being read. The type of the runtime object is the same as the association
owning the association end of the qualifier attribute being read.

Outputs
• result : U [0..1], where U is self.qualifier.type

Value of the qualifier attribute on its end of the link, if any. The value has the same type as
the qualifier attribute.

Well-formedness Rules
[1] The qualifier attribute must be a qualifier attribute of an association end.
self.qualifier.associationEnd->size() = 1

[2] The association of the association end of the qualifier attribute must be an association class.
self.qualifier.associationEnd.Association.oclIsKindOf(AssociationClass)

[3] The ends of the association must all have instance targetScope.
September 2002 OMG-UML , v1.5 Read and Write Actions 2-277

2 UML Semantics
self.qualifier.associationEnd.Association.connections->forall(targetscope = #instance)

[4] The type of the object input pin is the association class that owns the association end that has
the given qualifier attribute.

self.object.type = self.qualifier.associationEnd.Association

[5] The multiplicity of the object input pin is “1..1”.
self.object.multiplicity.is(1,1)

[6] The type of the result output pin is the same as the type of the qualifier attribute.
self.result.type = self.qualifier.type

[7] The multiplicity of the result output pin is “1..1”.
self.result.multiplicity.is(1,1)

ReadSelfAction

This action reads the host object of an action. The semantics is undefined for usage in a
procedure that does not have a host object.

Associations
• result : OutputPin [1..1]

(Derived from Action:outputPin) Gives the output pin on which the hosting object is placed.

Inputs

None.

Outputs
• result : T [1..1], where T is the class that owns the procedure containing the action

Object hosting the action.

Well-formedness Rules
[1] The action must be contained in a procedure that has a host classifier.
self.procedure().hostClassifier()->size() = 1

[2] If the action is contained in a procedure that is acting as the body of a method, then the opera-
tion of the method must have an ownerScope of instance.

let hostelement : Element = self.procedure().hostElement() in
not hostelement.oclIsKindOf(Method)
or hostelement.oclAsType(Method).specification.ownerScope = #instance

[3] The type of the result output pin is the host classifier.
self.result.type = self.procedure().hostClassifier()

[4] The multiplicity of the result output pin of a read-self action is “1..1”.
self.result.multiplicity.is(1,1)

ReadVariableAction

This action reads the values of a variable, in order if the variable is ordered.
2-278 OMG-UML , v1.5 Read and Write Actions September 2002

2 UML Semantics
Associations
• result : OutputPin [1..1]

(Derived from Action:outputPin) Gives the output pin on which the values of the variable are
placed.

Inputs

None.

Outputs
• result : T [0..*], where T is self.variable.type

Value of the variable. The type of the value is the same as the type of the variable. The
multiplicity of the variable must be compatible with the multiplicity of this pin.

Well-formedness Rules
[1] The type and ordering of the result output pin of a read-variable action are the same as the type

and ordering of the variable.
self.result.type =self.variable.type
and self.result.ordering = self.variable.ordering

[2] The multiplicity of the variable must be compatible with the multiplicity of the output pin.
self.variable.multiplicity.compatibleWith(self.result.multiplicity)

ReclassifyObjectAction

This action changes classifiers for an object. The object input to the action is classified by its
existing classifiers plus the new classifiers and minus the old classifiers statically specified by
the action. It also supports the removal of existing classifiers of the object before the new
classifiers are added. The action has no other effect. In particular, the identity of the object is
preserved, no constructors or destructors are executed and no initial expressions are evaluated.
New classifiers replace existing classifiers in one action, so that attribute values and links are
not lost by intermediate stages of classification when the old and new classifiers have attributes
and associations in common.

Adding a classifier that duplicates one already existing, or removing a classifier that is not
there, has no effect. Adding and removing the same classifiers has no effect.

States are preserved for state machines that are in common before and after the action. New
state machines are not started. Removed state machines behave as if the object were deleted.

The semantics is undefined if any of the new classifiers are abstract. The semantics is undefined
if all classifiers are removed from a runtime object.

Attributes

isReplaceAll : Boolean [1..1]
Specifies whether existing clasifiers of the object should be removed before adding the new
classifiers.
September 2002 OMG-UML , v1.5 Read and Write Actions 2-279

2 UML Semantics
Associations
• input : InputPin [1..1]

(Derived from Action:inputPin) Gives the object to be reclassified.

• newClassifier : Classifier [0..*]
Classifiers to add to the classifiers of the object.

• oldClassifiers : Classifier [0..*]
Classifiers to remove from classes of the object.

Inputs
• input : T [1..1], where T is any class

Object to be reclassified.

Outputs

None.

Well-formedness rules
[1] None of the new classifiers may be abstract.
not self.newClassifier->exists(isAbstract = true)

[2] The multiplicity of the input pin is 1..1.
self.input.multiplicity.is(1,1)

[3] The input pin has no type.
self.input.type->size() = 0

RemoveAttributeValueAction

This action removes values from attributes. Attributes are potentially multi-valued. Removing a
value succeeds even when it violates the minimum multiplicity. Removing a value that does not
exist has no effect.

The semantics is undefined for removing an existing value for an attribute with changeability
addonly. The semantics is undefined for removing an existing value of an attribute with
changeability frozen after initialization of the owning object.

Inputs
• value : T [1..1], where T is self.attribute.type

(Inherited from WriteAttributeAction) Value of attribute to remove or remove. Its type is the
same as the type of the attribute.

• object : U [1..1], where U is self.attribute.owner
(Inherited from AttributeAction) Object from which to remove the attribute value. Its type is
the same as the type of the owner of the attribute being modified.

Outputs

None.
2-280 OMG-UML , v1.5 Read and Write Actions September 2002

2 UML Semantics
RemoveVariableValueAction

This action removes values from variables. Variables are potentially multi-valued. Removing a
value succeeds even when that violates the minimum multiplicity. Removing a value that does
not exist has no effect.

Inputs
• value : T [1..1], where T is self.variable.type

(Inherited from WriteVariableAction) Value to remove. Its type is the same as the type of the
variable.

Outputs

None.

StartObjectStateMachineAction

This action puts the state machines of an object in their top states, if they have not been there
already. This can only be used once per object. The action has no effect if the object does not
have a state machine.

Associations
• input : InputPin [1..1]

(Derived from Action:inputPin) The object on which to start the state machines.

Inputs
• input : T [1..1], where T is any user class that has a state machine

Object on which to start the state machines.

Outputs

None.

Well-formedness rules

None

VariableAction (abstract)

A variable action operates on a statically specified variable.

Associations
• variable : Variable [1..1]

Variable being accessed.

Well-formedness rules
[1] The action must be in the scope of the variable.
September 2002 OMG-UML , v1.5 Read and Write Actions 2-281

2 UML Semantics
self.variable.isAccessibleBy(self)

WriteAttributeAction (abstract)

A write attribute action operates on an attribute of an object to modify its values. It has an input
pin on which the value that will be added or removed is put. Other aspects of write attribute
actions are inherited from AttributeAction.

Associations
• value : InputPin [1..1]

(Derived from Action:inputPin) Value to be added or removed from the attribute.

Well-formedness rules
[1] The type input pin is the same as the owner of the attribute.
self.value.type = self.attribute.owner

[2] The multiplicity of the input pin is 1..1.
self.value.multiplicity.is(1,1)

WriteLinkAction (abstract)

A write link action creates or destroys links.

Well-formedness rules
[1] All end data must have exactly one input object pin.
self.endData.forall(value->size() = 1)

WriteVariableAction (abstract)

A write variable action modifies a statically specified variable.

Associations
• value : InputPin [1..1]

(Derived from Action:inputPin) Value to be added or removed from the variable.

Well-formedness rules
[1] The type of the input pin is the same as the type of the variable.
self.value.type =self.variable.type

[2] The multiplicity of the input pin is 1..1.
self.value.multiplicity.is(1,1)
2-282 OMG-UML , v1.5 Read and Write Actions September 2002

2 UML Semantics
2.20 Computation Actions

These actions transform a set of input values to a set of output values. These actions do not read
or write attribute or link values, nor do they otherwise interact with object memory or other
objects, so their control is entirely self-contained. Consequently, they embody mathematical
functions. These actions supply the primitive functions out of which computations are
constructed.

2.20.1 Computation actions

Computation actions evaluate various mathematical functions. They take input values and
produce output values. The output values depend only on the input values and not on the state
of the memory or the state of the control.

This submission does not define a set of primitive functions. Rather, we assume that any
particular implementation of the action semantics will define a set of primitive functions,
presumably using a profile.. For modeling purposes, users must be able to define new primitive
functions, but the mechanisms of the definition are outside of the UML and action semantics.
This submission does require each primitive function to have a name and lists of input and
output types.

This approach has the drawback that users must agree on the set of primitive functions, but
different groups of users will prefer different sets of functions anyway, so little is lost in not
providing a default set of functions.
September 2002 OMG-UML , v1.5 Computation Actions 2-283

2 UML Semantics
The following model shows the computation action classes.

Literal value actions are broken out as a separate kind of action. These are to be regarded as
special kinds of primitive functions, with zero inputs and one output.

Code actions are included here, although they might possibly have external effects and therefore
not be pure mathematical functions. Because they are explicitly implementation-dependent, it is
hard to say much more about them within UML itself.

Figure 2-54 Computation classes metamodel

PrimitiveAc
tion

(f romAct ion ...)

Nul lAc ti on

InputPin
(from Action Foundation)

OutputPin
(from Action Foundation)

CodeAction

lan guag e : Stri ng
e nco din g : St ri ng

0..*

0..1

+/argument

0..*{ordered}

0..1

0..*

0..1

+/resul t

0..*
{ordered}

0..1

OutputP in
(from Action Foundation)

DataVal ue
(from C omm onBehavior)

Li teralV alueAction

1

0..1

+/resul t 1

0..1

1

0..*

+value
1

0..*

Inpu tPin
(from Action Foundation)

OutputP in
(from Action Foundation)

Ap plyFun ct ionAction

0..*

0..1

+/argument

0..*{o rd ere d}

0..1

1..*

0..1

+/resul t
1..*

{ordered}

0..1

Prim itiveFunction

language : String
encoding : String

1

0..*

+function

1

0..*

DataType
(from Core)

ArgumentSpeci fication

multipl ici ty : Multipl ici ty
ordering : OrderingKind0..*

0..*

+inp utS pec

0..*

0..*

1..*

0..*

+outputSpec

1..*

0..*

1

0..*

+type 1

0..*

InputPin
(from Action Foundation)

OutputPin
(f rom Ac tionFoundation)

UnmarshalAction

0..1

1

0..1

+ /a rgu ment
1

0..1

0..*

0..1

+/resul t

0..*

{ordered}

Inpu tP in
(from Action Foundation)

OutputP in
(from Action Foundation)

Class
(f rom Core)

1

0..*

+unmarshalType 1

0..*

MarshalAction

0..1

0..*

0..1

+ /a rgu ment0..*

{ordered}

0..1 10..1

+/resul t

1

1

0..*

+marshalType1

0..*

Inp utP in
(from Action Foundation)

OutputPin
(from Action Foundation)

T estIdenti tyAction

0..1

1

0..1

+/first

1

0..1

1

0..1

+/sec ond

1

1

0..1

+/resul t
1

0..1

ModelElement
(from Core)
2-284 OMG-UML , v1.5 Computation Actions September 2002

2 UML Semantics
2.20.2 Computation Classes

ApplyFunctionAction

This action computes a primitive predefined mathematical function that depends only on the
input values, with no access to object memory or to any objects. The execution and results of
this action depend only on the function and the input values. There are absolutely no side
effects of this action and it therefore cannot conflict with anything. All it does it produce result
values using a mathematical function.

New primitive functions may be defined (outside of UML) as mathematical functions of input
values to output values. All usual primitive operations should be considered as primitive
functions, e.g., addition, nand, square root, finding a substring, Bessel function, etc.

A list of defined primitive functions may be supplied as part of a modeling profile. UML does
not provide a mechanism to define primitive functions, as their definition is outside its scope. It
is expected that users will agree on environments containing such definitions.

Attributes

None

Associations
• function: PrimitiveFunction[1..1]

The function to execute

Inputs
• argument: T [0..*], where T = self.function.inputSpec.type

The input values

Outputs
• result: U[0..*], where U = self.function.outputSpec.type

The output values

Well-formedness rules
[1] The number and types of the input argument and output result pins must be compatible with the

number and types of the parameters of the function.
self.input_argument()->size() = self.function.inputType->size() and
Sequence {1..self.input_argument()->size()} -> forAll (i:Integer |

let argumenti = self.input_argument (i)
let inparameteri = self.function.inputType->at(i)

argumenti.type.isCompatibleWith (inparameteri.type)) and
self.output_result()->size() = self.function.outputType->size() and
Sequence {1..self.output_result()->size()} -> forAll (i:Integer |

let resulti = self.output_result (i) in
let outparameteri = self.function.outputType->at(i) in
outparameteri.type.isCompatibleWith (resulti.type))

Therefore there are no functions on collections, but operations on collections can be constructed
as actions at a higher level out of functional pieces.
September 2002 OMG-UML , v1.5 Computation Actions 2-285

2 UML Semantics
Functions have no effect on and may not access object state.

The definition of the mathematical functions is outside of UML.

Semantics
[1] When all of the control and data flow prerequisites of the action have been satisfied, the argu-

ment values are obtained from the input pins and made available to the computation.

[2] The result values are computed from the input values according to the given function. During
the execution of the computation, there is no communication or interaction with the rest of the
system. The amount of time to compute the results is unspecified. Some primitive functions
may raise exceptions for certain input values, in which case the computation is terminated.

[3] The result values are placed on the output pins of the action execution and the execution of the
primitive function action is complete; or, the primitive function execution may raise an excep-
tion, in which case no output values ar produced.

ArgumentSpecification

(Not an action) Specification of an input or output argument of a primitive function.

Attributes
• multiplicity: Multiplicity

The range of allowed cardinality of the values on the argument.

• ordering: OrderingKind
Whether and how multiple values on an argument are arranged.

Associations
• type: DataType [1..1}

The data type that values on the argument must conform to.

Well-formedness rules

None

CodeAction

A code action performs an action that is defined outside of UML. This may involve external
interactions, so it is not a mathematical transformation like a primitive function action. The
action may have inputs and outputs. Code actions must not alter object memory state, although
it is hard to prevent such things. The semantics of a code action that alters object memory are
undefined, together with the semantics of all subsequently executed actions.

Attributes
• language: String-- the language in which the code action is specified

• encoding: String-- a string that identifies the action in the given language. Not meaningful to
UML.
2-286 OMG-UML , v1.5 Computation Actions September 2002

2 UML Semantics
Associations

none

Inputs
• argument: T [*], where T is implementation dependent on self.encoding

The input values

Outputs
• result: U [*], where U is implementation dependent on self.encoding

The output values

Well-formedness rules

Clearly each kind of code action has constraints on its input and output values, but as the whole
purpose of the code action is to do something that is outside of UML, it is not possible to
specify the constraints within UML.

Semantics
[1] When all of the control and data flow prerequisites of the action have been satisfied, the input

values are obtained from the input pins and made available to the computation.

[2] During the execution of the code action, the execution may access or change values in the rest
of the system or communicate with the run-time execution engine or devices in the real world.
Such behavior is inherently implementation dependent and may be different or meaningless in
different implementation environments.

[3] At such time as specified by the implementor of the code action, the output values (if any) are
placed on the output pins of the action execution and the execution is complete.

LiteralValueAction

Generates a literal value on the output pin. The value can be of any pure data type.

Attributes

None

Associations
• value: DataValue

The literal value produced by the action

Inputs

none

Outputs
• result: T, where T = self.value.type

The output value, equal to the literal value
September 2002 OMG-UML , v1.5 Computation Actions 2-287

2 UML Semantics
Well-formedness rules

self.output_result().type = self.value.type

Semantics
[1] When all of the control prerequisites of the action have been satisfied, the value specified by the

literal is placed on the output pin of the action execution, and the action execution satisfies the
appropriate control and data flow prerequisites.

MarshalAction

Creates an object whose attribute values are initialized from the inputs.

Attributes

None

Associations
• marshalType: Class[1.1]

the type of object to create

Inputs
• argument: T [0..*], where T = self.marshalType.attribute.type for attribute

the initial attribute values of the newly created object

Outputs
• result: U [1..1], where U = self.marshalType

the newly created, initialized object

Well-formedness rules
[1] The argument types must match the attribute types of the marshal type.
self.input_argument()->size() = self.marshalType.allAttribute->size() and
Sequence {1..self.input_argument()->size()} -> forAll (i:Integer |

let argumenti = self.input_argument (i) in
let inparameteri = self.marshalType.allArgument()->at(i) in

argumenti.type.isCompatibleWith (inparameteri.type))

Semantics
[1] When all of the control and data flow prerequisites of the action have been satisfied, the input

values are obtained from the input pins and made available to the computation. An object of
the type specified by marshalType is created and its attributes are initialized with the input val-
ues. The identity of the object is placed on the output pin of the action execution, and the exe-
cution of the action is complete and satisfies appropriate control and data flow prerequisites.

NullAction

An action that has no effect.
2-288 OMG-UML , v1.5 Computation Actions September 2002

2 UML Semantics
Attributes

none

Associations

none

Inputs

none

Outputs

none

Well-formedness rules

none

Semantics
[1] When all of the control prerequisites of the action have been satisfied, the execution of the null

action is complete, and the action execution satisfies any control prerequisites for which it is a
predecessor.

PrimitiveFunction

(Not an action) Describes the signature of a primitive function, that is, a mathematical function
that produces output values from input values without any internal action semantics
substructure. The manner of specifying functions is outside the scope of action semantics and
must be expressed in some external language.

Attributes
• name: Name (inherited from ModelElement)

The name of the function

• language: String
The language in which the function is specified

• encoding: String
The specification of the function in the given language

Associations
• inputSpec: ArgumentSpecification [0..*]

Specification of the input values of the function.

• outputSpec: ArgumentSpecification [1..*]
Specification of the output values of the function.
September 2002 OMG-UML , v1.5 Computation Actions 2-289

2 UML Semantics
Well-formedness rules

None

TestIdentityAction

Produces true if the two input values are the same identity, false if they are not. Defined only on
object identities.

Attributes

None

Associations

none

Inputs
• first: T, where T is any class-- one object identity

• second: U, where U is any class-- another object identity

Outputs
• result: Boolean

true iff first and second input values are the same identity

Well-formedness rules

None

[1] When all of the control and data flow prerequisites of the action have been satisfied, the input
values are obtained from the input pins and made available to the computation. If the two input
values represent the same object identity (regardless of any implementation-level encoding),
the value true is placed on the output pin of the action execution, otherwise the value false is
placed on the output pin. The execution of the action is complete and satisfies appropriate con-
trol and data flow prerequisites.

UnmarshalAction

Breaks an object of a known type into outputs each of which is equal to the value of one of the
object’s attribute values.

Attributes

None

Associations
• unmarshalType: Class

the type of object accepted by the action
2-290 OMG-UML , v1.5 Computation Actions September 2002

2 UML Semantics
Inputs
• argument: T, where T = self.unmarshalType-

the identity of an input object, which must be of the given unmarshalType or a descendant of
it

Outputs
• result: U [0..*], where U = self.unmarshalType.attribute.type

values equal to the attribute values of the object (according to the unmarshalType)

Well-formedness rules
[1] The result types must match the attributes of the unmarshal type.
self.output_result()->size() = self.unmarshalType.attribute->size() and
Sequence {1..self.output_result()->size()} -> forAll (i:Integer |

let resulti = self.output_result (i) in
let outparameteri = self.function.outputType->at(i) in
outparameteri.type.isCompatibleWith (resulti.type))

Semantics
[1] When all of the control and data flow prerequisites of the action have been satisfied, the input

value is obtained from the input pins and made available to the computation. An object of the
type specified by marshalType is required as the input value. The values of the various
attributes of the object are placed on the respective output pins of the action execution, one
attribute value per pin. The execution of the action is complete and satisfies appropriate control
and data flow prerequisites.

2.21 Collection Actions

A collection action applies another action (a “subaction”) to collections of elements. Collection
actions avoid explicit indexing and extracting of elements from collections, and the consequent
overspecification of control.
September 2002 OMG-UML , v1.5 Collection Actions 2-291

2 UML Semantics
There are four kinds of collection action, as follows:

• Filter The filter action applies a subaction that determines whether to include an element of a
collection in a new output collection, effectively filtering the input collection according to
some criterion. The subaction can be applied to the elements in parallel. An example is a
subaction that determines whether an account is above a certain balance.

• Iterate The iterate action applies a subaction repeatedly to each of the elements in a
collection, accumulating the effects in “loop variables.” Because the result of each subaction
is accumulated, the subaction must be applied to each element in the collection in sequence.
An example is paying creditor accounts in order of precedence until funds are exhausted.

• Map The map action applies a subaction in parallel to each of the elements of a collection of
data resulting in a collection with the same number of elements. An example is paying
interest on each account.

• Reduce The reduce action repeatedly applies a subaction to pairs of adjacent elements in a
collection, replacing a pair of elements by the result, until the final result, which is a scalar of
the same type. An example is summing up balances of all accounts.

2.21.1 General Rules for Collection Actions

A number of elements, all of the same type, comprise a collection. The element type is the type
of the collection’s elements. The number of elements in a collection is its size. Collection
actions repeat an action (the subaction) for the elements in a collection.

Figure 2-55 Collection actions

Action
(from A cti on F oundati on)

CollectionAction

1

0..*

+subaction

1

0..*

FilterAction
Re duceAction

isUnordered : Boolean

IterateAction

isUnordered : Boolean

MapAction
2-292 OMG-UML , v1.5 Collection Actions September 2002

2 UML Semantics
Because the number of repetitions is governed by the size of the collection, rather than a
programmed test condition required in a loop action, when a collection action takes more than
one collection as input, they must all have the same size. Similarly, multiple collections
produced by the same action must have the same size as each other.

Multiple collections are conceptually equivalent to a single collection of tuples. A slice is a
tuple containing one element, at the same position, from each collection. Each subaction has a
single pin for each scalar element in the slice, while each pin of a collection action holds
collections. That is, the input and output pins to collection actions hold collections while the
pins to the subactions hold the corresponding elements.

If there is more than one input collection in a slice, the elements in each collection must be
ordered so that the corresponding elements in the different collections can be correctly matched
(hence the word slice). If the input collection or collections are ordered, then the output
collection or collections are ordered also. (The concept of ordering can be extended to more
complex data structures, such as bags, trees, graphs, and so on. In such a case, all collections in
an action must have the same form.)

Subactions may have other scalar inputs from outside the collection action. Such values will be
the same for all the subaction executions during one execution of a collection action. Subaction
outputs are never available outside the collection action.

2.21.2 Collection Action Classes

CollectionAction (abstract)

An action that operates on a collection of values.

Attributes

none

Associations
• subaction: Action[1..1]The action applied repeatedly or concurrently to the elements

of the collection.
September 2002 OMG-UML , v1.5 Collection Actions 2-293

2 UML Semantics
FilterAction

The filter action applies a subaction to every slice of inputs. The subaction must yield a boolean
output whose value is used to decide whether each slice of input values is passed through to the
output collections. The result of the filter action is a set of collections, whose size is equal to or
less than the size of the input collections, comprising all the slices of the input collections for
which the subaction yielded a true value. The gaps caused by the subaction yielding a false
value are closed up. All executions of the subaction can be concurrent.

In the simplest case, the subaction takes an input (a single element from the collection input to
the filter action), and produces a boolean data value on the output pin. The filter action has a
collection of elements as input and an output that is a collection of a subset of the input
collection, in the same order, whether the collection is ordered or not.

The subaction may also take inputs that are not inputs to the filter action, such as a constant or
a ‘variable’ used in every execution of the subaction. For example, if the subaction tests
whether an element is less than x, then the inputs to the subaction are the element and x, while
the input to the filter action is the collection of elements. The output of the subaction remains a
boolean scalar.

The filter action may also take multiple input collections, each of which must have the same
number of elements. When each slice is presented successively as inputs to the subaction, the
subaction determines whether to pass the slice through to the corresponding output collections.
The number of the input and output collections must therefore be the same. The type of each
output collection matches the type of its corresponding input collection. In addition, the number
of elements in each output collection will be the same.

Figure 2-56 Filter action

pin of the
subact ion

InputPin
OutputPinFil terAction

1..* 0..1

+/argument

1..*
{ordered} 0..1

0.. 1 +/result

{ordered}

0.. 1

1..*0..1 +subinput 1..*

{ordered}

0..1

1
0..*

+subtest
1

0..*

c orrespond

match
2-294 OMG-UML , v1.5 Collection Actions September 2002

2 UML Semantics
Attributes

None

Associations
• subaction: Action[1..]

An action that tests whether to keep the input slice in the result. It must have an output pin
that yields a Boolean value. For each execution yielding a true value, the input slice is copied
to the output collections of the filter action.

• subinput : OutputPin [1..*]
An ordered list of collections. During each execution of the subaction, a value from each
input collection (a slice) is copied to the corresponding subinput pin. The subaction is
executed once for each input slice.

• subtest: OutputPinThe boolean result of the testing subaction. During each execution of the
subaction, the value on this output pin determines whether the corresponding slice is copied
to the output collections. If the value is false, the slice does not appear in the output
collections and the gap is closed up. If the input collection(s) are ordered, then the output
collections are ordered, otherwise the output is unordered.

Inputs
• argument: U [1..*], where U[i] = Collection of T[i], in which T is from subinput

[These input pins are owned by the filter action itself.] An ordered list of collections. All the
collections must have the same size, but each collection may contain a different type of
element. The subaction is executed once per slice. If there is more than one collection, they
must be ordered so that the element values can be matched.

Outputs
• result: U[1..*], where U is the same as on argument

[These output pins are owned by the filter action itself.] At the completion of execution of the
filter action, the value of each result pin in the ordered list is a collection of values, equal in
number to the number of input argument collections. The type of each collection and the type
of elements in it is identical to that of the corresponding argument collection. The size of
each collection is less than or equal to the size of the corresponding input collection. The list
of values in each collection is the same as the list of values in the corresponding input
collection, after removing elements for which the subtest value was false and closing up the
gaps. If the collections are ordered, the ordering of elements is preserved.

• subtest: Boolean[1..][This output pin is owned by an action embedded within the subaction.]
At the completion of an execution of the subaction, this pin holds a Boolean value. If the
value is true, the value of the subinput values are passed through to the corresponding result
collections. If the value is false, the result collections lack elements at the appropriate
position.

• subinput: T [1..*], where T are user classes
[These output pins are owned by the FilterAction and accessible only to the subaction and its
embedded actions.] The number of pins is equal to the number of input collections of the
filter action. All the input collections must be the same size. During each execution of the
September 2002 OMG-UML , v1.5 Collection Actions 2-295

2 UML Semantics
subaction, the value on each subinput pin is equal to the value of an element of the collection
on the corresponding input pin of the filter action. The position of the element in each
collection is identical, but different for each execution of the subaction.

Semantics
[1] When all the control and dataflow prerequisites of the action execution have been satisfied, it

begins execution. The argument values must all be collections of the same size and kind, other-
wise the model is ill formed and its subsequent behavior is undefined. A subordinate action
execution is created for each position in the group of collections. The element value at the
given position in each collection is copied to the respective input pin of the subordinate action
execution corresponding to the position in the collections.

[2] The subordinate action executions execute concurrently. When a subordinate action execution
completes, the Boolean value on the designated subtest pin determines whether the slice of
input values will be present in the collection of output values of the filter action.

[3] When all of the subordinate action executions have completed, a group of output collections are
created, each of the same kind and type as the corresponding input collection of the filter
action. The elements of the output collections are the same as the elements of the input collec-
tions, except that positions corresponding to false test values of the subordinate action execu-
tions are removed from the collections. When an element is filtered out from an output
collection, the remaining values “close up” the missing position, as follows: For a set, the miss-
ing element is simply absent; for a list, the subsequent elements move forward one position for
each missing element; for other kinds of collections that may be defined in the future, the spec-
ifier must define the effect of removing an element. The filtered collections are placed on the
output pins of the filter action and its execution is complete.

IterateAction

The iterate action applies an action repeatedly, once for each input slice. A bank of loop
variables accumulates the result of the iteration and is eventually passed to the output of the
iterate action. This action is a special case of a loop in which the number of iterations is equal
to the number of elements in a collection and the elements of the collection are made available
to the loop body on successive iterations.

The iterate action executes a subaction once for each input slice. The slices are presented from
first to last in the scan order for the collection. When the order of computation does not affect
the result, for example if the input collection is a set, or if the isUnordered attribute is true, then
the slices are presented in an indeterminate (and not necessarily repeatable) order. Like a loop,
an iterate action has loop variables that accumulate the effects of the iteration. The subaction
accesses the previous values of the loop variables and computes new values for the next
execution. The initial values of the loop variables are supplied by inputs to the iterate action,
and the final values of the loop variables become the results of the iterate action. If there are no
loop variables, the action can have an effect only by writing memory values.

An iterate action has two kinds of input pins: the input collections, and scalar values used to
initialize the loop variables. The iterate action has one kind of output pins, whose number and
types match the loop variable input pins.
2-296 OMG-UML , v1.5 Collection Actions September 2002

2 UML Semantics
The iterate action owns internal OutputPins, matching the loop variable output pins. On the
initial execution of the subaction, these pins get the values from the loop variable input pins.
The iterate action also owns a bank (labeled subinput) of internal OutputPins, equal in number
to the collection input pins. The type of each subinput pin matches the type of element
containing in the corresponding collection input pin. During each execution of the subaction,
these pins hold one slice. The iterate action also designates (as suboutput) a bank of OutputPins
owned by the subaction. At the conclusion of the execution of the subaction, the values on these
pins become the new values of the loop variable pins.

The subaction has access to the subinput values and the loop variable values that change during
each execution of the subaction. It may also access available OutputPins in the containing
scope. Such values are fixed during the executions of the subactions for any one execution of
the iterate action. During one execution, the subaction computes values for the suboutput pins.
The values on the suboutput pins become the new values of the loop variable pins on the next
iteration of the subaction. When all slices of the collections have been processed, the final
values of the loop variables become the values on the result output pins of the overall iterate
action. No outputs of the subaction are available outside of it, except for the explicit suboutput
pins designated by the iterate action, which are available only to the iterate action itself.

The isUnordered attribute states that the order of execution of slices is irrelevant, even though
the ordering of elements in each collection is still used to match corresponding elements into
slices. The purpose of this attribute would be to remove overspecification of ordering and
September 2002 OMG-UML , v1.5 Collection Actions 2-297

2 UML Semantics
permit optimization within an implementation, especially if values are not all computed at the
same time (such as lazy evaluation). If the input collection shape is a set, then the slices are
processed in an indeterminate order.

Attributes
• isUnordered: Boolean[1..1]

If true, indicates that the slices may be given to the successive executions of the subaction in
any order. This should be set only if the final result is insensitive to execution order. If false,
the subaction is executed on slices of the collections in order from first to last, in accord with
the scan order of the particular kind of collection. If the collection is a set, then the iteration
order is automatically unordered and this flag has no further effect.

Associations
• subaction: Action[1..1]

An action that is executed repeatedly and sequentially, once for each slice of values in a list
of input collections. During each execution of the action, one slice of values is made
available to the execution, from the first to last position in the collections. Like a loop action,
this action has a list of loop variables that make the results of one execution of the subaction
available to the next sequential execution of the subaction. On the first execution of the
subaction, the loop variables are set by the loopValueInput values that are input to the overall
IterateAction. The iterate action designates a list of output pins from the subaction as the
updated values of the loop variables. During each execution of the subaction, the previous

Figure 2-57 Iterate action

pin of the
subaction

InputPin OutputPinIterateAc tion

isUnordered : Boolean
1..*

0...+/collectionInput

1..* {ordered}

0...

0.. * 0...
+/loopVariableInput

0.. * {ordered} 0...
0..*

0... +loopVariable

0..*
{ordered}0...

0.. *0...

+suboutput

0.. *
{ordered}

0...
0..*0...

+/result

0..*{ordered}0...

match

1..*
0.. .

+subinput

1..*
0.. .

match

match

corres pond
2-298 OMG-UML , v1.5 Collection Actions September 2002

2 UML Semantics
values of the loop variables are available within the subaction. After each execution, the
designated output values in the subaction are copied to the loop variables. After the subaction
has been executed once for each sliced of the input collections, the final values of the loop
variables are copied to the output pins of the iterate action.

• loopVariable: OutputPin[0..*]
A (possibly empty) list of output pins (owned by the iterate action) whose values represent
the accumulated result of executing the action so far. During the first execution of the
subaction, each pin holds a copy of the corresponding loopVariableInput pin (among the input
pins of the iterate action). During each subsequent execution of the subaction, each pin holds
a copy of the value on the corresponding suboutput pin within the previous execution of the
subaction.

• subinput:OutputPin[1..*]
A nonempty list of output pins (owned by the iterate action) whose values represent one slice
of the input collections during one execution of the subaction. During each execution of the
subaction, a different slice of values appears on the pins. The pins are available to the
subaction. The type of each element pin must match the type of element held by each
collection on the corresponding input pin.

• suboutput: OutputPin[0..*]
A (possibly empty) list of available output pins owned by the subaction. They represent
updated values of the loop variables computed by the subaction. After each execution of the
subaction, the values on these pins are copied to the loop variable pins for the next execution
of the subaction or the output result of the overall iterate action. This list of pins must match
in number and types the loopVariable pins.

Inputs
• collectionInput: V[1..*], where V[i] = Collection of T[i], in which T are from subinput

[These input pins are owned by the iterate action itself.] Each input pin holds a collection of
values. All the collections must have the same shape and number of elements, but the types of
elements in the various pins may differ. During each execution of the subaction, one value
from the same position of each collection constitutes a slice of values available to that
execution of the subaction as the values of the subinput pins. The subaction is executed once
for each position in the input collections, in order from first to last position.

• loopVariableInput: U [0..*], where U are any user classes
[These input pins are owned by the iterate action itself.] The number of pins must equal the
number of loop variable pins and the type of value in each pin must match the type of
element in the corresponding loop variable pin. The values on these pins represent the initial
values for the loop variables. During the first execution of the subaction, the loop variable
pins hold copies of the values on the corresponding loop variable input pins.

Outputs
• loopVariable: U [0..*], where U are the same as on loopVariableInput

[These output pins are owned by the iterate action and accessible only within the subaction.
The values are not accessible outside the iterate action.] During the first execution of the
subaction, each loopVariable pin has the value of the corresponding loopVariableInput pin.
On each subsequent execution, each loopVariable pin has the value of the corresponding
suboutput pin after the previous execution of the subaction.
September 2002 OMG-UML , v1.5 Collection Actions 2-299

2 UML Semantics
• result: U [0..*], where U are the same as on loopVariableInput
[These output pins are owned by the iterate action itself.] The number of pins must equal the
number of loop variable input pins and the number of loop variable pins, and the types of pins
in each corresponding position must match. After the execution of the subaction on the final
slice of values from the input collections, the result pins have values equal to the values of the
suboutput pins on the final execution of the subaction. If the input collections are of size zero
and the subaction is consequently not executed, the result pins get copies of the values on the
loop variable input pins.

• subinput: T [1..*], where T are user classes
[These output pins are owned by the iterate action itself but are accessible only within the
subaction, not accessible outside the iterate action.] During the execution of a subaction,
each subinput pin has a value equal to the value of the element in a given position of the
corresponding collectionInput collection. During each subsequent execution of the subaction,
the position moves through the collections from first element to last element.

• suboutput: U [1..*], where U are the same as on loopVariableInput
[These output pins are owned by actions nested within the subaction. They are accessible
only within the iterate action.] The number and types of the subinput pins must match the
loopVariable pins. At the completion of an execution of the subaction, the list of suboutputs
will have values. The value of each suboutput pin becomes the value of the corresponding
loopVariable pin during the next execution of the subaction.

Semantics
[1] When all control flow and data flow prerequisites of an iterate action are satisfied, the execu-

tion of the iteration begins. All of the values on loopVariableInput pins are copied into a newly
created set of loopVariable values owned by the iteration execution.

[1] For each position with the tuple of inputCollection collections, the subaction is executed once.
The executions are sequential, in the same order as the elements in the input collections. If the
collections are unordered or if the isUnordered flag is true, then the order of processing ele-
ments is undefined and nondeterministic. For each execution of the subaction, the subinput
pins of the execution receive the values corresponding to the given element position in the
respective input collections. The execution also has access to the loopVariable values created
by the iteration execution (for the first iteration) or updated by the previous subaction execu-
tion (for subsequent iterations).

[2] When the execution of a subaction is complete, the values of its suboutput pins are copied to
the corresponding loopVariable pins for the next iteration.

[3] When the subaction has been executed once for each slice of the input collections, the value on
each loopVariable pin is copied to the corresponding result pin of the iteration action. The exe-
cution of the iteration action is complete.

MapAction

The map action applies a subaction to each input slice. If the subaction has output pins, then the
map action has that same number of outputs, each of which is a collection with the same size as
the input collections. Any values produced on the suboutput pins are formed into collections,
each containing one value from each execution.
2-300 OMG-UML , v1.5 Collection Actions September 2002

2 UML Semantics
The subaction is executed concurrently, once for each input slice. If executions of the subaction
conflict (because they write shared objects) then the result is indeterminate.

The map action has zero or more output pins, each of which holds a collection. The output
collections from the map action have the same size as the input collections, and each output
value occupies the corresponding position in its collection, but the types of the collections may
differ from each other and the input collections. The number of output collections need not
equal the number of input collections.

The subaction may access available scalar inputs from outside the map action, but no output pin
of the subaction is available outside the map action.

Attributes

None

Associations
• subaction: Action[1..1]An action to be executed once for each input slice. During each

execution of the subaction, one element value from each input collection (i.e. a slice) is made
available to the subaction. The subaction must produce one output slice, i.e. one value for
each output collection.

• subinput: OutputPin[1..*]Each output pin has a type that matches the element type. The
subaction is executed once for each slice in the input collections. During each execution of
the subaction, a value from each slice is copied to the corresponding subinput pin.

Figure 2-58 Map action

InputPin OutputPinMapAction

1..* 0..1

+/argument

1..* {ordered}
0..1

0..*
0..1

+/result

0..*
{ordered}0..1

1.. *0..1

+subinput

1.. *
{ordered}

0..1

0..*
0..*

+s uboutput 0..* {ordered}0..*

pin of t he
subact ion

correspond

correspond
September 2002 OMG-UML , v1.5 Collection Actions 2-301

2 UML Semantics
• suboutput: OutputPin[0..*] The number of suboutput pins matches the number of output pins
of the map action, and each suboutput pin has a type that matches the element type. The value
from each suboutput pin is copied to the corresponding map action result pin at the same
position in the collection as the input slice to the subaction.

Inputs
• argument: T [1..*], where T[i] = Collection of U[i], in which U is on subinput

[These input pins are owned by the map action itself.) An ordered list of collections. The
collections may have different types but all of them must have the same number of elements.

Outputs
• result: W [0..*], where W[i] = Collection of V[i], in which V is on suboutput

[These output pins are owned by the map action.] An ordered list of collections. Each
collection has the same collection type and element type as the corresponding argument
collection, and all of them have the same number of elements as the input collections. After
completion of execution of the subaction for each slice of input values, the value of each
element in each output collection is equal to the value of the corresponding suboutput pin
after the execution of the subaction for the same position in the input collections.

• subinput: U [1..*], where U are user classes
[These output pins that are owned by the map action. The pins are accessible within the
subaction but are not accessible outside the map action.] The subaction is executed once for
each element position in the input collections. During each execution of the subaction, each
subinput pin has a value equal to the value of the element in the given position of the
corresponding input collection.

• suboutput: V [0..*], where V are user classes
[These output pins are owned by actions nested within the subaction and are accessible only
within the map action.] At the completion of each execution of the subaction, the suboutput
pins have values computed during that execution of the subaction. The result values of the
map action in a given element position are copied from the suboutput values of the subaction
execution for that position of input elements.

Semantics
[1] When all the control and dataflow prerequisites of the action execution have been satisfied, it

begins execution. The argument values must all be collections of the same size and kind, other-
wise the model is ill formed and its subsequent behavior is undefined. A subordinate action
execution is created for each position in the group of collections. The element value at the
given position in each collection is copied to the respective input pin of the subordinate action
execution corresponding to the position in the collections. (Each subordinate action has an
input pin corresponding to each input pin of the map action.)

[2] The subordinate action executions execute concurrently. When a subordinate action execution
completes, it has values available on its designated suboutput pins (if any).

[3] When all of the subordinate action executions have completed, a group of output collections are
created, each containing elements of the same type as one of the suboutput pins of the subac-
tion. Each collection kind is the same as the (common) collection kind of the input collections
(i.e., set, list, etc.). For each subordinate action execution, the value of each suboutput pin is
copied to the position in the respective output collection corresponding to the position of the
2-302 OMG-UML , v1.5 Collection Actions September 2002

2 UML Semantics
input values for that execution.The output collections are placed on the output pins of the map
action and its execution is complete.

ReduceAction

The reduce action applies an associative binary subaction repeatedly to adjacent pairs of slices
from the input collections, until the (intermediate working) collection is reduced to a single
slice of scalar values, which together constitute the output values of the reduce action. The
order in which the subaction is applied to pairs of values is indeterminate, and does not affect
the ultimate result if the action is associative, unless the subactions are not isolated from each
other, in which case the result is unpredictable.

As an example, consider a collection comprising four integers in order: 2, 7, 5 and -3. The
result of applying the reduce action to this collection with the binary associative subaction
Addition is the scalar 9. This can be computed by any of the following orderings: (((2+7) + 5)
+ -3) = 11; (2 + (7 + (5 + -3))) = 11; ((2 + 7) + (5 + -3)) = 11.

When the subaction is symmetric, as with addition, the order of the elements in the collection is
not important. However, some associative operations are not symmetric, such as matrix
multiplication, so A × B is not the same as B × A. In these cases, the concept of adjacency of
the elements and the order in which they appear is critical.

The reduce action requires a subaction, which must be a binary associative operator. Each of the
two inputs to the subaction is a slice from the input collections to the reduce action. For
example, to sum all the balances for a customer’s account, the reduce action has a single input
collection of account balances, and a single scalar output, the sum of those balances, which
must necessarily be of the same type. Each of the two inputs to the subaction, Addition, takes
“a slice from the input collections to the reduce action”, which in this case is a single account
balance on each input. The output is a tuple with the same structure: a balance. When the
reduce action has several input collections, then one slice across all collections will be one
input to the subaction and another slice will constitute the other input.

The reduce action executes the subaction one fewer time than the size of the input collections.,
because it operates on adjacent pairs of slices from the input collections. The output of the
subaction conceptually replaces the two input slices in the collection of tuples, so the subaction
can be applied repeatedly to pairs of slices until a single slice remains. Its value is place on the
result output pins of the overall reduce action as scalars. In other words, the reduce action
serves to reduce a collection of values to a single value by repeated application of a binary
function.

If the subaction accesses values from outside the reduce action, such values will be the same for
all the concurrent subaction executions during a single execution of the reduce action. No
output pins of the subaction may be connected outside the reduce action
September 2002 OMG-UML , v1.5 Collection Actions 2-303

2 UML Semantics
The isUnordered attribute states that the reduction can be applied to the slices in any order,
even though the ordering of elements in each collection is still used to match corresponding
elements into slices. This will be mathematically valid if the subaction is symmetric and the
actions are isolated.

Attributes
• isUnordered: Boolean

If true, indicates that the slices of values may be given to the successive executions of the
subaction in any order. This should be set only if the final result is insensitive to execution
order. If false, the subaction is executed on slices of the collections in order from first to last,
in accord with the scan order of the particular kind of collection. If the collection is a set,
then the iteration order is automatically unordered and this flag has no further effect.

Associations
• subaction: ActionAn action that is executed repeatedly on adjacent pairs of slices. The action

produces a slice with the same size.

• leftSubinput: OutputPin[1..*]
A nonempty list of output pins (owned by the reduce action) that represents the first of two
tuples that are input to the subaction. On each execution of the subaction, these pins hold the
values in the first of two adjacent slices in the working collection of the reduce action. The
number of pins and their types must match the output pins of the reduce action.

• rightSubinput: OutputPin[1..*]
A nonempty list of output pins (owned by the reduce action) that represents the second tuples
input to the subaction. On each execution of the subaction, these pins hold the values in the
second of two adjacent slices in the working collection of the reduce action. The number of
pins and their types must match the output pins of the reduce action.

Figure 2-59 Reduce action

InputPin OutputPinReduceAction

isUnordered : Boolean
1.. *

0..1+/argument

1.. *
{ordered}

0..1
1..*

0..1 +/result: Value

1..*{ordered}

0..1

1..*0 .. 1

+leftSubinput

1..*
{ordered}

0 ..1

1..*0..*

+suboutput

1..*

{ordered}

0..*

1.. *

0..1

+rightSubinput

1.. *
{ordered}0..1

pin of the
subaction

correspond

correspond

correspond

correspond
2-304 OMG-UML , v1.5 Collection Actions September 2002

2 UML Semantics
• suboutput: OutputPin[1..*]
A nonempty list of available output pins owned by the subaction that represents the results of
executing the subaction. After each execution of the subaction, the slice of values on these
pins replaces the two adjacent slices in the working collection that served as subinputs to the
subaction. The number of pins and their types must match the output pins of the reduce
action.

Inputs
• argument: U [1..*], where U[i] = Collection of T[i], in which T are from result

[These input pins are owned by the reduce action.] The input collections to the reduce action

Outputs
• result: T [1..*], where T are user classes

These output pins are owned by the reduce action. The corresponding result, leftSubinput,
rightSubinput, and suboutput pins all have the same type, equal to the element type of the
corresponding argument collection.] After the final execution of the subaction, each result
pin has the value equal to the value of the corresponding suboutput pin after completion of
the final execution of the subaction.

• leftSubinput: T [1..*], where T are the same as in result
[These l output pins are owned by the reduce action. The values are accessible within the
subaction but are not available outside the reduce action.] During each execution of the
subaction, each pin has the value of the corresponding suboutput pin on a previous execution
of the subaction.

• rightSubinput: T [1..*], where T are the same as in result
[These output pins are owned by the reduce action. The values are accessible within the
subaction but are not available outside the reduce action.] During each execution of the
subaction, each pin has the value of the corresponding suboutput pin on a previous execution
of the subaction. The leftSubinput and the rightSubinput come from adjacent positions in the
implicit intermediate collections that start with the argument collections and end up as
collections of size one.

• suboutput: T [1..*], where T are the same as in result
[These output pins are owned by actions nested within the subaction. These are accessible
only within the reduce action.] After the completion of each execution of the subaction, the
suboutput pins have values computed during that execution. Each suboutput value
conceptually replaces the adjacent pair of values that supplied the left and right subinput
values from the implicit intermediate collection, thereby reducing the size of the intermediate
collection by one element. When the size of the intermediate collections is one, the values of
the suboutput pins on the final execution of the subaction become the results of the reduce
action.

Semantics
[1] When all control flow and data flow prerequisites of an iterate action are satisfied, the execu-

tion of the reduce action begins. The tuple of argument collections is conceptually copied to a
temporary working store of collections that accumulates intermediate results of the action. The
original input collections are not modified by the action.
September 2002 OMG-UML , v1.5 Collection Actions 2-305

2 UML Semantics
[2] Two contiguous positions in the intermediate working store are selected nondeterministically
and a subordinate execution of the subaction is created. The subaction execution receives the
first slice of intermediate collection values as a tuple of leftSubinput pin values, and it receives
the second slice of intermediate collection values as a tuple of rightSubinput pin values. If the
collections are unordered or if the isUnordered flag is true, then any two elements may be
selected nondeterministically.

[3] Additional pairs of contiguous positions may be selected nondeterministically for concurrent
execution of the subaction, provided they do not include positions already selected for execu-
tion.

[4] When a subordinate action execution completes, the tuple of values on its suboutput pins
replaces the pair of slices of values within the intermediate working store. For collections more
complicated than lists, the specifier must define what it means to replace two elements by a
single element.

[5] Step 2 is repeated as long as the working store contains more than one element position.At any
point, more than one execution of a subordinate action may be working on a pair of element
positions.

[6] When the size of each collection in the working store has been reduced to one element, the
value of the element from each collection in the working store is copied to the corresponding
result position of the reduce action. The execution of the reduce action is complete.

The execution order of the reduce action is nondeterministic. If, however, the subaction
represents an associative operator(i.e., (x op y) op z = x op (y op z)) and multiple executions of
the subaction do not conflict, the result value will be insensitive to execution order, so the result
value will be deterministic for ordered collections. If, in addition, the subaction represents a
commutative operator (i.e., x op y = y op x), then the result value will be insensitive to the order
of elements, so the result value will be deterministic for unordered collections (including the
use of the isUnordered flag). Many common operations (e.g., sum, maximum value, union)
satisfy these properties, and the normal intent of the reduce action is for use in such cases.

2.22 Messaging Actions

These actions exchange messages among objects. An initial message from one object to another
is called a request. The sender of a request may simply continue execution immediately without
concern for the behavior invoked by the request (an asynchronous invocation), or it may choose
to suspend execution until the activity invoked by the request reaches a well-defined point and
sends a reply message back to the requestor, with optional return values (a synchronous
invocation). If the request is synchronous, the behavior of the receiver must have a well-defined
reply point; if the request is asynchronous, a reply is optional. The receiver may handle a
request in various ways based on its organization, including procedure execution and triggering
a state machine. The requestor need not be aware of how the request will be handled. The
messaging model covers a wide range of ways to match behavior to requests, including state
machine triggers, fixed procedures, class-based method lookup, method combination (such as
before-after methods), object-based delegation (as in self), and so on. In all cases, the effect is
processed by a distinct context from the context of the requestor and the messaging information
2-306 OMG-UML , v1.5 Messaging Actions September 2002

2 UML Semantics
is transmitted among requestor and target by value. This messaging model fully supports
distributed processing without special mechanisms. This model unifies operations and signals
into a single concept.

The actions CallOperationAction, SendSignalAction, and BroadcastSignalAction provide the
functionality found in traditional programming languages without the generality of the full
messaging mechanism. Logically, they could be considered special cases of the unified
messaging actions, but they may be implemented directly without using the unified messaging
mechanisms.

2.22.1 Request

A request represents a request for service made by a requestor object to a target object. It
includes both the kind of service to be performed (such as a particular operation or signal) as
well as the parameters of the service request (the parameters of the operation or signal). A
request is modeled as an object. The class of the request object represents the specific kind of
service requested, that is, the operation to be performed or the signal to be handled. The
attributes of the object represent the parameters of the service request, that is, the parameters of
the operation or signal. The target object is specified separately from the request information. A
class used for request objects is called a request class. There is one request class corresponding
to each operation and signal. Request classes may be organized into generalization hierarchies
(subject to constraints by the modeler), and request resolution mechanisms may use such
hierarchies in matching requests to behavior. Request classes are defined in user models
explicitly or implicitly from other elements, such as operations.

There is nothing special about request or reply classes. A class is known to be a request or reply
class because it is used in invocation actions, not because it has any particular structure,
therefore no Request or Reply metaclasses are defined in the model.

2.22.2 Asynchronous Invocation

An asynchronous invocation is the transmission of a request from a requestor to a target object
in which the requestor continues execution immediately, without waiting for a reply. The target
object might later communicate to the requestor, but any such communication must be
explicitly programmed and it is not part of the asynchronous invocation action itself. Sending a
signal and asynchronously calling a procedure are examples of asynchronous invocations. The
requestor continues after the invocation without waiting for a response, so the invoked
execution need not have a definite termination point. It is permissible to asynchronously invoke
a request to a procedure which eventually issues a reply; the reply message is simply discarded.
The reverse is not allowed: a synchronous invocation that activates behavior without a distinct
reply will leave the invocation hanging forever (although implementations can attempt to detect
this and provide some kind of exception handling to deal with it as a programming error).

The execution of an asynchronous invocation has the following structure:

• the requestor creates a request object and sends it to a target object by means of an
asynchronous invocation action;

• once the invocation is set up, the requestor continues execution without further direct
interaction with the invoked execution;
September 2002 OMG-UML , v1.5 Messaging Actions 2-307

2 UML Semantics
• the request object is transmitted to the target object, which might take some time in a
distributed system;

• the request object arrives at the target object and is kept until the receiver is ready to handle
it. Real-time extensions to UML might define queuing orders, priority mechanisms, and so
on, but they are beyond the scope of the basic action semantics, which leave the order of
handling requests undefined;

• the receiver begins handling the request;

• the type of the request object is matched against information in the target object, and the
request is resolved into a behavioral effect, usually involving the execution of a procedure;

• a procedure may be executed.

This definition of asynchronous invocation is meant to encompass both asynchronous calls as
well as traditional signals that trigger state machines, as well as other models of computation.
From the requestor’s viewpoint, these are all requests that do not wait for a reply. The modeler
may change the implementation of the request without changing the invocation.

The action semantics provides a general framework and does not limit or specify the exact
resolution mechanism.

2.22.3 Synchronous invocation

A synchronous invocation is the transmission of a request from a requestor to a target object in
which the requestor waits for a reply from the invoked execution. The invoked execution may
supply return values, but even if there are no return values, the requestor waits for a reply
indicating that the invoked execution has completed. A behavior invoked by a synchronous
request must therefore have a definite reply point, even if there are no return values, because the
reply point indicates the point at which the requestor may continue execution, possibly
concurrently with the remainder of the invoked execution. With no loss of generality, we may
think of the invoked execution as sending a reply object back to the requestor. The reply object
is an object whose attributes represent the return values, but even if there are no return values,
the sending of the reply message and its receipt by the requestor allow the requestor to continue
execution. In the most general case, the requestor may use the type of the reply message as well
as its values (for example, to distinguish different kinds of values or indicate exceptional
situations), although many programming languages may choose to constrain the return type to a
predetermined type.

The execution of a synchronous invocation has the following structure:

• the requestor creates a request message object and sends it to a target object by means of a
synchronous invocation action, at which point the execution of the requestor is blocked;

• the request message is transmitted to the target object, which might take some time in a
distributed system;

• the message arrives at the target object and is kept until the receiver is ready to handle it.
Real-time extensions might define queuing orders, priority mechanisms, and so on, but they
are beyond the scope of the basic action semantics, which leave the order of handling
requests undefined;

• the receiver begins handling the request;
2-308 OMG-UML , v1.5 Messaging Actions September 2002

2 UML Semantics
• the type of the message is matched against information in the target object, and it is resolved
into a behavioral effect, usually involving the execution of a procedure;

• the procedure is executed and at some point a reply message is generated;

• the reply message is transmitted back to the requestor;

• the requestor is given the reply message and execution of the requestor is allowed to proceed.

This definition of synchronous invocation is meant to encompass both traditional operation calls
and also calls that trigger state machines, as well as other models of computation. From the
requestor’s viewpoint, these are all requests that wait for a reply. The modeler may change the
implementation of the request without changing the invocation.

The action semantics provides a general framework and does not limit or specify the exact
resolution mechanism.

2.22.4 Request Handling

To support a wide range of behavior in mainstream and more innovative languages, the skeleton
description of invocation may be parameterized in the following ways, which must be specified
as part of a UML extension or profile defining the given system environment. These represent
different semantic variation points on the behavior of the invocation mechanism:

• the handling of requests by an object may be sequential or concurrent, according to the
specification of the target object (not the requestor) and the type of request.

• sequential handling corresponds to a state machine on the target object, the guarded execution
of a procedure, or the direct inline receipt of a request by an executing procedure. Such
execution cannot proceed until previous executions by the target object or the resolved
procedure have completed, and there is sharing of control state across subsequent executions.

• concurrent handling corresponds to the execution of a procedure in its own context,
regardless of other executions; for example, a traditional procedure call. Such execution can
proceed immediately on receipt because it automatically generates a new execution context,
and sharing of information is only through the attributes of the target object.

• the order in which requests are handled may be specified by the received object. This permits
the definition of queuing and priority mechanisms. This document does not specify such
possible mechanisms, but we would expect them to be specified in a real-time profile, for
example.

• the transmission of messages may be subject to delays and errors. We do not elaborate this
possibility in this document, but we expect it to be pursued in real-time profiles.

• the way in which a request type determines the execution of one or more procedures (and
other behavioral effects) is called resolution. It represents a more general form of method
lookup and is expanded in more detail later. Triggering state machine transitions, selecting a
method attached to an ancestor of the target object type, and object-based delegation are all
varieties of resolution.

• sending a reply message can be an explicit action or it can be implicit in the structure of the
procedures.
September 2002 OMG-UML , v1.5 Messaging Actions 2-309

2 UML Semantics
All messages are transmitted “by value”. That is, a message object itself has no identity; its
attribute values can be freely copied without loss of information. However, the values of the
attributes within a message may be object references, that is, they may reference instances. In
other words, a value may be a simple data value or a reference to an identity.

An “in-out” parameter includes a value in both the request and reply objects.

A send is similar to a call, except that the sender continues execution immediately and has no
further interaction with the invoked execution. If the invoked execution attempts to send a reply,
the reply message is immediately discarded.

2.22.5 Reply Handling

A traditional procedure expects a request of a specific type and generates a reply of a specific
type. The messaging model presented here permits variants on both the request to and the reply
from a single procedure. Variant replies would permit a procedure to return objects of different
types depending on circumstances. This would permit handling unusual or exceptional
situations without extra flags or special data values.

Inline exceptions are considered as simply another type of reply value. (See Section 2.23.3,
“Exceptions.) If the execution of a called procedure generates an exception that cannot be
handled within the called procedure, the exception object is returned to the caller as a reply
object. No special indication is necessary that it is an exception. In fact, the caller is free to treat
it as an ordinary reply value (presumably within a case statement on reply types). If the reply
type violates constraints on the expected reply type, then it is raised as an exception in the
scope of the execution that made the call, permitting the exception handling mechanisms to
come into play.

This approach unifies exception handling with variant reply types and allows the caller and the
executed procedure to choose independently between explicit exceptions and multiple reply
types.

2.22.6 Procedures

A procedure is a structured set of actions that can be invoked as a behavior entity. An action can
only be executed as part of a procedure execution; individual actions may not be referenced
outside their procedures. A procedure represents a distinct, closed context. No variables are
shared among caller and called procedure. A procedure also does not have “global variables” or
“static variables” that hold state. Any such state must be implemented using objects. Because it
has no state, many executions of the same procedure are conceivable on the same object, each
with its own execution context. This does not mean that all procedures must support such
simultaneous access, and many will not, but simply that the structure of procedures does not
prevent it.

The target object can be different from the requesting object and they can have different classes.
We do not distinguish “local calls” from “remote procedure calls”; semantically, there is no
difference. There is an implicit chain of call executions during execution, but no need to assume
that they are organized into a stack or owned by an explicit task, thread, or process. Such things
are implementation choices that can be implemented in different ways.
2-310 OMG-UML , v1.5 Messaging Actions September 2002

2 UML Semantics
While the execution of a procedure invoked by a synchronous invocation is progressing, the
requesting action execution is “blocked.” This does not require any special mechanisms; the
synchronous action execution is simply in the “executing” state until the invoked procedure
execution terminates and returns. The called procedure execution has, as part of its state,
sufficient information to identify the calling action execution. There is no special “return”
action available to a procedure. A procedure execution returns when it completes the execution
of its action, and the output values of the procedure are used as the return values. If the
invocation was asynchronous and the request was repliable, any output values are formed into a
reply object which is transmitted asynchronously to the invoking object.

A procedure has an input value and an output value, both represented as objects without identity
(or snapshots). In the most usual case, the input value is immediately unmarshalled into its
constituent attribute values and is not available in the procedure as an object, but other
variations are possible.

2.22.7 Performing requests

A request has a request type and a list of argument values. A request is modeled as an object.
The type of the object represents the request type. The attributes of the request class represent
the parameters. Because the request type and its parameters are modeled as a single class, there
is no possibility of an incorrect argument list or missing arguments.

Making a request requires a list of argument values that have been marshalled into a request
object. The action semantics does not restrict the manner in which request objects are produced.
For a typical operation call, all the argument values could be generated concurrently and then
used to generate a request object. However, request objects can also be produced in several
stages, starting with a raw object of the correct type and then initializing attribute values one at
a time. All that matters is that a valid request object be available when the request action is
performed. Note that a request object is transmitted “by value”, therefore the identity of the
request object supplied to the request action is irrelevant, and the contents of the object can be
copied if convenient for the semantics or the implementation. The attribute values themselves
may include object identities, each of which must continue to identify the same object in spite
of any implementation encodings due to transmission.

Requests may be sent to any object. Each object determines how it handles requests that it
receives. All requests to the same object need not be handled the same way. Some requests may
invoke methods and some may trigger transitions. The manner of handling a request is
discussed later under Resolution.

The execution of a method creates a new procedure execution and does not affect an existing
state machine or running action execution. The activation of a method creates, from the point of
view of the receiver, a new “thread of control” that executes alongside existing “threads of
control” on the same object, but without sharing control or variables. Different executions
interact only indirectly, through the attributes of the target object, which are shared by all
executions on it.

The triggering of a transition is possible only if the target object has a state machine execution
attached to it. Triggering a transition does not create a new thread of control. The execution
proceeds in the context of the existing state machine execution, when the state machine is ready
to handle the request.
September 2002 OMG-UML , v1.5 Messaging Actions 2-311

2 UML Semantics
2.22.8 Effect Resolution

A request is an unsolicited message sent from a requestor object to a target object that causes
behavior when it is received by the target object. (The other kind of message is a reply, which
goes directly to a blocked execution, not to an object, and is expected by it.) The mechanism of
turning a received request into execution is called resolution. The requestor need not know how
the request will be resolved, and therefore need not change even if the manner of handling the
request is changed. Resolution is a framework within which different kinds of behavior can be
specified. UML extensions or profiles would be needed to specify new kinds of behavior.

Here are 3 common mechanisms for resolving requests that have appeared in various
programming languages. These are not meant to be comprehensive, and others might be
proposed in the future.

1. The request type is used to determine a procedure to be executed. The procedure
execution receives the request object as its input value. When the procedure
execution completes, if the invocation was synchronous, its output value is a reply
message that is transmitted back to the requesting execution. If the request was
asynchronous and repliable, then its output value is a reply message which is
transmitted to the invoking object as an asynchronous request. If the request was
asynchronous and not repliable, the reply message is not generated. The request
type corresponds to an operation, the attributes of the request to the arguments of
the operation, and the attributes of the reply message to the return values. This
mechanism corresponds to a traditional operation call (synchronous or
asynchronous, as the case may be). In some variations, multiple procedures can be
executed, and the resolution mechanism must indicate their order of execution and
which one supplies the reply value.

2. The request type is used to trigger a transition within the state machine execution
attached to the object. Requests are stored until the state machine execution is
quiescent and chooses to handle one of them. If the request type matches an event
on a transition leaving the current state (subject to the full rules of transition firing),
the transition fires. Firing a transition updates the state of the object. If there is a
procedure attached to the transition, it is executed. When the procedure execution
completes, its output value is a reply message that is transmitted back to the calling
execution (for a synchronous request) or to the calling object (for an asynchronous,
repliable request). Typically more than one transition can execute on a single firing
(e.g., entry and exit transitions). The resolution mechanism must indicate which
procedure supplies the reply value. If the request is asynchronous and not repliable,
then any output values are ignored and no reply message is sent. In traditional
terms, the request type corresponds to a signal, its attributes to the attributes of the
signal, and any attributes of the reply message to return values on a call event.

3. The request is explicitly read by an execution using an explicit action. In this case,
requests are held in a queue until the execution explicitly reads them. When the
execution reads a request, the execution gains access to the request data and may
take whatever actions it likes. The execution also gets a handle to the return
information, which it can later use implicitly to send a reply message. It may not
2-312 OMG-UML , v1.5 Messaging Actions September 2002

2 UML Semantics
manipulate the return information, however. This mechanism corresponds to
traditional interprocess communication and would require a UML extension or
profile in which executions are directly manipulable at run time.

In practice, the resolution mechanisms will often be specified for a particular kind of system or
a particular request type, but we define them in a general way that can cover many different
kinds of systems. We do not imply that the actual implementation of a system must be identical
to this logical model; only the final effect must be the same.

The following sections describe each kind of resolution mechanism.

2.22.9 Operation Lookup

The phrase operation lookup refers to mapping a request type (e.g., an operation) to a procedure
(e.g., a method) in the context of an object. In Smalltalk or C++, operation lookup is based on
the class of an object and the class hierarchy, but other languages support other kinds of
operation lookup, which we wish to encompass in the action semantics. For example, self
supports an object-based lookup mechanism and CLOS supports before- and after-methods.

The following list describes the possible kinds of operation lookup:

1. An operation map (a set of operation-method pairs) is attached to an object. If a
request type matches an operation in the map, the corresponding method is
executed. If the operation is not found, then a link points to another object that is
then searched. This is the concept of delegation.

2. An operation map is attached to a class. The map on the type of the object is
examined. If a request type matches an operation in the map, the corresponding
method is executed. If the operation is not found, then a link points to another class
that is then searched. This is the concept of inheritance.

3. An operation map is defined globally. If a request type matches an operation in the
map, the corresponding method is executed. This is the concept of a direct
procedure call (i.e., traditional).

A further variation allows the execution of more than one matching procedure from different
maps. The order in which the procedures are executed is part of the particular operation lookup
mechanism. Another variation would allow several kinds of maps on each element, with
matching methods to be executed in a designated order. For example, CLOS supports 3 kinds of
maps: a before map, a main map, and an after map. First, all the matching methods on the
before map are executed, starting at the top of the class hierarchy; then the most specific match
in the main map is executed, then all the matches in the after map, ending at the top of the class
hierarchy. Only the return value from the main match is returned to the caller.

 Section 2.22.16 describes one way that traditional operation calls as in variation 2 above could
be implemented.
September 2002 OMG-UML , v1.5 Messaging Actions 2-313

2 UML Semantics
2.22.10 Transition Triggering

The phrase transition triggering refers to mapping a request type (a signal) to a procedure (a
procedure) in the context of an object with a state machine. A state machine may be attached to
the object or, more usually, to the type of the object. The object has a current state (which may
decompose into a set of primitive states). The state of the object is a state (or set of states) in
the attached state machine. The following rules, summarized from the state machine package,
are suitable for implementation of request resolution with no change in semantics:

The following item describes the event lookup:

1. A transition map (a set of event-procedure-next state tuples, with some additional
information) is attached to a state on the state machine attached to the type of the
target object. If a request type matches an event in the map, subject to various
qualifying information (such as conditions), the corresponding procedure is
executed and the current state is updated. The request object is delivered to the
procedure execution. If the event is not found, then a link points to another state that
is then searched. This is the concept of nested states. If any entries or exits are
triggered, the request object is delivered to any triggered procedures.

2. Same as above, except the state machine is attached directly to the object. This idea
pushes the state of the art but it seems compatible with object-level method lookup.

The normal nested-state variation allows multiple matches, somewhat similar in spirit to CLOS
before-after methods, although not identical: exit transitions and entry transitions are executed
on the path from the old state to the new state. Many variations are possible.

The state machine packages appear s in a form directly amenable to resolution, provided
Signals are regarded as request objects.

A “synchronous signal” (formerly “call event”) is a request sent by a synchronous invocation
action that is resolved into a transition trigger rather than a method. The manner of handling
this is not restricted by the action semantics, but one variation that implements the correct
semantics is as follows: If a state machine has a transition triggered by a synchronous
invocation object, the request object is delivered to each procedure attached to a triggered
transition. When a transition is triggered by a request, the procedure is executed. When the
execution of the procedure attached to the main transition (that is, the one directly triggered by
the request) is complete, its output values are formed into a reply message and passed back to
the action that issued the call request, and it becomes the output of the call action. If the request
triggers exit or entry transitions, only the main procedure attached to the main transition is used
to determine the reply. (Other rules are possible for determining the return values.)

2.22.11 Direct Communication among Executions

Usually invocations are handled implicitly by some underlying execution machinery that
manages the gathering of packets by a target object, their storage until the object is ready to
process one of them, and the selection and resolution of a request into a behavioral effect. This
approach characterizes method invocation and state machine triggering. It is also possible,
however, for executions to explicitly receive requests and generate replies. This kind of usage is
characteristic of kinds of real-time computation. The mechanisms for such interaction are not
specified in this document, but they could be defined in a UML extension or profile.
2-314 OMG-UML , v1.5 Messaging Actions September 2002

2 UML Semantics
2.22.12 Strong Typing

The action semantics attempts to define actions in a general way that accommodates both
mainstream, strongly-typed languages as well as alternative languages. The messaging model
presented here does not require strong typing but is compatible with it. It can operate on an
object basis (as in self), in which case typing is irrelevant. It can operate on a class basis in
which run-time types are used for request resolution (as in Smalltalk). It can also operate on a
class basis with predefined types for requests and replies, to support strong typing as in C++
and other languages.

In general, in this messaging model, a request is an object whose type is determined at run time.
This model is usual for signals. However, most languages assume that an operation is specified
as part of a call at compile time. This may be modeled in the Action Semantics as a constraint
on the type of the request and reply objects, corresponding to fixing the operation.

This model can also accommodate pointers to operations. For example, an integrate procedure
takes as one of its parameters a pointer to the function to integrate. This is easily handled in this
model because the request is an object representing the function. A constraint can be placed on
the type of request object that might be passed. For example, the integration function must be
an operation with one numerical input and one numerical output. Rather than fixing the exact
operation, any operation that meets the constraints could be used.

Variant reply types in a strong typing system are interpreted as jumps within the scope of the
calling action and trigger the jump handling mechanisms (Section 2.23, “Jump Actions).

2.22.13 Transmitting messages

The execution of request invocations implies “information in transit”. The action semantics in
this document are not affected by the presence of a request in transit, because there is no way
for an action to access this state.

UML extensions or profiles could be specified in which the format of transmitted messages is
defined and actions are provided to access it at run time. Similarly, profiles could be specified
in which transmission time or the possibility of errors during transmission are present. All such
profiles are likely to be implementation dependent.

2.22.14 Return information

During the execution of a synchronous invocation, the invoked procedure execution must have
sufficient information to be able to awaken the invoking action execution when execution of the
invoked procedure is complete. The manner in which this information is stored is part of the
implementation and is not defined here. An invoked procedure execution has no explicit access
to such information; it is used implicitly on the completion of the procedure execution.

UML extensions or profiles could be specified in which the format of return information is
defined and actions are provided to access it at run time.
September 2002 OMG-UML , v1.5 Messaging Actions 2-315

2 UML Semantics
2.22.15 Messaging Classes

AsynchronousInvocationAction

Creates a request which is transmitted to the target object, where it causes the execution of an
effect, such as a method or the triggering of a transition. The request object is available to the
execution of invoked procedures. The requestor continues execution without waiting for the
request to be delivered or handled. If the invocation is repliable, a subsequent reply by the
invoked execution is transmitted to the requesting object as an asynchronous request. If the
invocation is not repliable, any attempt by the invoked execution to issue a reply is ignored.

Figure 2-60 Messaging classes metamodel

Primi tiveA ction

(from Action Foundation)

AsynchronousInvocationAction

is Repl iable : B oo lean

OutputP in

(from Action Foundation)

Sy nc hronous Invoca tionA ction

1

0..1

+/reply1

0..1

InputPin

(from Action Foundation)

InputP in

(from Action Foundation)

InvocationAction

1

0..1

+/target

1

0..1

1

0..1

+/reques t

1

0..1

InputPin

(from Action Foundation)

Exp li ci tInvoca tionA ction

0..*

0..1

+/argument
0..*

0..1

OutputP in

(from Action Foundation)

InputPin

(from Action Foundation)

CallOperationAction

isAsynchronous : Boolean

0..1

0..*

0..1

+/result 0..*

0..1

1

0..1

+/target1

Operation

0...

1

0...

+operation
1

BroadcastS ignalAction

Signal

(from Common Behavior)

1

0...

+s ignal

1

0...

InputP in

(from Action Foundation)

SendSignalAction

1

0...

+signal

1

0...

1

0...

+/ta rge t
1

0...
2-316 OMG-UML , v1.5 Messaging Actions September 2002

2 UML Semantics
Attributes
• isRepliable: Boolean

If true, the identity of the invoking object is transmitted as part of the request. If the receiver
later reaches a reply point within a synchronous context, a reply message is transmitted to the
invoking object as an asynchronous message.
If false, the identity of the invoker is not transmitted and any attempt to later issue a reply is
ignored.

Associations

None

Inputs
• target: T, where T is any user class

The target object. Information in the object or the object’s class is used to determine a
method procedure or procedures to execute the operation. To send to a set of objects, use a
map action around an invocation action.

• request: U, where U is any user class
An object whose type represents the kind of operation or signal sent and whose attributes are
the arguments of the operation or signal.

Outputs

None

Well-formedness rules

None.

Semantics
[1] When all the control and data flow prerequisites of the action execution are satisfied, a copy of

the request object is transmitted to the target object. The identity of the request object is not
preserved in the transmission, but the identities of its attributes are preserved. (In other words,
the request is just a collection of values and has no significance as an object.) If the invocation
is repliable, the identity of the invoking object is transmitted as part of the request. The target
object may be local or remote. The manner of encoding the transmission, the amount of time
required to transmit it, and the path for reaching the target object are undefined. (They are
appropriate topics for a runtime implementation profile.)

[2] When the transmission arrives at the target object, it causes a behavioral effect on the target
object as specified in the target object itself or in the class of the target object. A copy of the
request object is available to the behavioral effect. The manner of specifying behavior effects
depends on the particular effect. For example, if the request type appears as a reception for the
target class, the effect is a signal event for the state machine of the target object; the request
object is available as an argument to procedures invoked by transitions caused by the signal. If
the request type appears as the signature of an operation for the target class, the effect is the
execution of the procedure for the method realizing the operation.
September 2002 OMG-UML , v1.5 Messaging Actions 2-317

2 UML Semantics
[3] If the behavioral effect attempts to return control to a repliable invocation, the reply object is
transmitted to the invoking object as an asynchronous request. If the invocation is not repliable,
the attempt to reply is simply ignored.

BroadcastSignalAction

Creates a request signal which is transmitted to all the potential target objects in the system,
where it may cause the firing of state machine transitions and the execution of attached
procedures. The argument values are available to the execution of attached procedures. The
requestor continues execution immediately. Any attempt to issue a reply is ignored.

The definition of the set of target objects in the system requires an implementation-dependent
specification, as any practical implementation of this action obviously requires a finite set of
objects.

Attributes

None

Associations
• signal: Signal

The kind of signal transmitted to the target object.

Inputs
• argument: T [0..*], where T = self.signal.attribute.type

A tuple of values that become the attributes of the signal.

Outputs

None

Well-formedness rules

None.

Semantics

1. When all the control and data flow prerequisites of the action execution are
satisfied, the argument values are formed into a request object that is transmitted
concurrently to each of the target objects in the system. The target objects may be
local or remote. The signal type is encoded into the transmission. The manner of
encoding the transmission, the amount of time required to transmit it, and the path
for reaching the target objects are undefined. (They are appropriate topics for a
runtime implementation profile.)

2. When a transmission arrives at a target object, it causes a signal event in the target
object. The signal has the type specified by the action and its attributes are the
arguments of the action. The effect of receiving a signal event is specified
elsewhere; normally it involves causing the firing of a state machine transmission
2-318 OMG-UML , v1.5 Messaging Actions September 2002

2 UML Semantics
and the execution of an attached procedure. If the isList value of the procedure is
true, the original argument values of the broadcast signal action are made available
to the procedure execution as the separate values of its argument pins.

3. A broadcast signal action provides no return information to the invoked behavioral
effect. If the invoked procedure attempts to return control to the broadcast signal
action execution, the attempt is simply ignored.

CallOperationAction

Assembles the call arguments into an operation call request which is transmitted to the target
object, where it causes the selection of a method and the execution of its procedure. The
argument values are available to the execution of the invoked procedure as predefined
OutputPin values. (They are output pins because they represent values available within the
procedure.) The action execution waits until the effect invoked by the request completes and
returns to the caller. When the execution of a procedure is complete, its result values are
returned to the calling execution. When a return message is received, execution of the action is
complete and the return values are used as the result values of the call operation action
execution.

Note: The semantics of this action could be mapped onto the SynchronousRequestAction and
the AsynchronousRequestAction (depending on the isSynchronous flag), so that the semantics
of this action are purely derivative. There is no requirement that this be done, however, either in
the logical model or in an actual implementation; this action may be implemented directly.

Attributes
• isSynchronous: Boolean

If true, the call is synchronous and the caller waits for completion. and a reply.
If false, the call is asynchronous and the caller proceeds immediately and does not expect a
reply.

Associations
• operation: OperationThe operation to be invoked by the action execution

Inputs
• target: T, where T is any user type

The target object. The object’s class is used to determine a method to execute the operation.

• argument: U [0..*], where U = self.operation.parameter.type for which
self.operation.parameter.kind = in or inout
A tuple of input values whose types must match the input parameters of the operation
(including any in-out parameters).

Outputs
• result:V [0..*], where V = self.operation.parameter.type for which

self.operation.parameter.kind = return or out or inout
A tuple of output values whose types must match the output parameters of the operation
(including any in-out parameters).
September 2002 OMG-UML , v1.5 Messaging Actions 2-319

2 UML Semantics
Semantics

1. When all the control and data flow prerequisites of the action execution are
satisfied, information comprising the operation and the argument pin values of the
action execution is created and transmitted to the target object. The target object
may be local or remote. The manner of encoding the transmission, the amount of
time required to transmit it, and the path for reaching the target object are
undefined. (They are appropriate topics for a runtime implementation profile.) If the
call is asynchronous, the caller proceeds immediately. If the call is synchronous, the
caller is blocked from further execution until it receives a reply as a consequence of
the call.

2. When the transmission arrives at the target object, it causes the selection of a
method realizing the operation in the class of the target object. The method is
selected according to the inheritance rules for inheritance of methods. The
procedure implementing this method is executed. The argument values from the call
invocation are made available to the procedure execution as the predefined values of
its argument pins. If the call is synchronous, the runtime environment encodes (in
an unspecified manner) return information sufficient to identify the invoking action
execution. The return information is bound to the invoked procedure execution, but
is not accessible to it.

3. If the call is synchronous, when the execution of the invoked procedure completes,
the values of its result pins are formed into reply information that is transmitted to
the calling action execution using the return information bound to the procedure
execution. The manner of encoding the reply information for transmission, the time
required for transmission, and the transmission path are unspecified.

4. When the reply information arrives at the invoking action execution, copies of the
values of its attributes are placed on its result pins, and the execution of the
CallOperationAction is complete.

ExplicitInvocationAction (abstract)

Abstract action that indicates sending a request object to a target object. using an explicit
argument list. Creates a request which is transmitted to the target object. The request is resolved
into a behavioral effect by the target object or its class based on the type of the request.
Depending on the kind of action, the requestor may or may not wait for a reply.

Attributes

None

Associations

None

Inputs
• argument: T [0..*], where T is determined by the specific subclass of action

A list of values that are the arguments to the invocation.
2-320 OMG-UML , v1.5 Messaging Actions September 2002

2 UML Semantics
Outputs

NoneDepends on subclass

Well-formedness rules

None.

Semantics

See the particular subclass.

InvocationAction (abstract)

Abstract action that indicates sending a request object to a target object. Creates a request
which is transmitted to the target object. The request is resolved into a behavioral effect by the
target object or its class based on the type of the request. Depending on the kind of action, the
requestor may or may not wait for a reply.

Attributes

None

Associations

None

Inputs
• target: T, where T is any user class

The target object. Information in the object or the object’s class is used to determine a
method procedure or procedures to execute the operation.

• request: U, where U is any user class
An object whose type represents the kind of operation or signal sent and whose attributes are
the arguments of the operation or signal.

Outputs

None - Depends on subclass

Action Description: The request is sent to the target object, where it causes the execution of a
method or the triggering of a transition. The request object is available to the execution of
invoked procedures. The behavior of the requestor depends on the specific concrete action.

Well-formedness rules

None.

Semantics

See the particular subclass.
September 2002 OMG-UML , v1.5 Messaging Actions 2-321

2 UML Semantics
SendSignalAction

Creates a request signal which is transmitted to the target object. where it may cause the firing
of a state machine transition and the execution of an attached procedure. The argument values
are available to the execution of attached procedures. The requestor continues execution without
waiting for the request to be delivered or handled. Any attempt by the state machine to issue a
reply is ignored.

Attributes

None

Associations
• signal: Signal

The signal transmitted to the target object.

Inputs
• target: T, where T is any user class

The target object.The signal will be sent to this object and processed by its state machine. To
send to a set of objects, use a map action around a send signal action or use a
BroadcastSignalAction to send indiscriminately to the entire available system.

• argument: U [0..*], where U = self.signal.attribute.type
A tuple of values that become the attributes of the signal.

Outputs

None

Well-formedness rules

None.

Semantics

1. When all the control and data flow prerequisites of the action execution are
satisfied, the argument values are formed into a request object that is transmitted to
the target object. The target object may be local or remote. The signal type is
encoded into the transmission. The manner of encoding the transmission, the
amount of time required to transmit it, and the path for reaching the target object
are undefined. (They are appropriate topics for a runtime implementation proile.)

2. When the transmission arrives at the target object, it causes a signal event in the
target object. The signal has the type specified by the action and its attributes are
the arguments of the action. The effect of receiving a signal event is specified
elsewhere; normally it involves causing the firing of a state machine transmission
and the execution of an attached procedure. If a procedure is executed, the original
argument values of the send signal action are made available to it as values of its
argument pins (the isList value of the procedure must be true).
2-322 OMG-UML , v1.5 Messaging Actions September 2002

2 UML Semantics
3. A send signal action provides no return information to the invoked behavioral
effect. If the invoked procedure attempts to return control to the send signal action
execution, the attempt is simply ignored.

SynchronousInvocationAction

Creates a request packet which is transmitted to the target object where it causes an effect, such
as the execution of a method or the triggering of a transition. The request object is available to
the execution of invoked procedures.. The action execution waits until the effect invoked by the
request completes and returns a reply message to the caller. When a reply message is received,
execution of the action is complete and the reply message is used as the output of the call action
execution.

Attributes

None

Associations

None

Inputs
• target: T, where T is any user class

The target object. Information in the object or the object’s class is used to determine an effect
to execute the operation.

• request: U, where U is any user class
An object whose type represents the kind of operation or signal sent and whose attributes are
the arguments of the operation or signal.

Outputs
• reply: V, where V is any user class

The results produced by executing the selected effect with the given arguments. The number
and types of the results is determined by the executed effect. The model may place a
constraint on the type of value returned (as with an ordinary operation).

Well-formedness rules

None.

Semantics

1. When all the control and data flow prerequisites of the action execution are
satisfied, a copy of the request object is transmitted to the target object. The identity
of the request object is not preserved in the transmission, but the identities of its
attributes are preserved. (In other words, the request is just a collection of values
and has no significance as an object.) The target object may be local or remote. The
manner of encoding the transmission, the amount of time required to transmit it, and
the path for reaching the target object are undefined. (They are appropriate topics
September 2002 OMG-UML , v1.5 Messaging Actions 2-323

2 UML Semantics
for a runtime implementation proile.) The invoking action execution is blocked until
it subsequently receives a return object as a result of the behavioral effect caused by
the request.

2. When the transmission arrives at the target object, it causes a behavioral effect on
the target object as specified in the target object itself or in the class of the target
object. A copy of the request object is available to the behavioral effect. The
manner of specifying behavior effects depends on the particular effect. For example,
if the request type appears as a reception for the target class, the effect is a signal
event for the state machine of the target object; the request object is available as an
argument to procedures invoked by transitions caused by the signal. If the request
type appears as the signature of an operation for the target class, the effect is the
execution of the procedure for the method realizing the operation. The runtime
environment encodes (in an unspecified manner) return information sufficient to
identify the invoking action execution. The return information is bound to the
invoked behavioral effect, but is not accessible to it.

3. A behavioral effect invoked by a synchronous invocation must eventually reach a
return point defined by the behavior effect. For a procedure invoked as the method
realizing an operation or as a consequence of the firing of a state machine
transition, the return point is the completion of execution of the procedure. The
definition of the return point includes a set of return values. For an invoked
procedure, the return values are the values on its result pins when it completes
execution. Behavioral effects that do not invoke procedure executions must define
how their return points and return values are determined. When control within a
behavioral effect reaches the return point, a return object of a type specified by the
behavioral effect is created, and its attribute values are the return values of the
behavior effect. Using the return information bound to the behavior effect, the
return object is transmitted to the invoking action execution. The manner of
encoding the return object for transmission, the time required for transmission, and
the transmission path are unspecified.

4. When the return object arrives at the invoking action execution, a copy of it
becomes the value of the reply pin of the action execution, and the execution of the
SynchronousInvocationAction is complete.

If the invoked behavioral effect never reaches a reply point, either because the effect is an
asynchronous effect or the effect gets caught in an endless loop, then the invoking action
execution will remain blocked forever, which is probably not a good thing for the designer but
does not violate any rules.

2.22.16 Optional Profile for Resolution of Operations and Signals

Traditional operations and signals can be modeled using the CallOperationAction and the
SendSignalAction, but this does not provide the ability to mix operations and signals and hide
the implementation from the requestor. This section defines an optional UML Profile for
Messaging of Operations and Signals, or ResolvedFeature for short. This profile is not part of
the basic action semantics specification. It is an optional compliance point and need not be
implemented to achieve UML compliance. It is expected that other profiles will be proposed to
provide other kinds of resolution.
2-324 OMG-UML , v1.5 Messaging Actions September 2002

2 UML Semantics
This kind of resolution can be implemented using the profile shown in Table 2-2. The only
additions in this profile are the two stereotyped tags of the OperationResolution stereotype of
BehavioralFeature named inputSignature and outputSignature, the values of which are of type
Classifier. Each distinct resolved Operation must define two attached Classifiers: one for its
arguments (inputSignature) and one for its results (outputSignature). (For an asynchronous
operation, there is only one classifier, the inputSignature.) These classes are derivable from the
operation specification, namely, the list of parameters, and would not have to be explicitly
defined by modelers. The same two classes are attached to the Methods for each Operation.

Each distinct resolved Reception must define one attached Classifier, the inputSignature. This
Classifier is the Signal classifier itself. If the Reception generates a reply suitable for a
synchronous invocation, the Reception must also defined an outputSignature classifier.

On an invocation action, the type of the request object is matched against the inputSignatures
attached to the behavioral features of the class of the target object. If the matching behavioral
feature is an Operation, the normal inheritance rules are used to find a Method, whose
Procedure is executed with the request object as its single argument. If the matching behavioral
feature is a Signal, a signal event occurs in the target object. If the handling of the event results
in the firing of a transition that invokes a Procedure, the procedure is executed with the request
object as its single argument.

If an invocation matches more than one operation and/or signal, then the model is ill-formed.

If a method is executed on a synchronous invocation, a reply is generated when the execution of
the invoked procedure is complete. The output values of the operation are formed into a reply
object, whose type is the outputSignature class and whose attribute values are the result values
of the operation. The reply object is returned to the calling action execution.

If a transition fires as a result of the reception of a synchronous request, the procedure (if any)
attached to the transition itself (rather than any entry/exit procedures) is regarded as the main
procedure. The reply point occurs on the completion of execution of this procedure. A reply
object is created whose type is the outputSignature for the Reception. The output values of this
procedure become the attributes of the reply object. The reply object is returned to the calling
action execution. Any entry procedures caused by the firing of the transition will execution
concurrently with the invoker of the request.

If more than one transition is triggered by a synchronous request or if more than one procedure
is attached to a triggered transition, the model is ill-formed. A more complicated profile could
provide for such possibilities by specifying how to choose or assemble the eventual reply object
if multiple procedure executions are caused by a transition. In any case, eventually one reply
object must be returned to a synchronous requester that triggers a state machine.

If an exception or other jump propagates to the top level of a procedure, the jump object
becomes the reply object that is returned to the caller. If the type of this object is not the type
specified as the output type of the SynchronousInvocationAction, a jump is raised in the context
of the action execution and may be handled by a handler on the invocation action execution or
may propagate upward.

These semantics implement traditional operations and signals in the context of the unified
messaging model. Note that the request object can be dynamically created, therefore this profile
supports dynamic operation determination not possible with CallOperationAction. Other
September 2002 OMG-UML , v1.5 Messaging Actions 2-325

2 UML Semantics
profiles could be defined that would implement other semantics, such as object-based
delegation (as in self), operations with variant return types, before-after methods as in CLOS,
Ada-style rendezvous, etc.

Table 2-2 ResolvedFeature profile

2.23 Jump Actions

All flow of control for a procedure could use Dijkstra-style, fully nested flow-of-control
constructs, but this style can be awkward and obscure when dealing with unusual or secondary
conditions that do not follow the main line. Programming languages include constructs such as
break, continue, and exceptions for dealing with these situations. When a non-mainline situation
occurs, the normal flow of control is abandoned and a different flow of control, specified in the
program, is taken. The UML jump construct unifies these nonlinear flow-of-control
mechanisms while providing the functionality found in most modern programming languages.

2.23.1 Jumps

A jump is a condition that occurs synchronously during the execution of an action or a sequence
of actions that causes the abandonment of the normal execution sequence (at a definite known
location) and the execution of an alternate action (sequence) that brings the execution to a
known state compatible with the successors of the action that would have been executed had the
jump not occurred. In other words, under certain conditions, execution of the current action is
aborted and control jumps to some enclosing level at which a handler action cleans things up
and allows control to resume after the higher level action. A jump is used to handle a situation
that is inconvenient to handle using linear flow of control. Jumps are often used to handle
unexpected inputs or situations regarded as errors, such as exceptions, but they are not restricted
to such use and they may be considered another control mechanism, albeit one that should be

Stereotype Base Class Parent Tags Constraints Description

Resolved-
Feature

BehavioralFea-
ture

N/A inputSigna-
ture, out-
putSignature

none Operations with this ste-
reotype have a resolution
mechanism as defined
here.

Tag Stereotype Type Multiplicity Description

inputSigna-
ture

Resolved-
Feature

Class 0..1 Specifies the class that
serves as the request
type for a request that
resolves to the opera-
tion

outputSigna-
ture

Resolved-
Feature

Class 0..1 Specifies the class that
serves as the reply
type for a request that
resolves to the opera-
tion
2-326 OMG-UML , v1.5 Jump Actions September 2002

2 UML Semantics
used with restraint. The traditional break and continue statements are a typical use of jumps as
a static control mechanism. The traditional exception handling mechanism is a typical use of
jumps as a more dynamic control mechanism.

A jump type is a classifier, in the same way that a signal type is declared as a classifier. There
is no jump type metaclass; any class may be used as a jump type. Jumps may be explicitly
caused by a jump action. For example, a traditional break statement can be modeled as a jump
action with a predefined Break class as the jump type. A primitive action may also cause jumps
as part of its behavior for given input values. Such a usage of a jump to handle an abnormal or
non-mainline situation is often called an exception. For example, a squareRoot action might
specify that the Irrational jump occurs if the input argument is less than zero, and the jump
object has one attribute whose value is the square root of the absolute value of the argument. An
arrayIndex action might specify that an OutOfBounds jump is caused when an index argument
is not legal for an array; the jump type would have the index value and the array bounds as
attributes.

The occurrence of a jump is manifested as an instance—a jump object—of the given jump type.
The object types indicates what kind of situation caused the jump. The attribute values (if any)
describe the situation in more detail. The occurrence of a jump terminates the current action and
transfers control to a jump handler attached to the current action. If the current action lacks a
jump handler for the given jump type, the jump propagates to enclosing levels of actions.

A jump handler may be attached to an action (primitive or composite). A jump handler is a
map: a set of jump-type-to-action pairs, similar to the signal-type-to-transition pairs attached to
states in state machines. If a jump occurs during the execution of an action and the jump type
or one of its ancestor types appears in the jump handler attached to the action, then the
execution of the action is abandoned and the handler action corresponding to the jump type is
executed instead. A jump object is created with the argument values specified by the action.
The jump object is the input to the handler action. The handler action may also access output
values in its accessible scope, like any action. The accessible values in a handler are the same
as the accessible values in the action that it protects. When the execution of a handler action is
completed, the execution of the original action is deemed to be complete and successors are
enabled. If the original action has any data flow outputs, each of its handlers must have a list of
data flow outputs whose number, order, and types match the output list of the action (otherwise
the successors will not have needed values available), therefore an action with handlers has
much the form of a conditional. There is one exception permitted: A handler action that always
causes a jump during its execution must have zero output pins and need not match the outputs
of the protected action (because it will never complete normally). A handler action is ill formed
if it can possibly complete normally but the pins do not match.

Actions within a jump handler may have jump handlers attached to them. If a jump occurs
during the execution of a jump handler action, the execution of the handler action causing the
jump occurrence is terminated, and its jump handler (if any) is started. If there is no jump
handler, the jump propagates upward. If the propagated jump reaches the top of the jump
handler without being handled, it is propagated to the action enclosing the action having the
jump handler. If a second jump occurs during the processing of another jump, the original jump
is lost.

If a jump is handled directly by a handler on the action causing the jump, then nothing else
need be done. However, if an action does not have a handler for a jump, then the jump
occurrence propagates to the immediate enclosing composite action, where it may trigger a
September 2002 OMG-UML , v1.5 Jump Actions 2-327

2 UML Semantics
jump handler on the wider scope. If jump propagation occurs, the execution of any successors
to the original action will not have begun and the execution of any predecessors of the original
action will have completed, so the state of execution of a linear sequence of actions is
determinate. Concurrent executions within the composite scope must complete before
propagation of the jump may continue. Eventually the addition of an interrupt mechanism to
UML would permit concurrent executions to be aborted due to the occurrence of an unhandled
jump in another action execution.

If a jump is not handled by the outermost action in a procedure, then the execution of the
procedure terminates and a reply object is returned to the caller of the procedure. Such a reply
object is just an object of a particular reply type, different from the reply type expected for a
normal return. This permits programming languages to treat jump returns (such as exceptions)
in two different, but essentially equivalent, ways: as multiple variant return types handled inline
as ordinary values, or as a deviation from an expected default return type in which the receipt
of any non-default types cause jumps within the calling scope. This approach permits a
procedure to have multiple return types and have them treated either as variant returns or as
exceptions, at the option of the caller. See Section 2.22.5, “Reply Handling.

Note that jump handling does not add any fundamental power to the semantics. Each action
could instead output status values that would be checked by conditionals, with the jump
handlers being clauses of the conditionals executed if jump types were returned. Experience
with programming languages has shown that such a program organization obscures its
fundamental structure and makes changes difficult. Jump handling permits separation of
concerns between normal control flow and unusual situations that require special handling.

2.23.2 Break and Continue Statements

In many programming languages, a break statement terminates the execution of the current
composite flow-of-control construct, such as a block, a case statement, or a conditional. Some
languages have the ability to break out of several nested levels of control by supplying an
argument to designate the level to break to. A continue statement terminates the execution of
the body of a loop construct and advances to the next iteration. There are many variations in the
way these statements work in different languages. The UML jump construct can represent these
statements with flexibility. Each of these static flow-of-control constructs can be represented in
UML as a JumpAction. The differences come in the type of jump object supplied and the place
where the matching jump handler is placed.

A simple break statement can be modeled as a JumpAction whose argument type is a special
predefined class, such as BreakJump. This class has no attributes. A break handler for this type
is placed on the immediately enclosing GroupAction. The break handler body is the null action.
Execution of the JumpAction simply terminates execution of the current group of actions and
resumes control beyond the group action. The same BreakJump type can be used throughout the
entire model to represent all simple break statements. Each one will be caught by its
immediately enclosing group action. The entire structure is statically determined. On a loop, the
break handler would be placed on the LoopAction itself to terminate execution of the loop.

If the enclosing GroupAction has data flow outputs, the handler must generate them. This is a
situation that does not occur in traditional programming languages, but it is straightforward to
model and does not present any difficulties in concept or implementation. In some situations,
2-328 OMG-UML , v1.5 Jump Actions September 2002

2 UML Semantics
the modeler may choose to define a special jump type whose attributes include the output
values of the group action or data needed to compute them. This is a powerful but
straightforward extension of the traditional break statement involving parameters.

To represent a break statement that jumps over several nested levels, use a special jump type
caught only by the desired enclosing composite action. Actions in any embedded nesting level
can potentially cause a jump of the given type.

A simple continue statement can be modeled as a JumpAction whose argument type is a special
predefined class, such as ContinueJump. This class has no arguments. A break handler for this
type is placed on the (not necessarily immediately) enclosing GroupAction that represents the
body of the loop. The break handler body is a null action. Execution of the JumpAction
terminates execution of the current group of actions, and the jump propagates through any
additional levels of nesting until it is caught by the appropriate level representing the loop body,
whose execution is terminated. Control will then resume with the next iteration of the loop. The
same ContinueJump type can be used throughout the entire model to represent all simple
continue statements.

If the enclosing loop body has data flow outputs, the handler must generate them. In particular,
if the loop has dataflow loop variables, their values must be generated by the handler. Often the
use of a continue statement represents a situation in which the loop variables take on default
values. In complicated situations, it may be necessary to define a special jump type for the
particular loop so that the information needed can be passed as part of the jump. This becomes
a parameterized continue statement.

2.23.3 Exceptions

In many programming languages, exceptions may occur during the execution of certain
statements. In most languages, an exception can also be raised explicitly by a program
statement. The occurrence of an exception terminates the current statement and causes control
to jump to an enclosing statement which has an exception handler to catch the particular type of
exception. The UML jump construct can represent traditional exception handling with
flexibility. (Note that UML includes a metaclass called Exception. This metaclass represents
interobject error conditions handled using state machines. The kind of exceptions found in
traditional programming languages represent syntactic control constructs within a single thread
of control, and are not related to or well modeled by the Exception metaclass. This section
discusses the syntactic programming-language kind of exceptions, not the Exception metaclass.)

The occurrence of an exception is modeled in UML as a jump object. The type of the jump
object represents the kind of exception. The arguments of the jump object represent the
parameters of the exception. Explicitly raising an exception is modeled using the JumpAction.

In addition, primitive functions may be predefined to raise exceptions for particular arguments.
For example, the divide function may be defined to cause a DivideByZero jump if the quotient
is zero. The possibility of causing jumps is built into the definition of the function and
represents part of its overall input-output mapping. Most users will not define their own
primitive functions; usually those are predefined in a particularly computing environment,
including their possible exceptions. However, any definition of a primitive function must
specify the types of jumps that may occur, the input values for which they occur, and the
mapping from input values to jump object attribute values.
September 2002 OMG-UML , v1.5 Jump Actions 2-329

2 UML Semantics
An exception handler is modeled as a jump handler that catches the given jump type. Because
the jump object may have attributes, the jump handler has access to relevant information about
the circumstances that caused the exception and can use the information in dealing with the
situation.

2.23.4 Jumps with Concurrent Executions

If a jump propagates to a composite action, the execution of actions concurrent with the original
action must be dealt with before the execution of the composite action can be abandoned, and
their state at the time of the jump occurrence is indeterminate. The simplest approach is to wait
for all concurrent executions to complete normally, under the assumption that they are
unaffected by an error in a separate region. This approach is supported by the current semantics.

Another possibility is that the concurrent executions are made irrelevant by an exception and
should be terminated, but this decision must be made by the modeler in each specific situation.
An interrupt is a condition that occurs asynchronously during the execution of an action or
action sequence that may force a change in execution without waiting for normal completion.
Dealing with the execution of concurrent actions because of the propagation of a jump to an
enclosing scope is an interrupt situation. It might occur anywhere in the execution sequence of
the concurrent action. In the simplest case, the execution of concurrent action could simply be
allowed to complete, but in many situations an exception in a concurrent execution means that
their results are worthless. Alternately, all concurrent executions could be abandoned, but there
are many situations in which the affected concurrent action should be given a chance to clean
itself up before terminating (or possibly even ignore the interrupt and complete normally). Past
experience with operating systems has shown that there are various ways to deal with interrupts.
It is anticipated that interrupt handling will be provided in a future update to UML. It is
anticipated that the propagation of a jump to an action execution with concurrent executions
would be a situation in which an interrupt would occur or could be made to occur. There is a
likelihood that interrupt mechanisms will depend on the implementation and might therefore be
defined in layers build on top of basic UML.

If two jumps occur concurrently in different concurrent actions, it is indeterminate which jump
(or possible a third jump) will be raised at the level of the composite action. In any case, only
one jump will be propagated upward and the others are lost. When a jump propagates upward,
the execution of the composite action is complete and no activity or information (such as
additional jump occurrences) remains.

Without the use of interrupts, a jump may propagate upward only after concurrent executions
complete.

2.23.5 Jump Classes

The metamodel in Figure 2-62 shows the jump classes. Note that jump handling extends the
definitions of several other action classes to provide the ability to attach jump handlers or to
define the behavior of the action when a jump occurs.

Action

(in addition to the original definition in Action Foundation)
2-330 OMG-UML , v1.5 Jump Actions September 2002

2 UML Semantics
Associations
• jumpHandler: JumpHandler [0..*]

Designates a set of JumpHandlers whose jump types apply to the action. If a jump of the
given jump type or a descendant type occurs during the execution of the owning action, the
HandlerAction attached to the JumpHandler is executed. If the jump type is not present on
any jump handler attached to the action, the jump propagates to the enclosing action.

HandlerAction

An action may have zero or more handlers attached to it. A handler deals with jumps that occur
during the execution of its underlying action. A jump handler associates actions and jump types
with the handler actions that replace the actions if a jump of the given type (or a descendant of
the jump type) occurs. An action used as a handler is a kind of composite action. It must have

Figure 2-62 Jump handling classes

InputPin

(from Action Foundation) JumpAction
1

0..1+/jum pOc curence

1

0..1

Action

(from Action Foundation)

PrimitiveAction

(from Action Foundation)

OutputP in

(from Action Foundation)

Action

(from Action Foundation)

OutputP in

(from Action Foundation)

Class ifier

(from Core)

HandlerAction

0..*

0..* +handlerOu tpu t

0..*

{ordered}

0..*

1

0..1

+body1

0..1

1

0..1

+/occurrence1

0..1

JumpHandler

1

0..*

+jumpTy pe 1

0..*

1

0..*

+body

1

+jumpHandler

0..*

Action

(from Action Foundation)

0..*

0..*

+jumpHandler 0..*

+protec tedAction 0..*
September 2002 OMG-UML , v1.5 Jump Actions 2-331

2 UML Semantics
one internal output pin; the output pin receives the jump occurrence object and makes it
available within the handler action. A jump handler action must a list of output pins that
matches in number, order, and types the outputs of the action for which it handles jumps. If it
does not have a matching list of output pins, it may still catch the jump, but it must reraise the
same or another jump rather than completing normally (otherwise the outputs of the original
action would not be defined). The handler action has a body action (often a group action) which
it executes. The occurrence pin is available to the body action as an available input.

Associations
• jumpHandler: JumpHandler [1..1]

The handler catches any jump of the given jump type or a descendant type during an
execution of its attached action. The handler action must own one internal output pin that
receives the jump occurrence object. It must have a list of output pins that matches in number,
order, and types those of the action it protects.

• body: Action [1..1]
The action that is triggered by the jump handler. The occurrence output pin of the handler
action is available to the body action. All inputs available to the protected action are also
available to the body action. No output pins of the body action are accessible outside the
jump handler except the designated handlerOutput pins.

Inputs

none

Outputs
• occurrence: T [1..1], where T = self.jumpHandler.jumpType

[An output pin owned by the HandlerAction itself and available to the body action but not
outside the HandlerAction.] During the execution of the handler action, the value of the jump
occurrence object is available on this pin.

• handlerOutput: U [0..*], where U = self.jumpHandler.protectedAction..availableOutput.type,
for all combinations of jumpHandler and protectedAction
[A list of output pins owned by the body action but designated by the handler action. The
number and types of the pins in the ordered list must match the number and types of the pins
that are outputs of the action protected by the handler action.] At the completion of
execution of the body action for a jump handler, the values on these pins are copied to the
output pins of the protected action, and the successors of the protected action are enabled as
if it had completed normally.

Well-formedness rules
[1] An action used as a jump handler must have output pins that match the output pins of the pro-

tected action.

self.body.outputPin.type = self.jumpHandler.protectedAction.outputPin.type

[2] The occurrence input pin must have a type matching the corresponding jump type.

self.occurrence.type = self.jumpHandler.jumpType
2-332 OMG-UML , v1.5 Jump Actions September 2002

2 UML Semantics
JumpAction

An action whose execution causes the occurrence of a specified jump with specified arguments.
The execution of this action has the remarkable property that it cannot complete normally.
Although a jump handler could (somewhat perversely) be attached to the jump action itself,
usually the purpose of a jump action is to terminate a group of actions containing the raise
action and escape to a jump handler at some enclosing level. The use of this action is the
normal way to represent break and continue statements from programming languages.

Inputs
• jumpOccurrence: T [1..1], where T is any user class

The jump occurrence object caused by the action. When the action is executed, a jump occurs
and the object becomes its the jump occurrence object. The execution of the jump action is
terminated (!) and the normal process of jump handling occurs using the given jump object.

Outputs

none

JumpHandler

(not an action) Essentially the reification of a qualified association relating an Action and a
jump type to the HandlerAction that is invoked if the jump occurs during the execution of the
action.

Associations
• body: HandlerAction [1..1]

The action executed if an occurrence of the given jump type occurs during an execution of the
attached action.

• jumpType: Classifier [1..1]
The type of jump caught by the jump handler.

• protectedAction [0..*]
The action whose executions are protected by the jump handler. The same handler can protect
multiple actions.

Well-formedness rules

none

2.23.6 Additional Jump Semantics for Actions Defined Elsewhere

ConditionalAction

Semantics

(Additional semantics for jump handling)
September 2002 OMG-UML , v1.5 Jump Actions 2-333

2 UML Semantics
If a jump fails to be handled by an executing body action, reaches the propagating status, the
jump propagates to the conditional execution action itself. The execution of the conditional is
terminated. Normal jump handling occurs.

If jump fails to be handled by the execution of a test action of a clause and no other clauses are
executing, the jump propagates to the conditional execution itself. The execution of the
conditional is terminated. Normal jump handling occurs. Note that if some clause returns true,
execution of its body proceeds in spite of a jump in the test action from another clause.

FilterAction

Semantics

(Additional semantics for jump handling)

If a jump is propagated from a subordinate subaction, the jump is considered raised in the filter
execution. If there are other active subordinate subactions, they must complete before jump
handling can continue. When there are no active subordinate subactions, the filter execution is
terminated and the jump is raised on it. If more than one subordinate action propagates a jump,
it is indeterminate which jump will be propagated to the filter execution.

GroupAction

Semantics

(Additional semantics for jump handling)

If a jump fails to be handled by one of the concurrently executing subactions of the group, the
jump is considered raised in the group action execution. Any concurrently executing actions in
the group must complete before the jump propagates to the enclosing action.

If more than one jump is propagated concurrently to the group action execution, one of them
will be propagated when all of the other concurrent executions are inactive, but it is
indeterminate which one.

When interrupts are added to UML, it is expected that the occurrence of an unhandled jump
within a group action would be a situation that would generate an interrupt.

IterateAction

Semantics

(Additional semantics for jump handling)

If a jump is propagated from the subordinate execution, the iterate execution is terminated and
the jump handler of the iterate action handles the jump.
2-334 OMG-UML , v1.5 Jump Actions September 2002

2 UML Semantics
LoopAction

Semantics

(Additional semantics for jump handling)

If a jump fails to be handled by either the test action or the body action of a loop, the jump
propagates to the loop action itself. The execution of the loop is terminated. Normal jump
handling occurs.

MapAction

Semantics

(Additional semantics for jump handling)

If a jump is propagated from a subordinate subaction, the jump is considered raised in the map
execution. If there are other active subordinate subactions, they must complete before the jump
propagates to the map execution itself. When there are no active subordinate subactions, the
map execution is terminated and the normal jump handling occurs at the map execution action.
If more than one subordinate action propagates a jump, it is indeterminate which jump will be
propagated to the map execution.

Procedure

Semantics

(Additional semantics for jump handling)

If a jump is propagated from the subordinate action, execution of the procedure is terminated.
The jump object is treated as the reply and it is passed to the caller in lieu of the normal reply
object. The procedure execution is considered complete. If the invocation was asynchronous,
the reply is ignored and no further propagation occurs.

The jump is returned to the caller as the reply object. This permits the caller to handle a jump
inline, if desired. If the call result is strongly typed and the jump type does not match the return
type, the jump is reraised in the calling procedure. Therefore no special mechanism is need to
propagate jumps to callers.

ReduceAction

Semantics

(Additional semantics for jump handling)

If a jump is propagated from a subordinate execution, execution of the reduce action is
terminated and the jump is raised on the reduce action itself.
September 2002 OMG-UML , v1.5 Jump Actions 2-335

2 UML Semantics
2.23.7 Jump Value Classes

These classes may be used as jump types to provide certain traditional control flow capabilities.

BreakJump

As the type of a jump, represents a traditional break statement. It has no attributes.

Attributes

none

Associations

none

ContinueJump

As the type of a jump, represents a traditional continue statement. It has no attributes.

Attributes

none

Associations

none
2-336 OMG-UML , v1.5 Jump Actions September 2002

UML Notation Guide 3
This guide describes the notation for the visual representation of the Unified Modeling
Language (UML). This notation document contains brief summaries of the semantics
of UML constructs, but the UML Semantics chapter must be consulted for full details.

Contents

This chapter contains the following topics.

Topic Page

“Part 1 - Background”

“Introduction” 3-5

Part 2 - Diagram Elements

“Graphs and Their Contents” 3-6

“Drawing Paths” 3-7

“Invisible Hyperlinks and the Role of Tools” 3-7

“Background Information” 3-8

“String” 3-8

“Name” 3-9

“Label” 3-10

“Keywords” 3-11

“Expression” 3-11

“Type-Instance Correspondence” 3-14

Part 3 - Model Management
September 2002 3- 3-1

3 UML Notation Guide
“Package” 3-16

“Subsystem” 3-19

“Model” 3-24

Part 4 - General Extension Mechanisms

“Constraint and Comment” 3-26

“Element Properties” 3-29

“Stereotypes” 3-31

Part 5 - Static Structure Diagrams

“Class Diagram” 3-34

“Object Diagram” 3-35

“Classifier” 3-35

“Class” 3-35

“Name Compartment” 3-38

“List Compartment” 3-38

“Attribute” 3-41

“Operation” 3-44

“Nested Class Declarations” 3-48

“Type and Implementation Class” 3-49

“Interfaces” 3-50

“Parameterized Class (Template)” 3-52

“Bound Element” 3-54

“Utility” 3-56

“Metaclass” 3-57

“Enumeration” 3-57

“Stereotype Declaration” 3-57

“Powertype” 3-61

“Class Pathnames” 3-62

“Accessing or Importing a Package” 3-63

“Object” 3-64

“Composite Object” 3-67

“Association” 3-68

“Binary Association” 3-68

Topic Page
3-2 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
“Association End” 3-71

“Multiplicity” 3-75

“Qualifier” 3-76

“Association Class” 3-77

“N-ary Association” 3-79

“Composition” 3-81

“Link” 3-84

“Generalization” 3-86

“Dependency” 3-90

“Derived Element” 3-93

“InstanceOf” 3-93

Part 6 - Use Case Diagrams

“Use Case Diagram” 3-94

“Use Case” 3-96

“Actor” 3-97

“Use Case Relationships” 3-97

“Actor Relationships” 3-99

Part 7 - Interaction Diagrams

“Collaboration” 3-101

“Sequence Diagram” 3-102

“Object Lifeline” 3-108

“Activation” 3-110

“Message and Stimulus” 3-111

“Transition Times” 3-113

Part 8 - Collaboration Diagrams

“Collaboration Diagram” 3-114

“Pattern Structure” 3-117

“Collaboration Contents” 3-121

“Interactions” 3-123

“Collaboration Roles” 3-124

“Multiobject” 3-127

“Active object” 3-128

Topic Page
September 2002 OMG-UML , v1.5 3-3

3 UML Notation Guide
“Message and Stimulus” 3-111

“Creation/Destruction Markers” 3-134

Part 9 - Statechart Diagrams

“Statechart Diagram” 3-136

“State” 3-137

“Composite States” 3-140

“Events” 3-142

“Simple Transitions” 3-145

“Transitions to and from Concurrent States” 3-146

“Transitions to and from Composite States” 3-147

“Factored Transition Paths” 3-150

“Submachine States” 3-152

“Synch States” 3-154

Part 10 - Activity Diagrams

“Activity Diagram” 3-155

“Action state” 3-158

“Subactivity state” 3-159

“Decisions” 3-159

“Call States” 3-161

“Swimlanes” 3-161

“Action-Object Flow Relationships” 3-163

“Control Icons” 3-165

“Synch States” 3-154

“Dynamic Invocation” 3-168

“Conditional Forks” 3-169

Part 11 - Implementation Diagrams

“Component Diagram” 3-169

“Deployment Diagram” 3-171

“Node” 3-173

“Component” 3-174

Topic Page
3-4 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
Part 1 - Background

3.1 Introduction

This chapter is arranged in parts according to semantic concepts subdivided by
diagram types. Within each diagram type, model elements that are found on that
diagram and their representation are listed. Note that many model elements are usable
in more than one diagram. An attempt has been made to place each description where
it is used the most, but be aware that the document involves implicit cross-references
and that elements may be useful in places other than the section in which they are
described. Be aware also that the document is nonlinear: there are forward references
in it. It is not intended to be a teaching document that can be read linearly, but a
reference document organized by affinity of concept.

Each part of this chapter is divided into sections, roughly corresponding to important
model elements and notational constructs. Note that some of these constructs are used
within other constructs; do not be misled by the flattened structure of the chapter.
Within each section the following subsections may be found:

• Semantics: Brief summary of semantics. For a fuller explanation and discussion of
fine points, see the UML Semantics chapter in this specification.

• Notation: Explains the notational representation of the semantic concept (“forward
mapping to notation”).

• Presentation options: Describes various options in presenting the model
information, such as the ability to suppress or filter information, alternate ways of
showing things, and suggestions for alternate ways of presenting information within
a tool.

Dynamic tools need the freedom to present information in various ways and the
authors do not want to restrict this excessively. In some sense, we are defining the
“canonical notation” that printed documents show, rather than the “screen notation.”
The ability to extend the notation can lead to unintelligible dialects, so we hope this
freedom will be used in intuitive ways. The authors have not sought to eliminate all
the ambiguity that some of these presentation options may introduce, because the
presence of the underlying model in a dynamic tool serves to easily disambiguate
things. Note that a tool is not supposed to pick just one of the presentation options
and implement it. Tools should offer users the options of selecting among various
presentation options, including some that are not described in this document.

• Style guidelines: Include suggestions for the use of stylistic markers, such as fonts,
naming conventions, arrangement of symbols that are not explicitly part of the
notation, but that help to make diagrams more readable. These are similar to text
indentation rules in C++ or Smalltalk. Not everyone will choose to follow these
suggestions, but the use of some consistent guidelines of your own choosing is
recommended in any case.

• Example: Shows samples of the notation. String and code examples are given in the
following font: This is a string sample.
September 2002 OMG-UML , v1.5 Introduction 3-5

3 UML Notation Guide
• Mapping: Shows the mapping of notation elements to metamodel elements (“reverse
mapping from notation”). This indicates how the notation would be represented as
semantic information. Note that, in general, diagrams are interpreted in a particular
context in which semantic and graphic information is gathered simultaneously. The
assumption is that diagrams are constructed by an editing tool that internalizes the
model as the diagram is constructed. Some semantic constructs have no graphic
notation and would be shown to a user within a tool using a form or table.

Part 2 - Diagram Elements

3.2 Graphs and Their Contents

Most UML diagrams and some complex symbols are graphs containing nodes
connected by paths. The information is mostly in the topology, not in the size or
placement of the symbols (there are some exceptions, such as a sequence diagram with
a metric time axis). There are three kinds of visual relationships that are important:

1. connection (usually of lines to 2-d shapes),

2. containment (of symbols by 2-d shapes with boundaries), and

3. visual attachment (one symbol being “near” another one on a diagram).

These visual relationships map into connections of nodes in a graph, the parsed form of
the notation.

UML notation is intended to be drawn on 2-dimensional surfaces. Some shapes are 2-
dimensional projections of 3-d shapes (such as cubes), but they are still rendered as
icons on a 2-dimensional surface. In the near future, true 3-dimensional layout and
navigation may be possible on desktop machines; however, it is not currently practical.

There are basically four kinds of graphical constructs that are used in UML notation:

1. Icons - An icon is a graphical figure of a fixed size and shape. It does not expand to
hold contents. Icons may appear within area symbols, as terminators on paths or as
standalone symbols that may or may not be connected to paths.

2. 2-d Symbols - Two-dimensional symbols have variable height and width and they
can expand to hold other things, such as lists of strings or other symbols. Many of
them are divided into compartments of similar or different kinds. Paths are
connected to two-dimensional symbols by terminating the path on the boundary of
the symbol. Dragging or deleting a 2-d symbol affects its contents and any paths
connected to it.

3. Paths - Sequences of line segments whose endpoints are attached. Conceptually a
path is a single topological entity, although its segments may be manipulated
graphically. A segment may not exist apart from its path. Paths are always attached
to other graphic symbols at both ends (no dangling lines). Paths may have
terminators; that is, icons that appear in some sequence on the end of the path and
that qualify the meaning of the path symbol.
3-6 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
4. Strings - Present various kinds of information in an “unparsed” form. UML assumes
that each usage of a string in the notation has a syntax by which it can be parsed
into underlying model information. For example, syntaxes are given for attributes,
operations, and transitions. These syntaxes are subject to extension by tools as a
presentation option. Strings may exist as singular elements of symbols or
compartments of symbols, as elements in lists (in which case the position in the list
conveys information), as labels attached to symbols or paths, or as stand-alone
elements on a diagram.

3.3 Drawing Paths

A path consists of a series of line segments whose endpoints coincide. The entire path
is a single topological unit. Line segments may be orthogonal lines, oblique lines, or
curved lines. Certain common styles of drawing lines exist: all orthogonal lines, or all
straight lines, or curves only for bevels. The line style can be regarded as a tool
restriction on default line input. When line segments cross, it may be difficult to know
which visual piece goes with which other piece; therefore, a crossing may optionally
be shown with a small semicircular jog by one of the segments to indicate that the
paths do not intersect or connect (as in an electrical circuit diagram).

In some relationships (such as aggregation and generalization) several paths of the
same kind may connect to a single symbol. In some circumstances (described for the
particular relationship) the line segments connected to the symbol can be combined
into a single line segment, so that the path from that symbol branches into several
paths in a kind of tree. This is purely a graphical presentation option; conceptually the
individual paths are distinct. This presentation option may not be used when the
modeling information on the segments to be combined is not identical.

3.4 Invisible Hyperlinks and the Role of Tools

A notation on a piece of paper contains no hidden information. A notation on a
computer screen may contain additional invisible hyperlinks that are not apparent in a
static view, but that can be invoked dynamically to access some other piece of
information, either in a graphical view or in a textual table. Such dynamic links are as
much a part of a dynamic notation as the visible information, but this guide does not
prescribe their form. We regard them as a tool responsibility. This document attempts
to define a static notation for the UML, with the understanding that some useful and
interesting information may show up poorly or not at all in such a view. On the other
hand, we do not know enough to specify the behavior of all dynamic tools, nor do we
want to stifle innovation in new forms of dynamic presentation. Eventually some of the
dynamic notations may become well enough established to standardize them, but we
do not feel that we should do so now.
September 2002 OMG-UML , v1.5 Drawing Paths 3-7

3 UML Notation Guide
3.5 Background Information

3.5.1 Presentation Options

Each appearance of a symbol for a class on a diagram or on different diagrams may
have its own presentation choices. For example, one symbol for a class may show the
attributes and operations and another symbol for the same class may suppress them.
Tools may provide style sheets attached either to individual symbols or to entire
diagrams. The style sheets would specify the presentation choices. (Style sheets would
be applicable to most kinds of symbols, not just classes.)

Not all modeling information is presented most usefully in a graphical notation. Some
information is best presented in a textual or tabular format. For example, much detailed
programming information is best presented as text lists. The UML does not assume
that all of the information in a model will be expressed as diagrams; some of it may
only be available as tables. This document does not attempt to prescribe the format of
such tables or of the forms that are used to access them, because the underlying
information is adequately described in the UML metamodel and the responsibility for
presenting tabular information is a tool responsibility. It is assumed that hidden links
may exist from graphical items to tabular items.

3.6 String

A string is a sequence of characters in some suitable character set used to display
information about the model. Character sets may include non-Roman alphabets and
characters.

3.6.1 Semantics

Diagram strings normally map underlying model strings that store or encode
information about the model, although some strings may exist purely on the diagrams.
UML assumes that the underlying character set is sufficient for representing multibyte
characters in various human languages; in particular, the traditional 8-bit ASCII
character set is insufficient. It is assumed that the tool and the computer manipulate
and store strings correctly, including escape conventions for special characters, and this
document will assume that arbitrary strings can be used without further fuss.

3.6.2 Notation

A string is displayed as a text string graphic. Normal printable characters should be
displayed directly. The display of nonprintable characters is unspecified and platform-
dependent. Depending on purpose, a string might be shown as a single-line entity or as
a paragraph with automatic line breaks.

Typeface and font size are graphic markers that are normally independent of the string
itself. They may code for various model properties, some of which are suggested in
this document and some of which are left open for the tool or the user.
3-8 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.6.3 Presentation Options

Tools may present long strings in various ways, such as truncation to a fixed size,
automatic wrapping, or insertion of scroll bars. It is assumed that there is a way to
obtain the full string dynamically.

3.6.4 Examples

BankAccount

integrate (f: Function, from: Real, to: Real)

{ author = “Joe Smith”, deadline = 31-March-1997, status = analysis }

The purpose of the shuffle operation is nominally to put the cards into a random
configuration. However, to more closely capture the behavior of physical decks,
in which blocks of cards may stick together during several riffles, the operation is
actually simulated by cutting the deck and merging the cards with an imperfect
merge.

3.6.5 Mapping

A graphic string maps into a string within a model element. The mapping depends on
context. In some circumstances, the visual string is parsed into multiple model
elements. For example, an operation signature is parsed into its various fields. Further
details are given with each kind of symbol.

3.7 Name

3.7.1 Semantics

A name is a string that is used to identify a model element uniquely within some
scope. A pathname is used to find a model element starting from the root of the system
(or from some other point). A name is a selector (qualifier) within some scope—the
scope is made clear in this document for each element that can be named.

A pathname is a series of names linked together by a delimiter (such as ‘::’). There are
various kinds of pathnames described in this document, each in its proper place and
with its particular delimiter.

3.7.2 Notation

A name is displayed as a text string graphic. Normally a name is displayed on a single
line and will not contain nonprintable characters. Tools and languages may impose
reasonable limits on the length of strings and the character set they use for names,
possibly more restrictive than those for arbitrary strings, such as comments.
September 2002 OMG-UML , v1.5 Name 3-9

3 UML Notation Guide
3.7.3 Example

Names:

BankAccount

integrate

controller

abstract

this_is_a_very_long_name_with_underscores

Pathname:

MathPak::Matrices::BandedMatrix

3.7.4 Mapping

Maps to the name of a model element. The mapping depends on context, as with
String. Further details are given with the particular element.

3.8 Label

A label is a string that is attached to a graphic symbol.

3.8.1 Semantics

A label is a term for a particular use of a string on a diagram. It is purely a notational
term.

3.8.2 Notation

A label is a string that is attached graphically to another symbol on a diagram. Visually
the attachment normally is by containment of the string (in a closed region) or by
placing the string near the symbol. Sometimes the string is placed in a definite position
(such as below a symbol) but most of the time the statement is that the string must be
“near” the symbol. A tool maintains an explicit internal graphic linking between a
label and a graphic symbol, so that the label drags with the symbol, but the final
appearance of the diagram is a matter of aesthetic judgment and should be made so
that there is no confusion about which symbol a label is attached to. Although the
attachment may not be obvious from a visual inspection of a diagram, the attachment
is clear and unambiguous at the graphic level (and poses no ambiguity in the semantic
mapping).
3-10 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.8.3 Presentation Options

A tool may visually show the attachment of a label to another symbol using various
aids (such as a line in a given color, flashing of matched elements, etc.) as a
convenience.

3.8.4 Example

Figure 3-1 Attachment by Containment and Attachment by Adjacency

3.9 Keywords

The number of easily-distinguishable visual symbols is limited. The UML notation
makes use of text keywords in places to distinguish variations on a common theme,
including metamodel subclasses of a base class, stereotypes of a metamodel base class,
and groups of list elements. From the user’s perspective, the metamodel distinction
between metamodel subclasses and stereotypes is often unimportant, although it is
important to tool builders and others who implement the metamodel.

The general notation for the use of a keyword is to enclose it in guillemets («»):

«keyword»

Certain predefined keywords are described in the text of this document. These must be
treated as reserved words in the notation. Others are available for users to employ as
stereotype names. The use of a stereotype name that matches a predefined keyword is
ill formed.

3.10 Expression

3.10.1 Semantics

Various UML constructs require expressions, which are linguistic formulas or
procedures that yield values when evaluated at run-time. These include expressions for
types, boolean values, and numbers. UML does not include an explicit linguistic
analyzer for expressions. Rather, expressions are expressed as strings in a particular

BankAccount

account
September 2002 OMG-UML , v1.5 Keywords 3-11

3 UML Notation Guide
language or using procedures, or both. The OCL constraint language is used within the
UML semantic definition and may also be used at the user level; other languages (such
as programming languages) may also be used.

UML avoids specifying the syntax for constructing type expressions because they are
so language-dependent. It is assumed that the name of a class or simple data type will
map into a simple Classifier reference, but the syntax of complicated language-
dependent type expressions, such as C++ function pointers, is the responsibility of the
specification language.

3.10.2 Notation

An expression is displayed as a string defined in a particular language. The syntax of
the string is the responsibility of a tool and a linguistic analyzer for the language. The
assumption is that the analyzer can evaluate strings at run-time to yield values of the
appropriate type, or can yield a procedure to capture the meaning of the expression.
For example, a type expression evaluates to a Classifier reference, and a boolean
expression evaluates to a true or false value. The language itself is known to a
modeling tool but is generally implicit on the diagram, under the assumption that the
form of the expression makes its purpose clear.

3.10.3 Examples

BankAccount

BankAccount * (*) (Person*, int)

array [1..20] of reference to range (-1.0..1.0) of Real

[i > j and self.size > i]

3.10.4 Mapping

An expression string maps to an Expression element (possibly a particular subclass of
Expression, such as BooleanExpression or TimeExpression). If an analyzer yields a
procedure for calculating the value of the expression, then the body association from
Expression to Procedure is used to record this.

3.10.5 OCL Expressions

UML includes a definition of the OCL language, which is used to define constraints
within the UML metamodel itself. The OCL language may be supported by tools for
user-written expressions as well. Other possible languages include various computer
languages as well as plain text (which cannot be parsed by a tool, of course, and is
therefore only for human information). The OCL language is defined in the “Object
Constraint Language Specification” chapter.
3-12 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.10.6 Selected OCL Notation

Syntax for some common navigational expressions are shown below. These forms can
be chained together. The leftmost element must be an expression for an object or a set
of objects. The expressions are meant to work on sets of values when applicable.

3.10.7 Examples

flight.pilot.training_hours > flight.plane.minimum_hours

company.employees−>select (title = “Manager” and self.reports−>size > 10)

3.11 Note

A note is a graphical symbol containing textual information (possibly including
embedded images). It is a notation for rendering various kinds of textual information
from the metamodel, such as constraints, comments, method bodies, and tagged values.

3.11.1 Semantics

A note is a notational item. It shows textual information within some semantic
element.

3.11.2 Notation

A note is shown as a rectangle with a “bent corner” in the upper right corner. It
contains arbitrary text. It appears on a particular diagram and may be attached to zero
or more modeling elements by dashed lines.

3.11.3 Presentation Options

A note may have a stereotype.

item ‘.’ selector The selector is the name of an attribute in the item or the name of
the target end of a link attached to the item. The result is the value
of the attribute or the related object(s). The result is a value or a
set of values depending on the multiplicities of the item and the
association.

item ‘.’ selector ‘[‘ qualifier-value ‘]’ The selector designates a qualified association that qualifies the
item. The qualifier-value is a value for the qualifier attribute. The
result is the related object selected by the qualifier. Note that this
syntax is applicable to array indexing as a form of qualification.

set ‘->’ ‘select’ ‘(‘ boolean-expression ‘)’ The boolean-expression is written in terms of objects within the
set. The result is the subset of objects in the set for which the
boolean expression is true.
September 2002 OMG-UML , v1.5 Note 3-13

3 UML Notation Guide
A note with the keyword “constraint” or a more specific stereotype of constraint (such
as the code body for a method) designates a constraint that is part of the model and not
just part of a diagram view. Such a note is the view of a model element (the constraint).

3.11.4 Example

See also Figure 3-17 on page 3-28 for a note symbol containing a constraint.

Figure 3-2 Note

3.11.5 Mapping

A note may represent the textual information in several possible metamodel constructs;
it must be created in context that is known to a tool, and the tool must maintain the
mapping. The string in the note maps to the body of the corresponding modeling
element. A note may represent:

• a constraint,

• a tagged value,

• the body of a procedure of a method, or

• other string values within modeling elements.

It may also represent a comment attached directly to a diagram element.

3.12 Type-Instance Correspondence

A major purpose of modeling is to prepare generic descriptions that describe many
specific items. This is often known as the type-instance dichotomy. Many or most of
the modeling concepts in UML have this dual character, usually modeled by two paired
modeling elements, one represents the generic descriptor and the other the individual
items that it describes. Examples of such pairs in UML include: Class-Object,
Association-Link, UseCase-UseCaseInstance, Message-Stimulus, and so on.

Although diagrams for type-like elements and instance-like elements are not exactly
the same, they share many similarities. Therefore, it is convenient to choose notation
for each type-instance pair of elements such that the correspondence is visually
apparent immediately. There are a limited number of ways to do this, each with
advantages and disadvantages. In UML, the type-instance distinction is shown by
employing the same geometrical symbol for each pair of elements and by underlining

This model was built
by Alan Wright after
meeting with the
mission planning team.
3-14 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
the name string (including type name, if present) of an instance element. This visual
distinction is generally easily apparent without being overpowering even when an
entire diagram contains instance elements.

Figure 3-3 Classes and Objects

A tool is free to substitute a different graphic marker for instance elements at the user’s
option, such as color, fill patterns, or so on.

Roles (in collaborations) are somewhat between types and instances. Like instances,
they identify distinct occurrences of a single classifier. Like types, they describe a
reusable element that can have many distinct instances. A role is a distinguishable use
of a classifier, but one that is still part of a general description (a collaboration) that
can be used to create many instances. A run-time object may correspond to zero or
more classes and to zero or more roles. The notation for a role permits indication of its
base classifiers. The notation for an instance permits specification of its classifiers, its
roles, or both.

A role is indicated by a name, colon, and type, not underlined and part of a
collaboration. An instance is indicated by an optional name, optional slash followed by
list of roles, colon, and list of types.

Point

x: Real
y: Real

rotate (angle: Real)
scale (factor: Real)

p1: Point

x = 3.14
y = 2.718

:Point

x = 1
y = 1.414
September 2002 OMG-UML , v1.5 Type-Instance Correspondence 3-15

3 UML Notation Guide
Figure 3-4 Roles and objects

Part 3 - Model Management

3.13 Package

3.13.1 Semantics

A package is a grouping of model elements. Packages themselves may be nested
within other packages. A package may contain subordinate packages as well as other
kinds of model elements. All kinds of UML model elements can be organized into
packages.

Note that packages own model elements and are the basis for configuration control,
storage, and access control. Each element can be directly owned by a single package,
so the package hierarchy is a strict tree. However, packages can reference other
packages, modeled by using one of the stereotypes «import» and «access» of
Permission dependency, so the usage network is a graph. Other kinds of dependencies
between packages usually imply that one or more dependencies among the elements
exists.

3.13.2 Notation

A package is shown as a large rectangle with a small rectangle (a “tab”) attached to the
left side of the top of the large rectangle. It is the common folder icon.

p1/lead: Point

x = 3.14
y = 2.718

p2/lead,tail:Point

x = 1
y = 1.414

lead: Point

tail: Point

roles objects
3-16 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
The contents of the package may be shown within the large rectangle. Contents may
also be shown by branching lines to contained elements, drawn outside of the package
(see Figure 3-5 on page 3-18). A plus sign (+) within a circle is drawn at the end
attached to the container.

• If the contents of the package are not shown within the large rectangle, then the
name of the package may be placed within the large rectangle.

• If the contents of the package are shown within the large rectangle, then the name
of the package may be placed within the tab.

A keyword string may be placed above the package name. The predefined stereotypes
facade, framework, stub, and topLevel are notated within guillemets.

A list of properties may be placed in braces after or below the package name.
Example: {abstract}. See Section 3.17, “Element Properties,” on page 3-29 for details
of property syntax.

The visibility of a package element outside the package may be indicated by preceding
the name of the element by a visibility symbol (‘+’ for public, ‘-’ for private, ‘#’ for
protected, ‘~’ for package).

Relationships may be drawn between package symbols to show relationships between
some of the elements in the packages. An import or access relationship between two
packages is drawn as a dashed arrow with open arrowhead, labeled with the string
«import» or «access», respectively.

Elements from imported or accessed packages may be shown outside the package
symbol. As (public) elements in imported packages are added to the client namespace,
they may alternatively be drawn inside the package symbol.

3.13.3 Presentation Options

A tool may show visibility by a graphic marker, such as color or font.

A tool may also show visibility by selectively displaying those elements that meet a
given visibility level; for example, all of the public elements only.

A diagram showing a package with contents must not necessarily show all its contents;
it may show a subset of the contained elements according to some criterion.

The contents of a package may also be shown using tree notation. The namespace
ownership relationships between the package and its elements are marked with a circle
with a cross in it at the owning end.

3.13.4 Style Guidelines

It is expected that packages with large contents will be shown as simple icons with
names, in which the contents may be dynamically accessed by “zooming” to a detailed
view.
September 2002 OMG-UML , v1.5 Package 3-17

3 UML Notation Guide
3.13.5 Example

Figure 3-5 Packages and their access and import relationships.

Figure 3-6 Some of the contents of the Editor package shown in a tree structure.

Controller

Diagram
Elements

Windowing
System

Domain
Elements

Graphics
Core

Microsoft
Windows

Motif

WindowsCore

MotifCore

Editor

«import»

«import»

«import»

«import»

«import»

«import»

«access»

«access»

Editor

Controller
Diagram
Elements

Domain
Elements
3-18 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.13.6 Mapping

A package symbol maps into a Package element. The name on the package symbol is
the name of the Package element. If there is a string above the package name other
than «model» or «subsystem», then it maps into a Package element with the
corresponding stereotype. If there is a string «model» or «subsystem», then it maps
into a Model or Subsystem element, respectively.

A relationship icon drawn from the package symbol boundary to another package
symbol maps into a corresponding relationship to the other package element.

A symbol directly contained within the package symbol; that is, not contained within
another symbol maps into a model element either owned or referenced by the package
element. The alias used for a referenced element is often its pathname, in which case it
is directly visible from the diagram that the element is not owned by the package. Only
the reference is owned by the current package. Alternatively, a symbol shown outside
the package symbol, attached to one of the symbols within the package symbol,
denotes a referenced model element.

Symbols connected to the package symbol by branching lines with a plus sign at the
end attached to the package symbol, map to elements in the package.

3.14 Subsystem

3.14.1 Semantics

Whereas a package is a generic mechanism for organizing model elements, a
subsystem represents a behavioral unit in the physical system, and hence in the model.
A subsystem offers interfaces and has operations, and its contents are partitioned into
specification and realization elements. The specification of the subsystem consists of
operations on the subsystem, together with specification elements such as use cases,
state machines.

Apart from defining a namespace, a subsystem serves as a specification unit for the
behavior of its contained model elements. A subsystem may or may not be instantiable.

3.14.2 Notation

A subsystem is notated basically in the same way as a package, with the addition of a
fork symbol placed in the upper right corner of the large rectangle. The name of the
subsystem (together with optional keyword, stereotype) is placed within the large
rectangle. Optionally, especially if contents of the subsystem are shown within the
large rectangle, the subsystem name and the fork are placed within the tab (the small
rectangle).

An instantiable subsystem has the string «instantiable» above its name.

The large rectangle has three compartments, one for operations and one for each of the
subsets specification elements and realization elements. These are usually shown by
dividing the rectangle by a vertical line, and then dividing the area to the left of this
September 2002 OMG-UML , v1.5 Subsystem 3-19

3 UML Notation Guide
line into two compartments by a horizontal line. The operations are shown in the upper
left compartment, the specification elements in the compartment below, and the
realization elements in the right compartment. The latter two compartments are labeled
‘Specification Elements’ and ‘Realization Elements,’ respectively, to avoid potential
ambiguity. The operations compartment is unlabeled. This is the general pattern for
subsystem notation, although there are many different ways to customize it in a
particular diagram, see Section 3.14.3, “Presentation Options,” on page 3-20 and
Section 3.14.4, “Example,” on page 3-21.

Figure 3-7 The general pattern for subsystem notation, with three compartments.

The mapping from the realization part to the specification part; that is, to operations
and specification elements, is drawn using dashed arrows with closed, hollow
arrowheads. For collaborations, the mapping may also be expressed textually.

When a subsystem is shown together with other, peer elements in a diagram, it is often
shown without contents, in which case there are no compartments in the large
rectangle. See Section 3.14.4, “Example,” on page 3-21.

3.14.3 Presentation Options

The fork symbol may be replaced by the keyword «subsystem» placed above the name
of the subsystem.

The compartments may be rearranged within the subsystem symbol.

One or more of the compartments may be collapsed or suppressed. In cases where
more than one diagram is used to show all information about a particular subsystem,
each diagram shows a subset of the subsystem’s features and/or contents. Hence,
compartments not relevant in a particular diagram are suppressed.

All contained elements in a subsystem may be shown together in one, non-labeled
compartment; that is, no visual differentiating between specification elements and
realization elements is done.

Specification Elements

Realization Elements
3-20 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
Tools may provide alternative ways to differentiate specification elements from
realization elements, such as different colors, using the keyword «specification» for
specification elements, etc.

As with packages, the contents of a subsystem may be shown using tree notation.
Distinction between specification and realization elements may then be done; for
example, by having two separate, labeled branches, or by showing the category
separately for each element in the tree as suggested above.

3.14.4 Example

Figure 3-8 An overview diagram showing subsystems with interfaces and their dependencies.

Figure 3-9 All contained elements of a subsystem shown together without division into
compartments. Here, the subsystem offers operation1(...) although this is not
explicitly shown.

In Figure 3-9 no visual separation between specification and realization elements is
made. The following three figures are schematic examples where the
specification/realization distinction is explicit. Together these figures constitute an
example of how the basic notation for subsystem can be used to show different “views”
of a subsystem in different diagrams, together giving the whole picture of the
subsystem.

SS1

SS2 SS3

operation1(...) : Type1

«Interface»
September 2002 OMG-UML , v1.5 Subsystem 3-21

3 UML Notation Guide
Figure 3-10 The specification part of a subsystem; compartment for realization part is
suppressed. Implicit from the diagram is that the operation4(...) is either an
operation of a specification element (UseCase1 or UseCase2) or of the subsystem
itself. Furthermore, in cases where no operations are used for the specification but
only contained specification elements, there is no operations compartment, and
vice versa.

Figure 3-11 The realization part of a subsystem; compartments for specification part; that is,
operations and specification elements are suppressed. Alternatively, collaborations
could be shown in a separate diagram.

operation2(...) : Type2

operation3(...) : Type3

UseCase1

UseCase2

Specification Elements

operation1(...) : Type1

«Interface»

operation4(...) : Type4

«Interface»

operation1(...) : Type1

Realization Elements
3-22 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
Figure 3-12 The mapping between specification part and realization part shown using
all three compartments, but only those realization elements with relevance to the
mapping are shown. The figure also shows examples of different ways to express
the mapping.

Figure 3-13 A component modeled using a subsystem and classes stereotyped
«focalClass» or «auxiliaryClass», respectively.

Realization Elements

operation1(...) : Type1

operation2(...) : Type2

representedOperation:
operation2

Specification Elements

operation3(...) : Type3

operation4(...) : Type4

«Interface»

UseCase1

UseCase2

Realization ElementsSpecification Elements

create(...)

«Interface»

ShoppingCartHome

findByPrimaryKey(...)
...

getItemCount(...)

«Interface»

ShoppingCart

setItemCount(...)
...getTotal(...)
setTotal(...)
...

«focalClass»

ShoppingCartImpl

«auxiliaryClass»

ContextObject
«auxiliaryClass»

RemoteObject

«auxiliaryClass»

HomeObject

Context

ShoppingCartHome

Shoppingcart
«call»

«call»

«call»

ShoppingCart

«auxiliaryClass»
ShoppingCart

ArtStoreClient

«call»

«call»

DBbroker
September 2002 OMG-UML , v1.5 Subsystem 3-23

3 UML Notation Guide
3.14.5 Mapping

A subsystem symbol maps into a Subsystem with the given name. The mapping is
analogous to that of package symbols, with the following addition:

A symbol within a compartment of the large rectangle labeled ‘Specification Elements’
or ‘Realization Elements’ is mapped to a specification or realization element of the
subsystem, respectively. An operation signature string within a non-labeled
compartment maps to an operation of the subsystem. Note that a compartment may
coincide with the whole rectangle.

A symbol, that is not an operation signature string, within a non-labeled compartment
maps to an element contained in the subsystem.

A dashed arrow with closed, hollow arrowhead from a symbol denoting a realization
element to a symbol denoting a specification element or an operation maps to a
«realize» relationship between the corresponding elements.

3.15 Model

3.15.1 Semantics

A model captures a view of a physical system. Hence, it is an abstraction of the
physical system with a certain purpose; for example, to describe behavioral aspects of
the physical system to a certain category of stakeholders. A model contains all the
model elements needed to represent a physical system completely according to the
purpose of this particular model. The model elements in a model are organized into a
package/subsystem hierarchy, where the top-most package/subsystem represents the
boundary of the physical system.

Different models of the same physical system show different aspects of the system.
The pre-defined stereotype «systemModel» can be applied to a model containing the
entire set of models for a physical system.

Relationships between elements in different models have no semantic impact on the
contents of the models because of the self-containment of models. However, they are
useful for tracing refinements and for keeping track of requirements between models.

Relationships between models express refinement, import, etc.

3.15.2 Notation

A model is notated using the ordinary package symbol with a small triangle in the
upper right corner of the large rectangle. Optionally, especially if contents of the model
is shown within the large rectangle, the triangle may be drawn to the right of the model
name in the tab.
3-24 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
Relationships between models as well as relationships between elements in different
models are shown using the notation for the given kind of relationship. In particular,
trace dependencies are notated with a dashed line, with an optional open arrowhead,
and the keyword «trace».

3.15.3 Presentation Options

A model may be notated as a package, using the ordinary package symbol with the
keyword «model» placed above the name of the model.

3.15.4 Example

Figure 3-14 Three views of a physical system, each represented by a model.

Figure 3-15 A «systemModel» containing an analysis model and a design model.

AnalysisUse Case Design
Model Model Model

«systemModel»

Analysis Design
Model Model
September 2002 OMG-UML , v1.5 Model 3-25

3 UML Notation Guide
Figure 3-16 Two examples of containment hierarchies with models and subsystems shown
using branching lines. The left hierarchy is based on Model, whereas the right one
is based on Subsystem.

3.15.5 Mapping

A model symbol maps to a Model with the given name. The mapping is analogous to
that of package symbols.

Part 4 - General Extension Mechanisms
The elements in this section are general purpose mechanisms that may be applied to
any modeling element. The semantics of a particular use depends on a convention of
the user or an interpretation by a particular constraint language or programming
language; therefore, they constitute an extensibility device for UML.

3.16 Constraint and Comment

3.16.1 Semantics

A constraint is a semantic relationship among model elements that specifies conditions
and propositions that must be maintained as true; otherwise, the system described by
the model is invalid (with consequences that are outside the scope of UML). Certain
kinds of constraints (such as an association “xor” constraint) are predefined in UML,
others may be user-defined. A user-defined constraint is described in words in a given
language, whose syntax and interpretation is a tool responsibility. A constraint
represents semantic information attached to a model element, not just to a view of it.

A comment is a text string (including references to human-readable documents)
attached directly to a model element. A comment can attach arbitrary textual
information to any model element of presumed general importance but it has no
semantic force. Comments may be used for explaining the reasons for decisions,
among other things.
3-26 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.16.2 Notation

A constraint is shown as a text string in braces ({ }). There is an expectation that
individual tools may provide one or more languages in which formal constraints may
be written. One predefined language for writing constraints is OCL (see the Object
Constraint Language Specification chapter); otherwise, the constraint may be written in
natural language. Each constraint is written in a specific language, although the
language is not generally displayed on the diagram (the tool must keep track of it,
however).

For an element whose notation is a text string (such as an attribute, etc.), the constraint
string may follow the element text string in braces.

For a list of elements whose notation is a list of text strings (such as the attributes
within a class), a constraint string may appear as an element in the list. The constraint
applies to all succeeding elements of the list until another constraint string list element
or the end of the list. A constraint attached to an individual list element does not
supersede the general constraint, but may augment or modify individual constraints
within the constraint string.

For a single graphical symbol (such as a class or an association path), the constraint
string may be placed near the symbol, preferably near the name of the symbol, if any.

For two graphical symbols (such as two classes or two associations), the constraint is
shown as a dashed arrow from one element to the other element labeled by the
constraint string (in braces). The direction of the arrow is relevant information within
the constraint. The client (tail of the arrow) is mapped to the first position and the
supplier (head of the arrow) is mapped to the second position in the constraint.

For three or more graphical symbols, the constraint string is placed in a note symbol
and attached to each of the symbols by a dashed line. This notation may also be used
for the other cases. For three or more paths of the same kind (such as generalization
paths or association paths), the constraint may be attached to a dashed line crossing all
of the paths.

A comment is shown as a text string (not enclosed in braces) within a note icon.
Syntax for including comments within other elements (such as expressions or
constraints) are not specified by UML but may be provided by a tool as part of the
expression syntax for a particular language.
September 2002 OMG-UML , v1.5 Constraint and Comment 3-27

3 UML Notation Guide
3.16.3 Example

Figure 3-17 Constraints and comment

3.16.4 Mapping

A constraint string is a string enclosed in braces ({ }).

The constraint string maps into the body expression in a Constraint element. The
mapping depends on the language of the expression, which is known to a tool but
generally not displayed on a diagram.

A constraint string following a list entry maps into a Constraint attached to the element
corresponding to the list entry.

A constraint string represented as a stand-alone list element maps into a separate
Constraint attached to each succeeding model element corresponding to subsequent list
entries (until superseded by another constraint or property string).

A constraint string placed near a graphical symbol must be attached to the symbol by a
hidden link by a tool operating in context. The tool must maintain the graphical linkage
implicitly. The constraint string maps into a Constraint attached to the element
corresponding to the symbol.

A constraint string attached to a dashed arrow maps into a constraint attached to the
two elements corresponding to the symbols connected by the arrow.

A string enclosed in braces in a note symbol maps into a Constraint attached to the
elements corresponding to the symbols connected to the note symbol by dashed lines.

Member-of

Chair-of

{subset}Person Committee

Person Company

boss

{Person.employer =
Person.boss.employer}

employerworker employee

0..1

∗ ∗

∗

∗

∗ 0..1

1

Represents
an incorporated entity.
3-28 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
A string (not enclosed in braces) in a note attached to the symbol for an element maps
into a Comment attached to the corresponding element.

3.17 Element Properties

Many kinds of elements have detailed properties that do not have a visual notation. In
addition, users can define new element properties using the tagged value mechanism.

A string may be used to display properties attached to a model element. This includes
properties represented by attributes in the metamodel as well as both predefined and
user-defined tagged values.

3.17.1 Semantics

Note that we use property in a general sense to mean any value attached to a model
element, including attributes, associations, and tagged values. In this sense it can
include indirectly reachable values that can be found starting at a given element. Some
kinds of properties would have syntax within expressions (not specified by UML) but
no explicit UML notation.

A tagged value is a keyword-value pair that may be attached to any kind of model
element (including diagram elements as well as semantic model elements). The
keyword is called a tag. Each tag represents a particular kind of property applicable to
one or many kinds of model elements. Both the tag and the value are encoded as
strings. Tagged values are an extensibility mechanism of UML permitting arbitrary
information to be attached to models. It is expected that most model editors will
provide basic facilities for defining, displaying, and searching tagged values as strings
but will not otherwise use them to extend the UML semantics. It is expected, however,
that back-end tools such as code generators, report writers, and the like will read
tagged values to guide their semantics in flexible ways.

3.17.2 Notation

A property (either a metamodel attribute or a tagged value) is displayed as a comma-
delimited sequence of property specifications all inside a pair of braces ({ }).

A property specification has the form

name = value

where name is the name of a property (metamodel attribute or arbitrary tag) and value
is an arbitrary string that denotes its value. If the type of the property is Boolean, then
the default value is true if the value is omitted. That is, to specify a value of true you
may include just the keyword. To specify a value of false, you omit the name
completely. Properties of other types require explicit values. The syntax for displaying
the value is a tool responsibility in cases where the underlying model value is not a
string or a number.

Note that property strings may be used to display built-in attributes as well as tagged
values.
September 2002 OMG-UML , v1.5 Element Properties 3-29

3 UML Notation Guide
Boolean properties frequently have the form isName, where name is the name of some
condition that may be true or false. In these cases, the form “name” may usually
appear by itself, without a value, to mean “isName = true”. For example, {abstract} is
the same as {isAbstract = true}.

Tagged values can sometimes refer to other model elements (see Section 2.6.2.5,
“TaggedValue,” on page 2-83). In that case, the usual tagged value format is used
except that the value is the name of the model element that is referenced. Alternatively,
it may be represented graphically using a «taggedValue» relationship, which uses the
dependency notation. The direction of the dependency arrow is towards the referenced
element. These two cases are illustrated in Figure 3-18

Figure 3-18 Alternative notations for tagged values as references

3.17.3 Presentation Options

A tool may present property specifications on separate lines with or without the
enclosing braces, provided they are marked appropriately to distinguish them from
other information. For example, properties for a class might be listed under the class
name in a distinctive typeface, such as italics or a different font family.

«stereotype»

Scheduler
«stereotype»

M anager

{ « taggedValue» jobScheduler

: Scheduler [1] }

«m etaC lass»

Class

«stereotype»

Scheduler
«s tereotype»

Manager

«m etaClass»

C lass

jobSchedu ler
[1]

«stereotype»«stereotype»

« taggedValue»

«stereotype»«stereotype»
3-30 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.17.4 Style Guidelines

It is legal to use strings to specify properties that have graphical notations; however,
such usage may be confusing and should be used with care.

3.17.5 Example

{ author = “Joe Smith”, deadline = 31-March-1997, status = analysis }

{ abstract }

3.17.6 Mapping

Each term within a string maps to either a built-in attribute of a model element or a
tagged value (predefined or user-defined). A tool must enforce the correspondence to
built-in attributes.

3.18 Stereotypes

3.18.1 Semantics

A stereotype is, in effect, a new class of metamodel element that is introduced at
modeling time. It represents a subclass of an existing metamodel element with the
same form (attributes and relationships) but with a different intent. Generally a
stereotype represents a usage distinction. A stereotyped element may have additional
constraints on it from the base metamodel class. It may also have required tagged
values that add information needed by elements with the stereotype. It is expected that
code generators and other tools will treat stereotyped elements specially. Stereotypes
represent one of the built-in extensibility mechanisms of UML.

3.18.2 Notation

The general presentation of a stereotype is to use the symbol for the metamodel base
element but to place a keyword string above the name of the element (if any). The
keyword string (Section 3.9, “Keywords,” on page 3-11) is the name of the stereotype
within matched guillemets, which are the quotation mark symbols used in French and
certain other languages (for example, «foo»).

Note – A guillemet looks like a double angle-bracket, but it is a single character in
most extended fonts. Most computers have a Character Map utility. Double angle-
brackets may be used as a substitute by the typographically challenged.

The keyword string is generally placed above or in front of the name of the model
element being described. If multiple stereotypes are defined for the same model
element, they are placed vertically one below the other. The keyword string may also
be used as an element in a list, in which case it applies to subsequent list elements until
September 2002 OMG-UML , v1.5 Stereotypes 3-31

3 UML Notation Guide
another stereotype string replaces it, or an empty stereotype string («») nullifies it.
Note that a stereotype name should not be identical to a predefined keyword applicable
to the same element type.

To permit limited graphical extension of the UML notation as well, a graphic icon or a
graphic marker (such as texture or color) can be associated with a stereotype. The
UML does not specify the form of the graphic specification, but many bitmap and
stroked formats exist (and their portability is a difficult problem). The icon can be used
in one of two ways:

1. It may be used instead of, or in addition to, the stereotype keyword string as part of
the symbol for the base model element that the stereotype is based on. For example,
in a class rectangle it is placed in the upper right corner of the name compartment.
In this form, the normal contents of the item can be seen.

2. The entire base model element symbol may be “collapsed” into an icon containing
the element name or with the name above or below the icon. Other information
contained by the base model element symbol is suppressed. More general forms of
icon specification and substitution are conceivable, but we leave these to the
ingenuity of tool builders, with the warning that excessive use of extensibility
capabilities may lead to loss of portability among tools.

If multiple stereotypes are defined, the graphical icons or markers are omitted.

UML avoids the use of graphic markers, such as color, that present challenges for
certain persons (the color blind) and for important kinds of equipment (such as
printers, copiers, and fax machines). None of the UML symbols require the use of such
graphic markers. Users may use graphic markers freely in their personal work for their
own purposes (such as for highlighting within a tool) but should be aware of their
limitations for interchange and be prepared to use the canonical forms when necessary.

The classification hierarchy of the stereotypes themselves can be displayed on a class
diagram, as described in Section 3.35, “Stereotype Declaration,” on page 3-57. This
capability is not required by many modelers who must use existing stereotypes but not
define new kinds of stereotypes.

3.18.3 Examples

Figure 3-19 on page 3-33 illustrates various notational forms of the stereotype
notation. Note that the top four shapes are alternatives of each other. The next one
shows how a dependency can be stereotyped and the bottom example illustrates a
model element with multiple stereotypes.
3-32 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
Figure 3-19 Varieties of Stereotype Notation

3.18.4 Mapping

The use of a stereotype keyword maps into the stereotype relationship between the
Element corresponding to the symbol containing the name and the Stereotype of the
given name. The use of a stereotype icon within a symbol maps into the stereotype
relationship between the Element corresponding to the symbol containing the icon and
the Stereotype represented by the symbol. A tool must establish the connection when
the symbol is created and there is no requirement that an icon represent uniquely one
stereotype. The use of a stereotype icon, instead of a symbol, must be created in a
context in which a tool implies a corresponding model element and a Stereotype
represented by the icon. The element and the stereotype have the stereotype
relationship.

PenTracker
«control»

PenTracker

«control»

PenTracker

PenTracker

JobManager Scheduler
«call»

location: Point

enable (Mode)

location: Point

enable (Mode)

location: Point

enable (Mode)

Lock

«control»

reqQueue: Queue

«semaphore»
September 2002 OMG-UML , v1.5 Stereotypes 3-33

3 UML Notation Guide
Part 5 - Static Structure Diagrams
Class diagrams show the static structure of the model, in particular, the things that exist
(such as classes and types), their internal structure, and their relationships to other
things. Class diagrams do not show temporal information, although they may contain
reified occurrences of things that have or things that describe temporal behavior. An
object diagram shows instances compatible with a particular class diagram.

This section discusses classes and their variations, including templates and instantiated
classes, and the relationships between classes (association and generalization) and the
contents of classes (attributes and operations).

3.19 Class Diagram

A class diagram is a graph of Classifier elements connected by their various static
relationships. Note that a “class” diagram may also contain interfaces, packages,
relationships, and even instances, such as objects and links. Perhaps a better name
would be “static structural diagram” but “class diagram” is shorter and well
established.

3.19.1 Semantics

A class diagram is a graphic view of the static structural model. The individual class
diagrams do not represent divisions in the underlying model.

3.19.2 Notation

A class diagram is a collection of static declarative model elements, such as classes,
interfaces, and their relationships, connected as a graph to each other and to their
contents. Class diagrams may be organized into packages either with their underlying
models or as separate packages that build upon the underlying model packages.

3.19.3 Mapping

A class diagram does not necessarily match a single semantic entity. A package within
the static structural model may be represented by one or more class diagrams. The
division of the presentation into separate diagrams is for graphical convenience and
does not imply a partitioning of the model itself. The contents of a diagram map into
elements in the static semantic model. If a diagram is part of a package, then its
contents map into elements in the same package (including possible references to
elements accessed or imported from other packages).
3-34 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.20 Object Diagram

An object diagram is a graph of instances, including objects and data values. A static
object diagram is an instance of a class diagram; it shows a snapshot of the detailed
state of a system at a point in time. The use of object diagrams is fairly limited, mainly
to show examples of data structures.

Tools need not support a separate format for object diagrams. Class diagrams can
contain objects, so a class diagram with objects and no classes is an “object diagram.”
The phrase is useful, however, to characterize a particular usage achievable in various
ways.

3.21 Classifier

Classifier is the metamodel superclass of Class, DataType, and Interface. All of these
have similar syntax and are therefore all notated using the rectangle symbol with
keywords used as necessary. Because classes are most common in diagrams, a
rectangle without a keyword represents a class, and the other subclasses of Classifier
are indicated with keywords. In the sections that follow, the discussion will focus on
Class, but most of the notation applies to the other element kinds as semantically
appropriate and as described later under their own sections.

3.22 Class

A class is the descriptor for a set of objects with similar structure, behavior, and
relationships. The model is concerned with describing the intension of the class, that is,
the rules that define it. The run-time execution provides its extension, that is, its
instances. UML provides notation for declaring classes and specifying their properties,
as well as using classes in various ways. Some modeling elements that are similar in
form to classes (such as interfaces, signals, or utilities) are notated using keywords on
class symbols; some of these are separate metamodel classes and some are stereotypes
of Class. Classes are declared in class diagrams and used in most other diagrams. UML
provides a graphical notation for declaring and using classes, as well as a textual
notation for referencing classes within the descriptions of other model elements.

3.22.1 Semantics

A class represents a concept within the system being modeled. Classes have data
structure and behavior and relationships to other elements.

The name of a class has scope within the package in which it is declared and the name
must be unique (among class names) within its package.
September 2002 OMG-UML , v1.5 Object Diagram 3-35

3 UML Notation Guide
3.22.2 Basic Notation

A class is drawn as a solid-outline rectangle with three compartments separated by
horizontal lines. The top name compartment holds the class name and other general
properties of the class (including stereotype); the middle list compartment holds a list
of attributes; the bottom list compartment holds a list of operations.

See Section 3.23, “Name Compartment,” on page 3-38 and Section 3.24, “List
Compartment,” on page 3-38 for more details.

3.22.2.1 References

By default a class shown within a package is assumed to be defined within that
package. To show a reference to a class defined in another package, use the syntax

Package-name::Class-name

as the name string in the name compartment. A full pathname can be specified by
chaining together package names separated by double colons (::).

3.22.3 Presentation Options

Either or both of the attribute and operation compartments may be suppressed. A
separator line is not drawn for a missing compartment. If a compartment is suppressed,
no inference can be drawn about the presence or absence of elements in it.
Compartment names can be used to remove ambiguity, if necessary (Section 3.24,
“List Compartment,” on page 3-38).

Additional compartments may be supplied as a tool extension to show other predefined
or user-defined model properties (for example, to show business rules, responsibilities,
variations, events handled, exceptions raised, and so on). Most compartments are
simply lists of strings. More complicated formats are possible, but UML does not
specify such formats; they are a tool responsibility. Appearance of each compartment
should preferably be implicit based on its contents. Compartment names may be used,
if needed.

Tools may provide other ways to show class references and to distinguish them from
class declarations.

A class symbol with a stereotype icon may be “collapsed” to show just the stereotype
icon, with the name of the class either inside the class or below the icon. Other
contents of the class are suppressed.

3.22.4 Style Guidelines

• Center class name in boldface.

• Center keyword (including stereotype names) in plain face within guillemets above
class name.
3-36 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
• For those languages that distinguish between uppercase and lowercase characters,
capitalize class names; that is, begin them with an uppercase character.

• Left justify attributes and operations in plain face.

• Begin attribute and operation names with a lowercase letter.

• Show the names of abstract classes or the signatures of abstract operations in italics.

As a tool extension, boldface may be used for marking special list elements; for
example, to designate candidate keys in a database design. This might encode some
design property modeled as a tagged value, for example.

Show full attributes and operations when needed and suppress them in other contexts
or references.

3.22.5 Example

Figure 3-20 Class Notation: Details Suppressed, Analysis-level Details,
Implementation-level Details

3.22.6 Mapping

A class symbol maps into a Class element within the package that owns the diagram.
The name compartment contents map into the class name and into properties of the
class (built-in attributes or tagged values). The attribute compartment maps into a list
of Attributes of the Class. The operation compartment maps into a list of Operations of
the Class.

The property string {location=name} maps into an implementationLocation association
to a Component. The name is the name of the containing Component.

Window

display ()

size: Area
visibility: Boolean

hide ()

Window

Window

+default-size: Rectangle
#maximum-size: Rectangle

+create ()

+display ()

+size: Area = (100,100)
#visibility: Boolean = true

+hide ()

-xptr: XWindow*

-attachXWindow(xwin:Xwindow*)

{abstract,
author=Joe,
status=tested}
September 2002 OMG-UML , v1.5 Class 3-37

3 UML Notation Guide
3.23 Name Compartment

3.23.1 Notation

The name compartment displays the name of the class and other properties in up to
three sections:

An optional stereotype keyword may be placed above the class name within guillemets,
and/or a stereotype icon may be placed in the upper right corner of the compartment.
The stereotype name must not match a predefined keyword.

The name of the class appears next. If the class is abstract, this can be indicated by
italicizing its name (for those languages that support italicization) or by placing the
keyword abstract in a property list below or after the name; for example, Invoice
{abstract}. Note that any explicit specification of generalization status takes
precedence over the name font.

A list of strings denoting properties (metamodel attributes or tagged values) may be
placed in braces below the class name. The list may show class-level attributes for
which there is no UML notation and it may also show tagged values. The presence of
a keyword for a Boolean type without a value implies the value true. For example, a
leaf class shows the property “{leaf}”.

The stereotype and property list are optional.

Figure 3-21 Name Compartment

3.23.2 Mapping

The contents of the name compartment map into the name, stereotype, and various
properties of the Class represented by the class symbol.

3.24 List Compartment

3.24.1 Notation

A list compartment holds a list of strings, each of which is the encoded representation
of a feature, such as an attribute or operation. The strings are presented one to a line
with overflow to be handled in a tool-dependent manner. In addition to lists of

PenTracker

«controller»

{ leaf, author=”Mary Jones”}
3-38 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
attributes or operations, optional lists can show other kinds of predefined or user-
defined values, such as responsibilities, rules, or modification histories. UML does not
define these optional lists. The manipulation of user-defined lists is tool-dependent.

The items in the list are ordered and the order may be modified by the user. The order
of the elements is meaningful information and must be accessible within tools (for
example, it may be used by a code generator in generating a list of declarations). The
list elements may be presented in a different order to achieve some other purpose (for
example, they may be sorted in some way). Even if the list is sorted, the items maintain
their original order in the underlying model. The ordering information is merely
suppressed in the view.

An ellipsis (. . .) as the final element of a list or the final element of a delimited
section of a list indicates that additional elements in the model exist that meet the
selection condition, but that are not shown in that list. Such elements may appear in a
different view of the list.

3.24.1.1 Group properties

A property string may be shown as an element of the list, in which case it applies to all
of the succeeding list elements until another property string appears as a list element.
This is equivalent to attaching the property string to each of the list elements
individually. The property string does not designate a model element. Examples of this
usage include indicating a stereotype and specifying visibility. Keyword strings may
also be used in a similar way to qualify subsequent list elements.

3.24.1.2 Compartment name

A compartment may display a name to indicate which kind of compartment it is. The
name is displayed in a distinctive font centered at the top of the compartment. This
capability is useful if some compartments are omitted or if additional user-defined
compartments are added. For a Class, the predefined compartments are named
attributes and operations. An example of a user-defined compartment might be
requirements. The name compartment in a class must always be present; therefore, it
does not require or permit a compartment name.

3.24.2 Presentation Options

A tool may present the list elements in a sorted order, in which case the inherent
ordering of the elements is not visible. A sort is based on some internal property and
does not indicate additional model information. Example sort rules include:

• alphabetical order,

• ordering by stereotype (such as constructors, destructors, then ordinary methods),

• ordering by visibility (public, then package, then protected, then private).

The elements in the list may be filtered according to some selection rule. The
specification of selection rules is a tool responsibility. The absence of items from a
filtered list indicates that no elements meet the filter criterion, but no inference can be
September 2002 OMG-UML , v1.5 List Compartment 3-39

3 UML Notation Guide
drawn about the presence or absence of elements that do not meet the criterion.
However, the ellipsis notation is available to show that invisible elements exist. It is a
tool responsibility whether and how to indicate the presence of either local or global
filtering, although a stand-alone diagram should have some indication of such filtering
if it is to be understandable.

If a compartment is suppressed, no inference can be drawn about the presence or
absence of its elements. An empty compartment indicates that no elements meet the
selection filter (if any).

Note that attributes may also be shown by composition (see Figure 3-45 on page 3-83).

3.24.3 Example

Figure 3-22 Stereotype Keyword Applied to Groups of List Elements

«constructor»
Rectangle(p1:Point, p2:Point)
«query»
area (): Real
aspect (): Real

«update»
move (delta: Point)
scale (ratio: Real)
. . .

. . .

Rectangle

p1:Point
p2:Point
3-40 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
Figure 3-23 Compartments with Names

3.24.4 Mapping

The entries in a list compartment map into a list of ModelElements, one for each list
entry. The ordering of the ModelElements matches the list compartment entries (unless
the list compartment is sorted in some way). In this case, no implication about the
ordering of the Elements can be made (the ordering can be seen by turning off sorting).
However, a list entry string that is a stereotype indication (within guillemets) or a
property indication (within braces) does not map into a separate ModelElement.
Instead, the corresponding property applies to each subsequent ModelElement until the
appearance of a different stand-alone stereotype or property indicator. The property
specifications are conceptually duplicated for each list Element, although a tool might
maintain an internal mechanism to store or modify them together. The presence of an
ellipsis (“...”) as a list entry implies that the semantic model contains at least one
Element with corresponding properties that is not visible in the list compartment.

3.25 Attribute

Strings in the attribute compartment are used to show attributes in classes. A similar
syntax is used to specify qualifiers, template parameters, operation parameters, and so
on (some of these omit certain terms).

3.25.1 Semantics

Note that an attribute is semantically equivalent to a composition association; however,
the intent and usage is normally different.

bill no-shows

Reservation

operations

guarantee()
cancel ()
change (newDate: Date)

responsibilities

match to available rooms

exceptions

invalid credit card
September 2002 OMG-UML , v1.5 Attribute 3-41

3 UML Notation Guide
The type of an attribute is a Classifier.

3.25.2 Notation

An attribute is shown as a text string that can be parsed into the various properties of
an attribute model element. The default syntax is:

visibility name : type-expression [multiplicity ordering] = initial-value { property-string }

• Where visibility is one of:

+ public visibility

protected visibility

- private visibility

~ .package visibility

The visibility marker may be suppressed. The absence of a visibility marker
indicates that the visibility is not shown (not that it is undefined or public). A tool
should assign visibilities to new attributes even if the visibility is not shown. The
visibility marker is a shorthand for a full visibility property specification string.

Visibility may also be specified by keywords (public, protected, private, package).
This form is used particularly when it is used as an inline list element that applies
to an entire block of attributes.

Additional kinds of visibility might be defined for certain programming languages,
such as C++ implementation visibility (actually all forms of nonpublic visibility are
language-dependent). Such visibility must be specified by property string or by a
tool-specific convention.

• Where name is an identifier string that represents the name of the attribute.

• Where [multiplicity ordering] shows the multiplicity and the ordering of the
attribute (Section 3.44, “Multiplicity,” on page 3-75). The term may be omitted, in
which case the multiplicity is 1..1 (exactly one).

• The ordering property is meaningful if the multiplicity upper bound is greater than
one. It may be one of:

• (absent) — the values are unordered

• unordered — the values are unordered

• ordered — the values are ordered

• Where type-expression is either

• if it is a simple word, the name of a classifier, or

• a language-dependent string that maps into a ProgrammingLanguageDataType.

• Where initial-value is a language-dependent expression for the initial value of a
newly created object. The initial value is optional (the equal sign is also omitted).
An explicit constructor for a new object may augment or modify the default initial
value.
3-42 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
• Where property-string indicates property values that apply to the element. The
property string is optional (the braces are omitted if no properties are specified).

A class-scope attribute is shown by underlining the name and type expression string;
otherwise, the attribute is instance-scope.

class-scope-attribute

The notation justification is that a class-scope attribute is an instance value in the
executing system, just as an object is an instance value, so both may be designated by
underlining. An instance-scope attribute is not underlined; that is the default.

There is no symbol for whether an attribute is changeable (the default is changeable).
A nonchangeable attribute is specified with the property “{frozen}”.

In the absence of a multiplicity indicator, an attribute holds exactly 1 value.
Multiplicity may be indicated by placing a multiplicity indicator in brackets after the
classifier name, for example:

colors : Color [3]
points : Point [2..* ordered]

Note that a multiplicity of 0..1 provides for the possibility of null values: the absence
of a value, as opposed to a particular value from the range. For example, the following
declaration permits a distinction between the null value and the empty string:

name : String [0..1]

A stereotype keyword in guillemets precedes the entire attribute string, including any
visibility indicators. A property list in braces follows the rest of the attribute string.

3.25.3 Presentation Options

The type expression may be suppressed (but it has a value in the model).

The initial value may be suppressed, and it may be absent from the model. It is a tool
responsibility whether and how to show this distinction.

A tool may show the visibility indication in a different way, such as by using a special
icon or by sorting the elements by group.

A tool may show the individual fields of an attribute as columns rather than a
continuous string.

If the type-expression string is not a word, then it is assumed to be expressed in the
syntax of a particular programming language, such as C++ or Smalltalk. This form is
assumed if the string is not a word. Specific tagged properties may be included in the
string. The programming language must be known from the general context of the
diagram or a tool supporting it. In this case, the type-expression maps into a
ProgrammingLanguageDataType whose expression attribute specifies the language
name and the string representation of the data type in that language.

Particular attributes within a list may be suppressed (see Section 3.24, “List
Compartment,” on page 3-38).
September 2002 OMG-UML , v1.5 Attribute 3-43

3 UML Notation Guide
3.25.4 Style Guidelines

Attribute names typically begin with a lowercase letter. Attribute names are in plain
face.

3.25.5 Example

+size: Area = (100,100)
#visibility: Boolean = invisible
+default-size: Rectangle
#maximum-size: Rectangle
-xptr: XWindowPtr

3.25.6 Mapping

A string entry within the attribute compartment maps into an Attribute within the Class
corresponding to the class symbol. The properties of the attribute map in accord with
the preceding descriptions. If the visibility is absent, then no conclusion can be drawn
about the Attribute visibilities unless a filter is in effect; for example, only public
attributes shown. Likewise, if the type or initial value are omitted. The omission of an
underline always indicates an instance-scope attribute. The omission of multiplicity
denotes a multiplicity of 1.

Any properties specified in braces following the attribute string map into properties on
the Attribute. In addition, any properties specified on a previous stand-alone property
specification entry apply to the current Attribute (and to others).

3.26 Operation

Entries in the operation compartment are strings that show operations defined on
classes and methods supplied by classes.

3.26.1 Semantics

An operation is a service that an instance of the class may be requested to perform. It
has a name and a list of arguments.

3.26.2 Notation

An operation is shown as a text string that can be parsed into the various properties of
an operation model element. The default syntax is:

visibility name (parameter-list) : return-type-expression { property-string }

• Where visibility is one of:

+ public visibility

protected visibility
3-44 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
- private visibility

~ package visibility

The visibility marker may be suppressed. The absence of a visibility marker
indicates that the visibility is not shown (not that it is undefined or public). The
visibility marker is a shorthand for a full visibility property specification string.

Visibility may also be specified by keywords (public, protected, private, package).
This form is used particularly when it is used as an inline list element that applies
to an entire block of operations.

Additional kinds of visibility might be defined for certain programming languages,
such as C++ implementation visibility (actually all forms of nonpublic visibility are
language-dependent). Such visibility must be specified by property string or by a
tool-specific convention.

• Where name is an identifier string.

• Where return-type-expression is a language-dependent specification of the
implementation type or types of the value returned by the operation. The colon and
the return-type are omitted if the operation does not return a value (as for C++
void). A list of expressions may be supplied to indicate multiple return values.

• Where parameter-list is a comma-separated list of formal parameters, each
specified using the syntax:

kind name : type-expression = default-value

• where kind is in, out, or inout, with the default in if absent.

• where name is the name of a formal parameter.

• where type-expression is the (language-dependent) specification of an
implementation type.

• where default-value is an optional value expression for the parameter, expressed
in and subject to the limitations of the eventual target language.

• Where property-string indicates property values that apply to the element. The
property string is optional (the braces are omitted if no properties are specified).

A class-scope operation is shown by underlining the name and type expression string.
An instance-scope operation is the default and is not marked.

An operation that does not modify the system state (one that has no side effects) is
specified by the property “{query}”; otherwise, the operation may alter the system
state, although there is no guarantee that it will do so.

The concurrency semantics of an operation are specified by a property string of the
form “{concurrency = name}, where name is one of the names: sequential, guarded,
concurrent. As a shorthand, one of the names may be used by itself in a property string
to indicate the corresponding concurrency value. In the absence of a specification, the
concurrency semantics are unspecified and must therefore be assumed to be sequential
in the worst case.
September 2002 OMG-UML , v1.5 Operation 3-45

3 UML Notation Guide
The top-most appearance of an operation signature declares the operation on the class
(and inherited by all of its descendents). If this class does not implement the operation;
that is, does not supply a method, then the operation may be marked as “{abstract}” or
the operation signature may be italicized to indicate that it is abstract. A subordinate
appearance of the operation signature without the {abstract} property indicates that the
subordinate class implements a method on the operation.

The actual text or procedure of a method may be indicated in a note attached to the
operation.

If the objects of a class accept and respond to a given signal, an operation entry with
the keyword «signal» indicates that the class accepts the given signal. The syntax is
identical to that of an operation. The response of the object to the reception of the
signal is shown with a state machine. Among other uses, this notation can show the
response of objects of a class to error conditions and exceptions, which should be
modeled as signals.

The specification of operation behavior is given as a note attached to the operation.
The text of the specification should be enclosed in braces if it is a formal specification
in some language (a semantic Constraint); otherwise, it should be plain text if it is just
a natural-language description of the behavior (a Comment).

A stereotype keyword in guillemets precedes the entire operation string, including any
visibility indicators. A property list in braces follows the entire operation string.

3.26.3 Presentation Options

The argument list and return type may be suppressed (together, not separately).

A tool may show the visibility indication in a different way, such as by using a special
icon or by sorting the elements by group.

The syntax of the operation signature string can be that of a particular programming
language, such as C++ or Smalltalk. Specific tagged properties may be included in the
string.

A procedure body for a method may be shown in a note attached to the operation entry
within the compartment (Figure 3-24 on page 3-47). The line is drawn to the string
within the compartment. This approach is useful mainly for showing small method
bodies.
3-46 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
.

Figure 3-24 Note showing method body

3.26.4 Style Guidelines

Operation names typically begin with a lowercase letter. Operation names are in plain
face. An abstract operation may be shown in italics.

3.26.5 Example

Figure 3-25 Operation List with a Variety of Operations

3.26.6 Mapping

A string entry within the operation compartment maps into an Operation or a Method
within the Class corresponding to the class symbol. The properties of the operation
map in accordance with the preceding descriptions. See the description of Section 3.25,
“Attribute,” on page 3-41 for additional details. Parameters without keywords map into
Parameters with kind=in, otherwise according to the keyword. Return value names map
into Parameters with kind=return.

If the entry has the keyword «signal», then it maps into a Reception on the Class
instead.

report ()

BurglarAlarm

isTripped: Boolean = false

PoliceStation

1 station

*

{ if isTripped
then station.alert(self)}

alert (Alarm)

+create ()

+display (): Location
+hide ()

-attachXWindow(xwin:Xwindow*)
September 2002 OMG-UML , v1.5 Operation 3-47

3 UML Notation Guide
The topmost appearance of an operation specification in a class hierarchy maps into an
Operation definition in the corresponding Class or Interface. Interfaces do not have
methods. In a Class, each appearance of an operation entry maps into the presence of a
Method in the corresponding Class, unless the operation entry contains the {abstract}
property (including use of conventions such as italics for abstract operations). If an
abstract operation entry appears within a hierarchy in which the same operation has
already been defined in an ancestor, it has no effect but is not an error unless the
declarations are inconsistent.

Note that the operation string entry does not specify the body of a method.

3.27 Nested Class Declarations

3.27.1 Semantics

A class declared within another class belongs to the namespace of the other class and
may only be used within it. This construct is primarily used for implementation
reasons and for information hiding.

3.27.2 Notation

A declaring class and a class in its namespace may be connected by a line, with an
“anchor” icon on the end connected to a declaring class (Figure 3-26 on page 3-48).
An anchor icon is a cross inside a circle. The contents of the package are declared
within the class and belong to its namespace.

3.27.3 Mapping

If Class B is attached to Class A by an “anchor” line with the “anchor” symbol on
Class A, then Class B is declared within the Namespace of Class A. That is, the
relationship between Class A and Class B is the namespace-ownedElement association.

Figure 3-26 Nested class declaration

DeclaringClass

NestedClass
3-48 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.28 Type and Implementation Class

3.28.1 Semantics

Classes can be stereotyped as Types or Implementation Classes (although they can be
left undifferentiated as well). A Type is used to specify a domain of objects together
with operations applicable to the objects without defining the physical implementation
of those objects. A Type may not include any methods, but it may provide behavioral
specifications for its operations. It may also have attributes and associations that are
defined solely for the purpose of specifying the behavior of the type's operations.

An Implementation Class defines the physical data structure (for attributes and
associations) and methods of an object as implemented in traditional languages (C++,
Smalltalk, etc.). An Implementation Class is said to realize a Type if it provides all of
the operations defined for the Type with the same behavior as specified for the Type’s
operations. An Implementation Class may realize a number of different Types.

3.28.2 Notation

An undifferentiated class is shown with no stereotype. A type is shown with the
stereotype “«type».” An implementation class is shown with the stereotype
“«implementationClass».” A tool is also free to allow a default setting for an entire
diagram, in which case all of the class symbols without explicit stereotype indications
map into Classes with the default stereotype. This might be useful for a model that is
close to the programming level.

The implementation of a type by a class is modeled as the Realization relationship,
shown as a dashed line with a solid triangular arrowhead (a dashed “generalization
arrow”). This symbol implies the realizing class provides at least all the operations of
the Type, with conforming behavior, but it does not imply inheritance of structure
(attributes or associations). The generalization hierarchy of a set of classes frequently
parallels the generalization hierarchy of a set of types that they realize, but this is not
mandatory, as long as each class provides the operations of the types that it realizes.
September 2002 OMG-UML , v1.5 Type and Implementation Class 3-49

3 UML Notation Guide
3.28.3 Example

Figure 3-27 Notation for Types and Implementation Classes

3.28.4 Mapping

A class symbol with a stereotype (including “type” and “implementationClass”) maps
into a Class with the corresponding stereotype. A class symbol without a stereotype
maps into a Class with the default stereotype for the diagram (if a default has been
defined by the modeler or tool); otherwise, it maps into a Class with no stereotype. The
realization arrow between two symbols maps into an Abstraction relationship, with the
«realize» stereotype, between the Classifiers corresponding to the two symbols.
Realization is usually used between a class and an interface, but may also be used
between any two classifiers to show conformance of behavior.

3.29 Interfaces

3.29.1 Semantics

An interface is a specifier for the externally-visible operations of a class, component,
or other classifier (including subsystems) without specification of internal structure.
Each interface often specifies only a limited part of the behavior of an actual class.
Interfaces do not have implementation. They lack attributes, states, or associations;
they only have operations. (An interface may be the target of a one-way association,

Set
«type»

addElement(Object)
removeElement(Object)
testElement(Object):Boolean

* elements

Object
«type»

HashTableSet
«implementationClass»

addElement(Object)
removeElement(Object)
testElement(Object):Boolean

1 body

HashTable
«implementationClass»

setTableSize(Integer)
3-50 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
however, but it may not have an association that it can navigate.) Interfaces may have
generalization relationships. An interface is formally equivalent to an abstract class
with no attributes and no methods and only abstract operations, but Interface is a peer
of Class within the UML metamodel (both are Classifiers).

3.29.2 Notation

An interface is a Classifier and may be shown using the full rectangle symbol with
compartments and the keyword «interface». A list of operations supported by the
interface is placed in the operation compartment. The attribute compartment may be
omitted because it is always empty.

An interface may also be displayed as a small circle with the name of the interface
placed below the symbol. The circle may be attached by a solid line to classifiers that
support it. This indicates that the class provides all of the operations in the interface
type (and possibly more). The operations provided are not shown on the circle
notation; use the full rectangle symbol to show the list of operations. A class that uses
or requires the operations supplied by the interface may be attached to the circle by a
dashed arrow pointing to the circle. The dashed arrow implies that the class requires no
more than the operations specified in the interface; the client class is not required to
actually use all of the interface operations.

The Realization relationship from a classifier to an interface that it supports is shown
by a dashed line with a solid triangular arrowhead (a “dashed generalization symbol”).
This is the same notation used to indicate realization of a type by an implementation
class. In fact, this symbol can be used between any two classifier symbols, with the
meaning that the client (the one at the tail of the arrow) supports at least all of the
operations defined in the supplier (the one at the head of the arrow), but with no
necessity to support any of the data structure of the supplier (attributes and
associations).

3.29.3 Example

Figure 3-28 Shorthand Version of Interface Notation

+create()
+login(UserName, Passwd)
+find(StoreId)
+getPOStotals(POSid)
+updateStoreTotals(Id,Sales)
+get(Item)

-storeId: Integer
-POSlist: List

Store

POSterminal

POSterminalHome

<<use>>

StoreHome

Store

POSterminal
September 2002 OMG-UML , v1.5 Interfaces 3-51

3 UML Notation Guide
Figure 3-29 Longhand Version of Interface Notation

3.29.4 Mapping

A class rectangle symbol with stereotype «interface», or a circle on a class diagram,
maps into an Interface element with the name given by the symbol. The operation list
of a rectangle symbol maps into the list of Operation elements of the Interface.

A dashed generalization arrow from a class symbol to an interface symbol, or a solid
line connecting a class symbol and an interface circle, maps into an Abstraction
dependency with the «realize» stereotype between the corresponding Classifier and
Interface elements. A dependency arrow from a class symbol to an interface symbol
maps into a Usage dependency between the corresponding Classifier and Interface.

3.30 Parameterized Class (Template)

3.30.1 Semantics

A template is the descriptor for a class with one or more unbound formal parameters.
It defines a family of classes, each class specified by binding the parameters to actual
values. Typically, the parameters represent attribute types; however, they can also
represent integers, other types, or even operations. Attributes and operations within the
template are defined in terms of the formal parameters so they too become bound when
the template itself is bound to actual values.

A template is not a directly usable class because it has unbound parameters. Its
parameters must be bound to actual values to create a bound form that is a class. Only
a class can be a superclass or the target of an association (a one-way association from
the template to another class is permissible, however). A template may be a subclass of
an ordinary class. This implies that all classes formed by binding it are subclasses of
the given superclass.

Parameterization can be applied to other ModelElements, such as Collaborations or
even entire Packages. The description given here for classes applies to other kinds of
modeling elements in the obvious way.

+create()
+login(UserName, Passwd)
+find(StoreId)
+getPOStotals(POSid)
+updateStoreTotals(Id,Sales)
+get(Item)

-storeId: Integer
-POSlist: List

Store

POSterminal

POSterminalHome

<<use>>

StoreHome

POSterminal

+getPOStotals(POSid)
+updateStoreTotals(Id,Sales)
+get(Item)

<<interface>>
Store
3-52 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.30.2 Notation

A small dashed rectangle is superimposed on the upper right-hand corner of the
rectangle for the class (or to the symbol for another modeling element). The dashed
rectangle contains a parameter list of formal parameters for the class and their
implementation types. The list must not be empty, although it might be suppressed in
the presentation. The name, attributes, and operations of the parameterized class appear
as normal in the class rectangle; however, they may also include occurrences of the
formal parameters. Occurrences of the formal parameters can also occur inside of a
context for the class, for example, to show a related class identified by one of the
parameters.

3.30.3 Presentation Options

The parameter list may be comma-separated or it may be one per line.

Parameters are restricted attributes, shown as strings with the syntax:

name : type = default-value

• Where name is an identifier for the parameter with scope inside the template.

• Where type is a string designating a Classifier for the parameter. If it is a simple
word, it must be the name of a Classifier. Otherwise it is a programming-language
dependent string that maps into a ProgrammingLanguageDataType according to the
programming language (if any) for the diagram context or specified in a support
tool.

• Where default-value is a string designating an Expression for a default value that is
used when the corresponding argument is omitted in a Binding. The equal sign and
expression may be omitted, in which case there is no default value and the argument
must be supplied in a Binding.

If the type name is omitted, the parameter type is assumed to be Classifier. The value
supplied for an argument in a Binding must be the name of a Classifier (including a
class or a data type). Other parameter types (such as Integer) must be explicitly
shown. The value supplied for an argument in a Binding must be an actual instance
value of the given kind.
September 2002 OMG-UML , v1.5 Parameterized Class (Template) 3-53

3 UML Notation Guide
3.30.4 Example

Figure 3-30 Template Notation with Use of Parameter as a Reference

3.30.5 Mapping

The addition of the template dashed box to a symbol causes the addition of the
parameter names in the list as ModelElements within the Namespace of the
ModelElement corresponding to the base symbol (or to the Namespace containing a
ModelElement that is not itself a Namespace). Each of the parameter ModelElements
has the templateParameter association to the base ModelElement.

3.31 Bound Element

3.31.1 Semantics

A template cannot be used directly in an ordinary relationship such as generalization or
association, because it has a free parameter that is not meaningful outside of a scope
that declares the parameter. To be used, a template’s parameters must be bound to
actual values. The actual value for each parameter is an expression defined within the
scope of use. If the referencing scope is itself a template, then the parameters of the
referencing template can be used as actual values in binding the referenced template.
The parameter names in the two templates cannot be assumed to correspond because
they have no scope outside of their respective templates.

FArray

FArray<Point,3>

T,k:Integer

«bind» (Address,24)

T
k..k

AddressList
3-54 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.31.2 Notation

A bound element is indicated by a text syntax in the name string of an element, as
follows:

Template-name ‘<‘ value-list ‘>’

• Where value-list is a comma-delimited non-empty list of value expressions.

• Where Template-name is identical to the name of a template.

For example, VArray<Point,3> designates a class described by the template Varray.

The number and type of values must match the number and type of the template
parameters for the template of the given name.

The bound element name may be used anywhere that an element name of the
parameterized kind could be used. For example, a bound class name could be used
within a class symbol on a class diagram, as an attribute type, or as part of an operation
signature.

Note that a bound element is fully specified by its template; therefore, its content may
not be extended. Declaration of new attributes or operations for classes is not
permitted, for example, but a bound class could be subclassed and the subclass
extended in the usual way.

The relationship between the bound element and its template alternatively may be
shown by a Dependency relationship with the keyword «bind». The arguments are
shown in parentheses after the keyword. In this case, the bound form may be given a
name distinct from the template.

3.31.3 Style Guidelines

The attribute and operation compartments are normally suppressed within a bound
class, because they must not be modified in a bound template.

3.31.4 Example

See Figure 3-30 on page 3-54.

3.31.5 Mapping

The use of the bound element syntax for the name of a symbol maps into a Binding
dependency between the dependent ModelElement (such as Class) corresponding to
the bound element symbol and the provider ModelElement (again, such as Class)
whose name matches the name part of the bound element without the arguments. If the
name does not match a template element or if the number of arguments in the bound
element does not match the number of parameters in the template, then the model is ill
formed. Each argument position in the bound element maps into a TemplateArgument
bearing a binding link to the Binding dependency and a modelElement link to the
September 2002 OMG-UML , v1.5 Bound Element 3-55

3 UML Notation Guide
ModelElement that is implicitly substituted for the template parameter in the
corresponding position in the template definition. An explicitly drawn «bind»
dependency symbol mays to a Binding dependency with arguments as described above.

3.32 Utility

A utility is a grouping of global variables and procedures in the form of a class
declaration. This is not a fundamental construct, but a programming convenience. The
attributes and operations of the utility become global variables and procedures. A
utility is modeled as a stereotype of a classifier.

3.32.1 Semantics

The instance-scope attributes and operations of a utility are interpreted as global
attributes and operations. It is inappropriate for a utility to declare class-scope
attributes and operations because the instance-scope members are already interpreted
as being at class scope.

3.32.2 Notation

A utility is shown as the stereotype «utility» of Class. It may have both attributes and
operations, all of which are treated as global attributes and operations.

3.32.3 Example

Figure 3-31 Notation for Utility

3.32.4 Mapping

This is not a special symbol. It simply maps into a Class element with the «utility»
stereotype.

MathPak
«utility»

sin (Angle): Real

sqrt (Real): Real
random(): Real

cos (Angle): Real
3-56 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.33 Metaclass

3.33.1 Semantics

A metaclass is a class whose instances are classes.

3.33.2 Notation

A metaclass is shown as the stereotype «metaclass» of Class.

3.33.3 Mapping

This is not a special symbol. It simply maps into a Class element with the «metaclass»
stereotype.

3.34 Enumeration

3.34.1 Semantics

An Enumeration is a user-defined data type whose instances are a set of user-specified
named enumeration literals. The literals have a relative order but no algebra is defined
on them.

3.34.2 Notation

An Enumeration is shown using the Classifier notation (a rectangle) with the keyword
«enumeration». The name of the Enumeration is placed in the upper compartment. An
ordered list of enumeration literals may be placed, one to a line, in the middle
compartment. Operations defined on the literals may be placed in the lower
compartment. The lower and middle compartments may be suppressed.

3.34.3 Mapping

Maps into an Enumeration with the given list of enumeration literals.

3.35 Stereotype Declaration

3.35.1 Semantics

A Stereotype is a user-defined metaelement whose structure matches an existing UML
metaelement (its “base class”). Because it is user defined, a stereotype declaration is an
element that appears at the “model” layer of the UML four-layer metamodeling
hierarchy although it conceptually belongs in the layer above, the metamodel layer.
September 2002 OMG-UML , v1.5 Metaclass 3-57

3 UML Notation Guide
3.35.2 Notation

Because stereotypes span two different metamodeling layers, a special notation is
required to clearly indicate the crossover between the two layers. Specifically, it is
necessary to show how a model-level element (the stereotype) relates to its
metaelement (its UML base class). This is denoted using a special stereotype of
Dependency called «stereotype» as shown in Figure 3-32 on page 3-59.

The Stereotype itself is shown using the Classifier notation (a rectangle) with the
keyword «stereotype» (Figure 3-32). The name of the Stereotype is placed in the upper
compartment. Constraints on elements described by the stereotype may be placed in a
named compartment called Constraints. Required tags may be placed in a named
compartment called Tags. Individual items (tags) in the list of are defined according to
the following format:

tagDefinitionName : String [multiplicity]

where string can be either a string matching the name of a data type representing
the type of the values of the tag, or it is a reference to a metaclass or a stereotype. In
the latter case, the string has the form:

«metaclass» metaclassName

or

«stereotype» stereotypeName

where metaclassName is the name of the referenced metaclass and is the name of
the references stereotype. The multiplicity element is optional and conforms to
standard rules for specifying multiplicities. In case of a range specification, a lower
bound of zero indicates an optional tag.
3-58 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
Figure 3-32 Notational form for declaring a stereotype

In the example diagram in Figure 3-32, the stereotype Persistent is a stereotype of the
UML metaelement Class. TableName is an optional tag whose type is a model type
called String while SQLFile is a reference to an instance of Component in the model.

An icon can be defined for the stereotype, but its graphical definition is outside the
scope of UML and must be handled by an editing tool.

An alternative and usually more compact way of specifying stereotypes and tags using
tables is shown in Figure 3-33 and Figure 3-34, respectively.

Figure 3-33 Tabular form for specifying stereotypes

Figure 3-34 Tabular form for specifying tags

Stereotype Base Class Parent Tags Constraints Description

Architectural
Element

Generalizable
Element

N/A N/A N/A A generic stereotype that is the parent
of all other stereotypes used for archi-
tectural modeling .

Capsule Class Architectural
Element

isDynamic self.isActive = true Indicates a class that is used to model
the structural components of an archi-
tecture specification.

Tag Stereotype Type Multiplicity Description

isDynamic Capsule UML::Datatypes::Boolean 1 Used to identify if the associated capsule class may be
created and destroyed dynamically.

Class
«metaclass»

«stereotype»

Constraints
{TableName should not be
longer than 8 characters}

«stereotype»
Persistent

Tags

SQLFile : «metaclass» Component
TableName : String [0..1]
September 2002 OMG-UML , v1.5 Stereotype Declaration 3-59

3 UML Notation Guide
Each row of the stereotype specification table in Figure 3-33 defines one stereotype
and each row in the tag specification table in Figure 3-34 contains one tag definition.

The columns of the stereotype specification table are defined as follows:

• Stereotype - the name of the stereotype.

• Base Class - the UML metamodel element that serves as the base for the
stereotype.

• Parent - the direct parent of the stereotype being defined (NB: if one exists,
otherwise the symbol “N/A” is used).

• Tags - a list of all tags of the tagged values that may be associated with this
stereotype (or N/A if none are defined).

• Constraints - a list of constraints associated with the stereotype.

• Description - an informal description with possible explanatory comments.

The columns of the tag specification table are defined as follows:

• Tag - the name of the tag.

• Stereotype - the name of the stereotype which owns this tag, or “N/A” if it is a
stand alone tag.

• Type - the name of the type of the values that can be associated with the tag.

• Multiplicity - the maximum number of values that may be associated with one tag
instance.

• Description - an informal description with possible explanatory comments.

In the case of both the stereotype specification table and the tag specification table,
columns that are not applicable may be omitted.

In the example stereotype specification table of Figure 3-34, two related stereotypes
are defined. The first row declares the stereotype ArchitecturalElement, which is a
stereotype of GeneralizableElement, while the second row declares the stereotype
Capsule, which is a specialization of the ArchitecturalElement stereotype, but which
applies only to instances of Class, which is a subclass of GeneralizableElement in the
metamodel.
3-60 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
The equivalent declaration as the one table in Figure 3-34, less the constraints and the
informal descriptions, is shown graphically in Figure 3-35.

Figure 3-35 Graphical equivalent of the stereotype declarations shown in Figure 3-34

3.35.3 Mapping

A classifier with a stereotype «metaclass» maps into a UML metaelement and a
classifier with a stereotype «stereotype» maps into a Stereotype. The «stereotype»
dependency maps to the baseClass attribute definition of the stereotype. The
constraints listed in the Constraints compartment map to stereotype constraints and
the items in the Tags compartment map to the defined tags of the stereotype. Each
item in the Tags list maps to a TagDefinition. The string before the colon separator
maps to the name of the tag definition while the string following the colon maps to an
instance of Name. If a multiplicity specification is included in the item, it maps to the
multiplicity attribute of the tag definition.

3.36 Powertype

3.36.1 Semantics

A Powertype is a user-defined metaelement whose instances are classes in the model.

3.36.2 Notation

A Powertype is shown using the Classifier notation (a rectangle) with the stereotype
keyword «powertype». The name of the Powertype is placed in the upper compartment.
Because the elements are ordinary classes, attributes and operations on the powertype
are usually not defined by the user.

GeneralizeableElement
<<metaclass>>

Classifier
<<metaclass>>

Class
<<metac lass >>

Arc hitecturalElement
<<stereotype>>

Capsule
<<stereotype>>

<<stereotype>> <<stereotype>>
September 2002 OMG-UML , v1.5 Powertype 3-61

3 UML Notation Guide
The instances of the powertype may be indicated by placing a dashed line across the
parent lines of the classes with the syntax

discriminatorName: powertypeName,

where the powertype name on the line implicitly defines a powertype if one is not
explicitly defined.

3.36.3 Mapping

Maps into a Class with the «powertype» stereotype with the given classes as instances.

3.37 Class Pathnames

3.37.1 Notation

Class symbols (rectangles) serve to define a class and its properties, such as
relationships to other classes. A reference to a class in a different package is notated by
using a pathname for the class, in the form:

package-name :: class-name

References to classes also appear in text expressions, most notably in type
specifications for attributes and variables. In these places a reference to a class is
indicated by simply including the name of the class itself, including a possible package
name, subject to the syntax rules of the expression.

3.37.2 Example

Figure 3-36 Pathnames for Classes in Other Packages

Banking::CheckingAccount

Deposit

time: DateTime::Time
amount: Currency::Cash
3-62 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.37.3 Mapping

A class symbol whose name string is a pathname represents a reference to the Class
with the given name inside the package with the given name. The name is assumed to
be defined in the target package; otherwise, the model is ill formed. A Relationship
from a symbol in the current package; that is, the package containing the diagram and
its mapped elements to a symbol in another package is part of the current package.

3.38 Accessing or Importing a Package

3.38.1 Semantics

An element may reference an element contained in a different package. On the package
level, the «access» dependency indicates that the contents of the target package may be
referenced by the client package or packages recursively embedded within it. The
target references must have visibility sufficient for the referents: public visibility for an
unrelated package, public or protected visibility for a descendant of the target package,
or any visibility for a package nested inside the target package (an access dependency
is not required for the latter case). A package nested inside the package making the
access gets the same access.

Note that an access dependency does not modify the namespace of the client or in any
other way automatically create references; it merely grants permission to establish
references. Note also that a tool could automatically create access dependencies for
users if desired when references are created.

An import dependency grants access and also loads the names with appropriate
visibility in the target namespace into the accessing package; that is, a pathname is not
necessary to reference them. Such names are not automatically re-exported, however; a
name must be explicitly re-exported (and may be given a new name and visibility at
the same time).

3.38.2 Notation

The access dependency is displayed as a dependency arrow from the referencing
(client) package to the target (supplier) package containing the target of the references.
The arrow has the stereotype keyword «access». This dependency indicates that
elements within the client package may legally reference elements within the supplier.
The references must also satisfy visibility constraints specified by the supplier. Note
that the dependency does not automatically create any references. It merely grants
permission for them to be established.

The import dependency has the same notation as the access dependency except it has
the stereotype keyword «import».
September 2002 OMG-UML , v1.5 Accessing or Importing a Package 3-63

3 UML Notation Guide
3.38.3 Example

Figure 3-37 Access Dependency Among Packages

3.38.4 Mapping

This is not a special symbol. It maps into a Permission dependency with the stereotype
«access» or «import» between the two packages.

3.39 Object

3.39.1 Semantics

An object represents a particular instance of a class. It has identity and attribute values.
A similar notation also represents a role within a collaboration because roles have
instance-like characteristics.

3.39.2 Notation

The object notation is derived from the class notation by underlining instance-level
elements, as explained in the general comments in Section 3.12, “Type-Instance
Correspondence,” on page 3-14.

An object shown as a rectangle with two compartments.

Banking::CheckingAccount

CheckingAccount

Banking

«access»

Customers
3-64 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
The top compartment shows the name of the object and its class, all underlined, using
the syntax:

objectname : classname

The classname can include a full pathname of enclosing package, if necessary. The
package names precede the classname and are separated by double colons. For
example:

display_window: WindowingSystem::GraphicWindows::Window

A stereotype for the class may be shown textually (in guillemets above the name
string) or as an icon in the upper right corner. The stereotype for an object must match
the stereotype for its class.

To show multiple classes that the object is an instance of, use a comma-separated list
of classnames. These classnames must be legal for multiple classification; that is, only
one implementation class permitted, but multiple types permitted.

To show the presence of an object in a particular state of a class, use the syntax:

objectname : classname ‘[‘ statename-list ‘]’

The list must be a comma-separated list of names of states that can legally occur
concurrently.

The second compartment shows the attributes for the object and their values as a list.
Each value line has the syntax:

attributename : type = value

The type is redundant with the attribute declaration in the class and may be omitted.

The value is specified as a literal value. UML does not specify the syntax for literal
value expressions; however, it is expected that a tool will specify such a syntax using
some programming language.

The flow relationship between two values of the same object over time can be shown
by connecting two object symbols by a dashed arrow with the keyword «become». If
the flow arrow is on a collaboration diagram, the label may also include a sequence
number to show when the value changes. Similarly, the keyword «copy» can be used to
show the creation of one object from another object value.

3.39.3 Presentation Options

The name of the object may be omitted. In this case, the colon should be kept with the
class name. This represents an anonymous object of the given class given identity by
its relationships.

The class of the object may be suppressed (together with the colon).

The attribute value compartment as a whole may be suppressed.

Attributes whose values are not of interest may be suppressed.
September 2002 OMG-UML , v1.5 Object 3-65

3 UML Notation Guide
Attributes whose values change during a computation may show their values as a list of
values held over time. In an interactive tool, they might even change dynamically. An
alternate notation is to show the same object more than once with a «becomes»
relationship between them.

3.39.4 Style Guidelines

Objects may be shown on class diagrams. The elements on collaboration diagrams are
not objects, because they describe many possible objects. They are instead roles that
may be held by object. Objects in class diagrams serve mainly to show examples of
data structures.

3.39.5 Variations

For a language such as Self in which operations can be attached to individual objects at
run time, a third compartment containing operations would be appropriate as a
language-specific extension.

3.39.6 Example

Figure 3-38 Objects

3.39.7 Mapping

In an object diagram, or within an ordinary class diagram, an object symbol maps into
an Object of the Class (or Classes) given by the classname part of the name string. The
attribute list in the symbol maps into a set of AttributeLinks attached to the Object,
with values given by the value expressions in the attribute list in the symbol. If a list of
states in brackets follows the class name, then this maps into a ClassifierInState with
the named Class as its type and the named States as the states. The ClassfierInState
classifies the Object.

triangle: Polygon

center = (0,0)
vertices = ((0,0),(4,0),(4,3))
borderColor = black
fillColor = white

triangle: Polygon

triangle

:Polygon

scheduler
3-66 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.40 Composite Object

3.40.1 Semantics

A composite object represents a high-level object made of tightly-bound parts. This is
an instance of a composite class, which implies the composition aggregation between
the class and its parts. A composite object is similar to (but simpler and more restricted
than) a collaboration; however, it is defined completely by composition in a static
model. See Section 3.48, “Composition,” on page 3-81.

3.40.2 Notation

A composite object is shown as an object symbol. The name string of the composite
object is placed in a compartment near the top of the rectangle (as with any object).
The lower compartment holds the parts of the composite object instead of a list of
attribute values. (However, even a list of attribute values may be regarded as the parts
of a composite object, so there is not a great difference.) It is possible for some of the
parts to be composite objects with further nesting.

3.40.3 Example

Figure 3-39 Composite Objects

horizontalBar:ScrollBar

verticalBar:ScrollBar

awindow : Window

surface:Pane

title:TitleBar

moves

moves
September 2002 OMG-UML , v1.5 Composite Object 3-67

3 UML Notation Guide
3.40.4 Mapping

A composite object symbol maps into an Object of the given Class with composition
links to each of the Objects and Links corresponding to the class box symbols and to
association path symbols directly contained within the boundary of the composite
object symbol (and not contained within another deeper boundary).

3.41 Association

Binary associations are shown as lines connecting two classifier symbols. The lines
may have a variety of adornments to show their properties. Ternary and higher-order
associations are shown as diamonds connected to class symbols by lines.

3.42 Binary Association

3.42.1 Semantics

A binary association is an association among exactly two classifiers (including the
possibility of an association from a classifier to itself).

3.42.2 Notation

A binary association is drawn as a solid path connecting two classifier symbols (both
ends may be connected to the same classifier, but the two ends are distinct). The path
may consist of one or more connected segments. The individual segments have no
semantic significance, but may be graphically meaningful to a tool in dragging or
resizing an association symbol. A connected sequence of segments is called a path.

In a binary association, both ends may attach to the same classifier. The links of such
an association may connect two different instances from the same classifier or one
instance to itself. The latter case may be forbidden by a constraint if necessary.

The end of an association where it connects to a classifier is called an association end.
Most of the interesting information about an association is attached to its ends.

The path may also have graphical adornments attached to the main part of the path
itself. These adornments indicate properties of the entire association. They may be
dragged along a segment or across segments, but must remain attached to the path. It is
a tool responsibility to determine how close association adornments may approach an
end so that confusion does not occur. The following kinds of adornments may be
attached to a path.

3.42.2.1 association name

Designates the (optional) name of the association.
3-68 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
It is shown as a name string near the path (but not near enough to an end to be
confused with a rolename). The name string may have an optional small black solid
triangle in it. The point of the triangle indicates the direction in which to read the
name. The name-direction arrow has no semantics significance, it is purely descriptive.
The classifiers in the association are ordered as indicated by the name-direction arrow.

Note – There is no need for a name direction property on the association model; the
ordering of the classifiers within the association is the name direction. This convention
works even with n-ary associations.

A stereotype keyword within guillemets may be placed above or in front of the
association name. A property string may be placed after or below the association name.

3.42.2.2 association class symbol

Designates an association that has class-like properties, such as attributes, operations,
and other associations. This is present if, and only if, the association is an association
class. It is shown as a class symbol attached to the association path by a dashed line.

The association path and the association class symbol represent the same underlying
model element, which has a single name. The name may be placed on the path, in the
class symbol, or on both (but they must be the same name).

Logically, the association class and the association are the same semantic entity;
however, they are graphically distinct. The association class symbol can be dragged
away from the line, but the dashed line must remain attached to both the path and the
class symbol.

3.42.3 Presentation Options

When two paths cross, the crossing may optionally be shown with a small semicircular
jog to indicate that the paths do not intersect (as in electrical circuit diagrams).

3.42.4 Style Guidelines

Lines may be drawn using various styles, including orthogonal segments, oblique
segments, and curved segments. The choice of a particular set of line styles is a user
choice.

3.42.5 Options

3.42.5.1 Xor-association

An xor-constraint indicates a situation in which only one of several potential
associations may be instantiated at one time for any single instance. This is shown as a
dashed line connecting two or more associations, all of which must have a classifier in
September 2002 OMG-UML , v1.5 Binary Association 3-69

3 UML Notation Guide
common, with the constraint string “{xor}” labeling the dashed line. Any instance of
the classifier may only participate in one of the associations at one time. Each
rolename must be different. (This is simply a predefined use of the constraint notation.)

3.42.6 Example

Figure 3-40 Association Notation

3.42.7 Mapping

An association path connecting two class symbols maps to an Association between the
corresponding Classifiers. If there is an arrow on the association name, then the Class
corresponding to the tail of the arrow is the first class and the Classifier corresponding
to the head of the arrow is the second Classifier in the ordering of ends of the
Association; otherwise, the ordering of ends in the association is undetermined. The
adornments on the path map into properties of the Association as described above. The
Association is owned by the package containing the diagram.

Person

Manages

Job
Company

boss

worker

employeeemployer
1..∗

∗

∗

0..1

Job

Account

Person

Corporation

{Xor}

salary
3-70 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.43 Association End

3.43.1 Semantics

An association end is simply an end of an association where it connects to a classifier.
It is part of the association, not part of the classifier. Each association has two or more
ends. Most of the interesting details about an association are attached to its ends. An
association end is not a separable element, it is just a mechanical part of an association.

3.43.2 Notation

The path may have graphical adornments at each end where the path connects to the
classifier symbol. These adornments indicate properties of the association related to the
classifier. The adornments are part of the association symbol, not part of the classifier
symbol. The end adornments are either attached to the end of the line, or near the end
of the line, and must drag with it. The following kinds of adornments may be attached
to an association end.

3.43.2.1 multiplicity

Specified by a text syntax. Multiplicity may be suppressed on a particular association
or for an entire diagram. In an incomplete model the multiplicity may be unspecified in
the model itself. In this case, it must be suppressed in the notation. See Section 3.44,
“Multiplicity,” on page 3-75.

3.43.2.2 ordering

If the multiplicity is greater than one, then the set of related elements can be ordered or
unordered. If no indication is given, then it is unordered (the elements form a set).
Various kinds of ordering can be specified as a constraint on the association end. The
declaration does not specify how the ordering is established or maintained. Operations
that insert new elements must make provision for specifying their position either
implicitly (such as at the end) or explicitly. Possible values include:

• unordered - the elements form an unordered set. This is the default and need not be
shown explicitly.

• ordered - the elements of the set have an ordering, but duplicates are still prohibited.
This generic specification includes all kinds of ordering. This may be specified by
the keyword syntax “{ordered}.”

An ordered relationship may be implemented in various ways; however, this is
normally specified as a language-specified code generation property to select a
particular implementation. An implementation extension might substitute the data
structure to hold the elements for the generic specification “ordered.”

At implementation level, sorting may also be specified. It does not add new semantic
information, but it expresses a design decision:
September 2002 OMG-UML , v1.5 Association End 3-71

3 UML Notation Guide
• sorted - the elements are sorted based on their internal values. The actual sorting
rule is best specified as a separate constraint.

3.43.2.3 qualifier

A qualifier is optional, but not suppressible. See Section 3.45, “Qualifier,” on
page 3-76.

3.43.2.4 navigability

An arrow may be attached to the end of the path to indicate that navigation is
supported toward the classifier attached to the arrow. Arrows may be attached to zero,
one, or two ends of the path. To be totally explicit, arrows may be shown whenever
navigation is supported in a given direction. In practice, it is often convenient to
suppress some of the arrows and just show exceptional situations. See Section 3.22.3,
“Presentation Options,” on page 3-36 for details.

3.43.2.5 aggregation indicator

A hollow diamond is attached to the end of the path to indicate aggregation. The
diamond may not be attached to both ends of a line, but it need not be present at all.
The diamond is attached to the class that is the aggregate. The aggregation is optional,
but not suppressible.

If the diamond is filled, then it signifies the strong form of aggregation known as
composition. See Section 3.48, “Composition,” on page 3-81.

3.43.2.6 rolename

A name string near the end of the path. It indicates the role played by the class
attached to the end of the path near the rolename. The rolename is optional, but not
suppressible.

3.43.2.7 interface specifier

The name of a Classifier with the syntax:

‘:’ classifiername, . . .

It indicates the behavior expected of an associated object by the related instance. In
other words, the interface specifier specifies the behavior required to enable the
association. In this case, the actual classifier usually provides more functionality than
required for the particular association (since it may have other responsibilities).

The use of a rolename and interface specifier are equivalent to creating a small
collaboration that includes just an association and two roles, whose structure is defined
by the rolename and attached classifier on the original association. Therefore, the
3-72 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
original association and classifiers are a use of the collaboration. The original classifier
must be compatible with the interface specifier (which can be an interface or a type,
among other kinds of classifiers).

If an interface specifier is omitted, then the association may be used to obtain full
access to the associated class.

3.43.2.8 changeability

If the links are changeable (can be added, deleted, and moved), then no indicator is
needed. The property {frozen} indicates that no links may be added, deleted, or moved
from an object (toward the end with the adornment) after the object is created and
initialized. The property {addOnly} indicates that additional links may be added
(presumably, the multiplicity is variable); however, links may not be modified or
deleted.

3.43.2.9 visibility

Specified by a visibility indicator (‘+’, ‘#’, ‘-’ or explicit property name such as
{public}) in front of the rolename. Specifies the visibility of the association traversing
in the direction toward the given rolename. See Section 3.25, “Attribute,” on page 3-41
for details of visibility specification.

Other properties can be specified for association ends, but there is no graphical syntax
for them. To specify such properties, use the constraint syntax near the end of the
association path (a text string in braces). Examples of other properties include
mutability.

3.43.3 Presentation Options

If there are two or more aggregations to the same aggregate, they may be drawn as a
tree by merging the aggregation end into a single segment. This requires that all of the
adornments on the aggregation ends be consistent. This is purely a presentation option,
there are no additional semantics to it.

Various options are possible for showing the navigation arrows on a diagram. These
can vary from time to time by user request or from diagram to diagram.

• Presentation option 1: Show all arrows. The absence of an arrow indicates
navigation is not supported.

• Presentation option 2: Suppress all arrows. No inference can be drawn about
navigation. This is similar to any situation in which information is suppressed from
a view.

• Presentation option 3: Suppress arrows for associations with navigability in both
directions, show arrows only for associations with one-way navigability. In this
case, the two-way navigability cannot be distinguished from no-way navigation;
however, the latter case is normally rare or nonexistent in practice. This is yet
another example of a situation in which some information is suppressed from a
view.
September 2002 OMG-UML , v1.5 Association End 3-73

3 UML Notation Guide
3.43.4 Style Guidelines

If there are multiple adornments on a single association end, they are presented in the
following order, reading from the end of the path attached to the classifier toward the
bulk of the path:

• qualifier

• aggregation symbol

• navigation arrow

Rolenames and multiplicity should be placed near the end of the path so that they are
not confused with a different association. They may be placed on either side of the
line. It is tempting to specify that they will always be placed on a given side of the line
(clockwise or counterclockwise), but this is sometimes overridden by the need for
clarity in a crowded layout. A rolename and a multiplicity may be placed on opposite
sides of the same association end, or they may be placed together (for example, “*
employee”).

3.43.5 Example

Figure 3-41 Various Adornments on Association Roles

3.43.6 Mapping

The adornments on the end of an association path map into properties of the
corresponding role of the Association. In general, implications cannot be drawn from
the absence of an adornment (it may simply be suppressed) but see the preceding
descriptions for details. The interface specifier maps into the “specification” rolename
in the AssociationEnd-Classifier association.

Polygon Point
Contains

{ordered}

3..∗1

GraphicsBundle

color
texture
density

1

1

-bundle

+vertex
3-74 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.44 Multiplicity

3.44.1 Semantics

A multiplicity item specifies the range of allowable cardinalities that a set may assume.
Multiplicity specifications may be given for roles within associations, parts within
composites, repetitions, and other purposes. Essentially a multiplicity specification is a
subset of the open set of nonnegative integers.

3.44.2 Notation

A multiplicity specification is shown as a text string comprising a comma-separated
sequence of integer intervals, where an interval represents a (possibly infinite) range of
integers, in the format:

lower-bound .. upper-bound

where lower-bound and upper-bound are literal integer values, specifying the closed
(inclusive) range of integers from the lower bound to the upper bound. In addition, the
star character (*) may be used for the upper bound, denoting an unlimited upper
bound. In a parameterized context (such as a template), the bounds could be
expressions but they must evaluate to literal integer values for any actual use. Unbound
expressions that do not evaluate to literal integer values are not permitted.

If a single integer value is specified, then the integer range contains the single integer
value.

If the multiplicity specification comprises a single star (*), then it denotes the
unlimited nonnegative integer range, that is, it is equivalent to 0..* (zero or more).

A multiplicity of 0..0 is meaningless as it would indicate that no instances can occur.

Expressions in some specification language can be used for multiplicities, but they
must resolve to fixed integer ranges within the model; that is, no dynamic evaluation of
expressions, essentially the same rule on literal values as most programming
languages.

3.44.3 Style Guidelines

Preferably, intervals should be monotonically increasing. For example, “1..3,7,10” is
preferable to “7,10,1..3”.

Two contiguous intervals should be combined into a single interval. For example,
“0..1” is preferable to “0,1”.

3.44.4 Example

0..1

1

September 2002 OMG-UML , v1.5 Multiplicity 3-75

3 UML Notation Guide
0..*

*

1..*

1..6

1..3,7..10,15,19..*

3.44.5 Mapping

A multiplicity string maps into a Multiplicity value with one or more
MultiplicityRanges. Duplications or other nonstandard presentation of the string itself
have no effect on the mapping. Note that Multiplicity is a value and not an object. It
cannot stand on its own, but is the value of some element property.

3.45 Qualifier

3.45.1 Semantics

A qualifier is an attribute or list of attributes whose values serve to partition the set of
instances associated with an instance across an association. The qualifiers are attributes
of the association.

3.45.2 Notation

A qualifier is shown as a small rectangle attached to the end of an association path
between the final path segment and the symbol of the classifier that it connects to. The
qualifier rectangle is part of the association path, not part of the classifier. The qualifier
rectangle drags with the path segments. The qualifier is attached to the source end of
the association. An instance of the source classifier, together with a value of the
qualifier, uniquely select a partition in the set of target classifier instances on the other
end of the association; that is, every target falls into exactly one partition.

The multiplicity attached to the target end denotes the possible cardinalities of the set
of target instances selected by the pairing of a source instance and a qualifier value.
Common values include:

• “0..1” (a unique value may be selected, but every possible qualifier value does not
necessarily select a value).

• “1” (every possible qualifier value selects a unique target instance; therefore, the
domain of qualifier values must be finite).

• “*” (the qualifier value is an index that partitions the target instances into subsets).

The qualifier attributes are drawn within the qualifier box. There may be one or more
attributes shown one to a line. Qualifier attributes have the same notation as classifier
attributes, except that initial value expressions are not meaningful.
3-76 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
It is permissible (although somewhat rare), to have a qualifier on each end of a single
association.

3.45.3 Presentation Options

A qualifier may not be suppressed (it provides essential detail whose omission would
modify the inherent character of the relationship).

A tool may use a lighter line for qualifier rectangles than for class rectangles to
distinguish them clearly.

3.45.4 Style Guidelines

The qualifier rectangle should be smaller than the attached class rectangle, although
this is not always practical.

3.45.5 Example

Figure 3-42 Qualified Associations

3.45.6 Mapping

The presence of a qualifier box on an end of an association path maps into a list of
qualifier attributes on the corresponding Association Role. Each attribute entry string
inside the qualifier box maps into an Attribute.

3.46 Association Class

3.46.1 Semantics

An association class is an association that also has class properties (or a class that has
association properties). Even though it is drawn as an association and a class, it is
really just a single model element.

Square

Chessboard

rank:Rank
file:File

Person

Bank

account #

∗
0..1 1

1

September 2002 OMG-UML , v1.5 Association Class 3-77

3 UML Notation Guide
3.46.2 Notation

An association class is shown as a class symbol (rectangle) attached by a dashed line
to an association path. The name in the class symbol and the name string attached to
the association path are redundant and should be the same. The association path may
have the usual adornments on either end. The class symbol may have the usual
contents. There are no adornments on the dashed line.

3.46.3 Presentation Options

The class symbol may be suppressed. It provides subordinate detail whose omission
does not change the overall relationship. The association path may not be suppressed.

3.46.4 Style Guidelines

The attachment point should not be near enough to either end of the path that it
appears to be attached to, the end of the path, or to any of the association end
adornments.

Note that the association path and the association class are a single model element and
have a single name. The name can be shown on the path, the class symbol, or both. If
an association class has only attributes, but no operations or other associations, then
the name may be displayed on the association path and omitted from the association
class symbol to emphasize its “association nature.” If it has operations and other
associations, then the name may be omitted from the path and placed in the class
rectangle to emphasize its “class nature.” In neither case are the actual semantics
different.

3.46.5 Example

Figure 3-43 Association Class

Person

Manages

Company

boss

worker

employeeemployer
1..∗

∗

∗

0..1

Job
salary
3-78 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.46.6 Mapping

An association path connecting two class boxes connected by a dashed line to another
class box maps into a single AssociationClass element. The name of the
AssociationClass element is taken from the association path, the attached class box, or
both (they must be consistent if both are present). The Association properties map from
the association path, as specified previously. The Class properties map from the class
box, as specified previously. Any constraints or properties placed on either the
association path or attached class box apply to the AssociationClass itself; they must
not conflict.

3.47 N-ary Association

3.47.1 Semantics

An n-ary association is an association among three or more classifiers (a single
classifier may appear more than once). Each instance of the association is an n-tuple of
values from the respective classifier. A binary association is a special case with its own
notation.

Multiplicity for n-ary associations may be specified, but is less obvious than binary
multiplicity. The multiplicity on a role represents the potential number of instance
tuples in the association when the other N-1 values are fixed.

An n-ary association may not contain the aggregation marker on any role.

3.47.2 Notation

An n-ary association is shown as a large diamond (that is, large compared to a
terminator on a path) with a path from the diamond to each participant class. The name
of the association (if any) is shown near the diamond. Role adornments may appear on
each path as with a binary association. Multiplicity may be indicated; however,
qualifiers and aggregation are not permitted.

An association class symbol may be attached to the diamond by a dashed line. This
indicates an n-ary association that has attributes, operations, and/or associations.

3.47.3 Style Guidelines

Usually the lines are drawn from the points on the diamond or the midpoint of a side.
September 2002 OMG-UML , v1.5 N-ary Association 3-79

3 UML Notation Guide
3.47.4 Example

This example shows the record of a team in each season with a particular goalkeeper.
It is assumed that the goalkeeper might be traded during the season and can appear
with different teams.

Figure 3-44 Ternary association that is also an association class

3.47.5 Mapping

A diamond attached to some number of class symbols by solid lines maps into an N-
ary Association whose AssociationEnds are attached to the corresponding Classes. The
ordering of the Classifiers in the Association is indeterminate from the diagram. If a
class box is attached to the diamond by a dashed line, then the corresponding Classifier
supplies the classifier properties for an N-ary AssociationClass.

PlayerTeam

Year

Record

goals for
goals against
wins
losses

goalkeeper

∗

∗

∗

season

team

ties
3-80 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.48 Composition

3.48.1 Semantics

Composite aggregation is a strong form of aggregation, which requires that a part
instance be included in at most one composite at a time and that the composite object
has sole responsibility for the disposition of its parts. The multiplicity of the aggregate
end may not exceed one (it is unshared). See Section 3.43, “Association End,” on
page 3-71 for further details.

The composite in a composition “projects” its identity onto the parts in the
relationship. In other words, each part object in an object model can be identified with
a unique composite object. It keeps its own identity as its primary identity. The point is
that it can also be identified as being part of a unique composite. Composition is
transitive. If object A is part of object B that is part of object C, then object A is also
part of object C. A part may be identified with several composite objects in this way,
each at a different level of detail.

The parts of a composition may include classes and associations (they may be formed
into AssociationClasses if necessary). The meaning of an association in a composite
object is that any tuple of objects connected by a single link must all belong to the
same container object. In other words, the composite object projects its identity onto
each link corresponding to the part end of a composition aggregation. If an association
and two classes it relates are all related as parts to the same class as composite, a link
that is an instance of the association is identified with an object that is an instance of
the composite class; the objects connected by the link are also identified with the
composite object; and they must all be associated with the same composite object.

3.48.2 Notation

Composition may be shown by a solid filled diamond as an association end adornment.
Alternately, UML provides a graphically-nested form that is more convenient for
showing composition in many cases.

Instead of using binary association paths using the composition aggregation
adornment, composition may be shown by graphical nesting of the symbols of the
elements for the parts within the symbol of the element for the whole. A nested class-
like element may have a multiplicity within its composite element. The multiplicity is
shown in the upper right corner of the symbol for the part. If the multiplicity mark is
omitted, then the default multiplicity is many. This represents its multiplicity as a part
within the composite classifier. A nested element may have a rolename within the
composition; the name is shown in front of its type in the syntax:

rolename ‘:’ classname

This represents its rolename within its composition association to the composite.

Alternately, composition is shown by a solid-filled diamond adornment on the end of
an association path attached to the element for the whole. The multiplicity may be
shown in the normal way.
September 2002 OMG-UML , v1.5 Composition 3-81

3 UML Notation Guide
Note that attributes are, in effect, composition relationships between a classifier and
the classifiers of its attributes.

An association drawn entirely within a border of the composite is considered to be part
of the composition. Any instances on a single link of it must be from the same
composite. An association drawn such that its path breaks the border of the composite
is not considered to be part of the composition. Any instances on a single link of it
may be from the same or different composites.

Note that the notation for composition resembles the notation for collaboration. A
composition may be thought of as a collaboration in which all of the participants are
parts of a single composite object.

Note that nested notation is not the correct way to show a class declared within another
class. Such a declared class is not a structural part of the enclosing class but merely has
scope within the namespace of the enclosing class, which acts like a package toward
the inner class. Such a namescope containment may be shown by placing a package
symbol in the upper right corner of the class symbol. A tool can allow a user to click
on the package symbol to open the set of elements declared within it. The “anchor
notation” (a cross in a circle on the end of a line) may also be used on a line between
two class boxes to show that the class with the anchor icon declares the class on the
other end of the line.

3.48.3 Design Guidelines

Note that a class symbol is a composition of its attributes and operations. The class
symbol may be thought of as an example of the composition nesting notation (with
some special layout properties). However, attribute notation subordinates the attributes
strongly within the class; therefore, it should be used when the structure and identity of
the attribute objects themselves is unimportant outside the class.
3-82 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.48.4 Example

Figure 3-45 Different Ways to Show Composition

Window

scrollbar [2]: Slider
title: Header
body: Panel

Window

scrollbar title body

scrollbar:Slider

Header Panel

2 1 1

Window

Slider

2

title:Header
1

body:Panel
1

1
11
September 2002 OMG-UML , v1.5 Composition 3-83

3 UML Notation Guide
3.48.5 Mapping

A class box with an attribute compartment maps into a Class with Attributes. Although
attributes may be semantically equivalent to composition on a deep level, the mapped
model distinguishes the two forms.

A solid diamond on an association path maps into the aggregation-composition
property on the corresponding Association Role.

A class box with contained class boxes maps into a set of composition associations;
that is, one composition association between the Class corresponding to the outer class
box and each of the Classes corresponding to the enclosed class boxes. The
multiplicity of the composite end of each association is 1. The multiplicity of each
constituent end is 1 if not specified explicitly; otherwise, it is the value specified in the
corner of the class box or specified on an association path from the outer class box
boundary to an inner class box.

3.49 Link

3.49.1 Semantics

A link is a tuple (list) of object references. Most commonly, it is a pair of object
references. It is an instance of an association.

3.49.2 Notation

A binary link is shown as a path between two instances. In the case of a link from an
instance to itself, it may involve a loop with a single instance. See “Association” on
page 3-68 for details of paths.

A rolename may be shown at each end of the link. An association name may be shown
near the path. If present, it is underlined to indicate an instance. Links do not have
instance names, they take their identity from the instances that they relate. Multiplicity
is not shown for links because they are instances. Other association adornments
(aggregation, composition, navigation) may be shown on the link ends.

A qualifier may be shown on a link. The value of the qualifier may be shown in its
box.
3-84 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.49.2.1 Implementation stereotypes

A stereotype may be attached to the link end to indicate various kinds of
implementation. The following stereotypes may be used:

3.49.2.2 N-ary link

An n-ary link is shown as a diamond with a path to each participating instance. The
other adornments on the association, and the adornments on the association ends, have
the same possibilities as the binary link.

3.49.3 Example

Figure 3-46 Links

«association» association (default, unnecessary to specify except
for emphasis)

«parameter» method parameter

«local» local variable of a method

«global» global variable

«self» self link (the ability of an instance to send a
message to itself)

downhillSkiClub:Club Joe:Person

Jill:Person

Chris:Person

member

member

member

treasurer

officer

president

officer
September 2002 OMG-UML , v1.5 Link 3-85

3 UML Notation Guide
3.49.4 Mapping

Within an object diagram, each link path maps to a Link between the Instances
corresponding to the connected class boxes. If a name is placed on the link path, then
it is an instance of the given Association (and the rolenames must match or the
diagram is ill formed).

3.50 Generalization

3.50.1 Semantics

Generalization is the taxonomic relationship between a more general element (the
parent) and a more specific element (the child) that is fully consistent with the first
element and that adds additional information. It is used for classes, packages, use
cases, and other elements.

3.50.2 Notation

Generalization is shown as a solid-line path from the child (the more specific element,
such as a subclass) to the parent (the more general element, such as a superclass), with
a large hollow triangle at the end of the path where it meets the more general element.

A generalization path may have a text label called a discriminator that is the name of a
partition of the children of the parent. The child is declared to be in the given partition.
The absence of a discriminator label indicates the “empty string” discriminator which
is a valid value (the “default” discriminator).

Generalization may be applied to associations as well as to classes. To notate
generalization between associations, a generalization arrow may be drawn from a child
association path to a parent association path. This notation may be confusing because
lines connect other lines. An alternative notation is to represent each association as an
association class and to draw the generalization arrow between the rectangles for the
association classes, as with other classifiers. This approach can be used even if an
association does not have any additional attributes, because a degenerate association
class is a legal association.

The existence of additional children in the model that are not shown on a particular
diagram may be shown using an ellipsis (. . .) in place of a child.

Note – This does not indicate that additional children may be added in the future. It
indicates that additional children exist right now, but are not being seen. This is a
notational convention that information has been suppressed, not a semantic statement.
3-86 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
Predefined constraints may be used to indicate semantic constraints among the
children. A comma-separated list of keywords is placed in braces either near the shared
triangle (if several paths share a single triangle) or near a dotted line that crosses all of
the generalization lines involved. The following keywords (among others) may be used
(the following constraints are predefined):

The discriminator must be unique among the attributes and association roles of the
given parent. Multiple occurrences of the same discriminator name are permitted and
indicate that the children belong to the same partition.

The use of multiple classification or dynamic classification affects the dynamic
execution semantics of the language, but is not usually apparent from a static model.

3.50.3 Presentation Options

A group of generalization paths for a given parent may be shown as a tree with a
shared segment (including the triangle) to the child, branching into multiple paths to
each child.

If a text label is placed on a generalization triangle shared by several generalization
paths to children, the label applies to all of the paths. In other words, all of the children
share the given properties.

overlapping An element may have two or more children from the set
as ancestors. An instance may be a direct or indirect
instance of two or more of the children.

disjoint No element may have two children in the set as ancestors.
No instance may be a direct or indirect instance of tow of
the children.

complete All children have been specified (whether or not shown).
No additional children are expected.

incomplete Some children have been specified, but the list is known
to be incomplete. There are additional children that are
not yet in the model. This is a statement about the model
itself. Note that this is not the same as the ellipsis, which
states that additional children exist in the model but are
not shown on the current diagram.
September 2002 OMG-UML , v1.5 Generalization 3-87

3 UML Notation Guide
3.50.4 Example

Figure 3-47 Styles of Displaying Generalizations

Shape

SplineEllipsePolygon

Shape

SplineEllipsePolygon

Shared Target Style

Separate Target Style

. . .

. . .
3-88 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
Figure 3-48 Generalization with Discriminators and Constraints, Separate Target Style

Figure 3-49 Generalization with Shared Target Style

3.50.5 Mapping

Each generalization path between two element symbols maps into a Generalization
between the corresponding GeneralizableElements. A generalization tree with one
arrowhead and many tails maps into a set of Generalizations, one between each

Vehicle

WindPowered
Vehicle

MotorPowered
Vehicle

Land
Vehicle

Water
Vehicle

venue

venuepower
power

SailboatTruck

{overlapping} {overlapping}

Tree

Oak Elm

{disjoint, incomplete}

Birch

species
September 2002 OMG-UML , v1.5 Generalization 3-89

3 UML Notation Guide
element corresponding to a symbol on a tail and the single GeneralizableElement
corresponding to the symbol on the head. That is, a tree is semantically
indistinguishable from a set of distinct arrows, it is purely a notational convenience.

Any property string attached to a generalization arrow applies to the Generalization. A
property string attached to the head line segment on a generalization tree represents a
(duplicated) property on each of the individual Generalizations.

The presence of an ellipsis (“...”) as a child node of a given parent indicates that the
semantic model contains at least one child of the given parent that is not visible on the
current diagram. Normally, this indicator will be maintained automatically by an
editing tool.

3.51 Dependency

3.51.1 Semantics

A dependency indicates a semantic relationship between two model elements (or two
sets of model elements). It relates the model elements themselves and does not require
a set of instances for its meaning. It indicates a situation in which a change to the
target element may require a change to the source element in the dependency.

3.51.2 Notation

A dependency is shown as a dashed arrow between two model elements. The model
element at the tail of the arrow (the client) depends on the model element at the
arrowhead (the supplier). The arrow may be labeled with an optional stereotype and an
optional individual name.

It is possible to have a set of elements for the client or supplier. In this case, one or
more arrows with their tails on the clients are connected to the tails of one or more
arrows with their heads on the suppliers. A small dot can be placed on the junction if
desired. A note on the dependency should be attached at the junction point.

The following kinds of Dependency are predefined and may be indicated with
keywords. Note that some of these correspond to actual metamodel classes and others
to stereotypes of metamodel classes. All of these are shown as dashed arrows with
keywords in guillemets. The name column shows the name of the metamodel class or
the informal name of the class with the given keyword stereotype.
3-90 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.51.3 Presentation Options

Note – The connection between a note or constraint and the element it applies to is
shown by a dashed line without an arrowhead. This is not a Dependency.

Keyword Name Description

access Access The granting of permission for one package to reference the public
elements owned by another package (subject to appropriate
visibility). Maps into a Permission with the stereotype access.

bind Binding A binding of template parameters to actual values to create a
nonparameterized element. See Section 3.31, “Bound Element,” on
page 3-54 for more details. Maps into a Binding.

derive Derivation A computable relationship between one element and another (one
more than one of each). Maps into an Abstraction with the stereotype
derivation.

import Import The granting of permission for one package to reference the public
elements of another package, together with adding the names of the
public elements of the supplier package to the client package. Maps
into a Permission with the stereotype import.

refine Refinement A historical or derivation connection between two elements with a
mapping (not necessarily complete) between them. A description of
the mapping may be attached to the dependency in a note. Various
kinds of refinement have been proposed and can be indicated by
further stereotyping. Maps into an Abstraction with the stereotype
refinement.

trace Trace A historical connection between two elements that represents the
same concept at different levels of meaning. Maps into an
Abstraction with the stereotype trace.

use Usage A situation in which one element requires the presence of another
element for its correct implementation or functioning. May be
stereotyped further to indicate the exact nature of the dependency,
such as calling an operation of another class, granting permission for
access, instantiating an object of another class, etc. Maps into a
Usage. If the keyword is one of the stereotypes of Usage (call, create,
instantiate, send), then it maps into a Usage with the given
stereotype.
September 2002 OMG-UML , v1.5 Dependency 3-91

3 UML Notation Guide
3.51.4 Example

Figure 3-50 Various Dependencies Among Classes

Figure 3-51 Dependencies Among Packages

«friend»
ClassA ClassB

ClassC

«instantiate»

«call»

ClassD

operationZ()
«friend»

ClassD ClassE

«refine» ClassC combines
two logical classes

Controller

Diagram
Elements

Domain
Elements

Graphics
Core

«access»

«access»

«access»

«access»

«access»
3-92 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.51.5 Mapping

A dashed arrow maps into the appropriate kind of Dependency (based on keywords)
between the Elements corresponding to the symbols attached to the ends of the arrow.
The stereotype and the name (if any) attached to the arrow are the stereotype and name
of the Dependency.

3.52 Derived Element

3.52.1 Semantics

A derived element is one that can be computed from another one, but that is shown for
clarity or that is included for design purposes even though it adds no semantic
information.

3.52.2 Notation

A derived element is shown by placing a slash (/) in front of the name of the derived
element, such as an attribute or a rolename.

3.52.3 Style Guidelines

The details of computing a derived element can be specified by a dependency with the
stereotype «derive». Usually it is convenient in the notation to suppress the dependency
arrow and simply place a constraint string near the derived element, although the arrow
can be included when it is helpful.

3.53 InstanceOf

3.53.1 Semantics

Shows the connection between an instance and its classifier.

3.53.2 Notation

Shown as a dashed arrow with its tail on the instance and its head on the classifier. The
arrow has the keyword «instanceOf».

3.53.3 Mapping

Maps into an instance relationship from the instance to the classifier.
September 2002 OMG-UML , v1.5 Derived Element 3-93

3 UML Notation Guide
Part 6 - Use Case Diagrams
A use case diagram shows the relationship among use cases within a system or other
semantic entity and their actors.

3.54 Use Case Diagram

3.54.1 Semantics

Use case diagrams show actors and use cases together with their relationships. The use
cases represent functionality of a system or a classifier, like a subsystem or a class, as
manifested to external interactors with the system or the classifier.

3.54.2 Notation

A use case diagram is a graph of actors, a set of use cases, possibly some interfaces,
and the relationships between these elements. The relationships are associations
between the actors and the use cases, generalizations between the actors, and
generalizations, extends, and includes among the use cases. The use cases may
optionally be enclosed by a rectangle that represents the boundary of the containing
system or classifier.
3-94 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.54.3 Example

Figure 3-52 Use Case Diagram

3.54.4 Mapping

A set of use case ellipses with connections to actor symbols maps to a set of UseCases
and Actors corresponding to the use case and actor symbols, respectively. The optional
rectangle maps onto either a Model with the stereotype «useCaseModel» containing
the set of UseCases and Actors, or to a Classifier, like Subsystem or Class, containing
the set of UseCases. An interface in the diagram is mapped onto an Interface in the
Model, and the connection between the interface and the actor or use case icons is
mapped onto a realization Dependency (an Abstraction dependency being stereotyped
«realize») between the Classifiers. Each generalization arrow maps onto a
Generalization in the model, and each line between an actor symbol and a use case
ellipse maps to an Association between the corresponding Classifiers. A dashed arrow
with the keyword «include» or «extend» maps to an Include or Extend relationship
between UseCases.

Customer

Supervisor

SalespersonPlace

Establish
credit

Check

Telephone Catalog

Fill orders

Shipping Clerk

status

order
September 2002 OMG-UML , v1.5 Use Case Diagram 3-95

3 UML Notation Guide
3.55 Use Case

3.55.1 Semantics

A use case is a kind of classifier representing a coherent unit of functionality provided
by a system, a subsystem, or a class as manifested by sequences of messages
exchanged among the system (subsystem, class) and one or more outside interactors
(called actors) together with actions performed by the system (subsystem, class).

An extension point is a reference to one location within a use case at which action
sequences from other use cases may be inserted. Each extension point has a unique
name within a use case, and a description of the location within the behavior of the use
case.

3.55.2 Notation

A use case is shown as an ellipse containing the name of the use case. An optional
stereotype keyword may be placed above the name and a list of properties included
below the name. As a classifier, a use case may also have compartments displaying
attributes and operations.

Extension points may be listed in a compartment of the use case with the heading
extension points. The description of the locations of the extension point is given in a
suitable form, usually as ordinary text, but can also be given in other forms, like the
name of a state in a state machine, or a precondition or a postcondition.

The behavior of a use case can be described in several different ways, depending on
what is convenient: often plain text is used, but state machines, and operations and
methods are examples of other ways of describing the behavior of the use case.
Sequence diagrams can be used for describing the interaction between use cases and
their actors.

3.55.3 Presentation Options

The name of the use case may be placed below the ellipse. The name of an abstract use
case may be shown in italics.

The ellipse may contain or suppress compartments presenting the attributes, the
operations, and the extension points of the use case.

3.55.4 Style Guidelines

Use case names should follow capitalization and punctuation guidelines used for
Classifiers in the model.
3-96 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.55.5 Mapping

A use case symbol maps to a UseCase with the given name. An extension point maps
into an ExtensionPoint within the UseCase.

3.56 Actor

3.56.1 Semantics

An actor defines a coherent set of roles that users of an entity can play when
interacting with the entity. An actor may be considered to play a separate role with
regard to each use case with which it communicates.

3.56.2 Notation

The standard stereotype icon for an actor is a “stick man” figure with the name of the
actor below the figure.

3.56.3 Presentation Options

An actor may also be shown as a class rectangle with the keyword «actor», with the
usual notation for all compartments. Other icons which convey the kind of actor may
also be used to denote an actor.

3.56.4 Style Guidelines

Actor names should follow capitalization and punctuation guidelines used for types
and classes in the model.

3.56.5 Mapping

An actor symbol maps to an Actor with the given name. The names of abstract actors
may be shown in italics

3.57 Use Case Relationships

3.57.1 Semantics

There are several standard relationships among use cases or between actors and use
cases.

• Association – The participation of an actor in a use case; that is, instances of the
actor and instances of the use case communicate with each other. This is the only
relationship between actors and use cases.
September 2002 OMG-UML , v1.5 Actor 3-97

3 UML Notation Guide
• Extend – An extend relationship from use case A to use case B indicates that an
instance of use case B may be augmented (subject to specific conditions specified in
the extension) by the behavior specified by A. The behavior is inserted at the
location defined by the extension point in B, which is referenced by the extend
relationship.

• Generalization – A generalization from use case C to use case D indicates that C is
a specialization of D.

• Include – An include relationship from use case E to use case F indicates that an
instance of the use case E will also contain the behavior as specified by F. The
behavior is included at the location which defined in E.

3.57.2 Notation

An association between an actor and a use case is shown as a solid line between the
actor and the use case. It may have end adornments such as multiplicity.

An extend relationship between use cases is shown by a dashed arrow with an open
arrow-head from the use case providing the extension to the base use case. The arrow
is labeled with the keyword «extend». The condition of the relationship is optionally
presented close to the key-word.

An include relationship between use cases is shown by a dashed arrow with an open
arrow-head from the base use case to the included use case. The arrow is labeled with
the keyword «include».

A generalization between use cases is shown by a generalization arrow; that is, a solid
line with a closed, hollow arrow head pointing at the parent use case.

The relationship between a use case and its external interaction sequences is usually
defined by an invisible hyperlink to sequence diagrams. The relationship between a use
case and its realization may be shown as dashed arrow with the keyword
«representedClassifier» to collaborations, but may also be defined as invisible
hyperlinks.
3-98 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.57.3 Example

Figure 3-53 Use Case Relationships

3.57.4 Mapping

A path between use case and/or actor symbols maps into the corresponding
relationship between the corresponding Elements, as described above.

3.58 Actor Relationships

3.58.1 Semantics

There is one standard relationship among actors and one between actors and use cases.

• Association – The participation of an actor in a use case; that is, instances of the
actor and instances of the use case communicate with each other. This is the only
relationship between actors and use cases.

• Generalization – A generalization from an actor A to an actor B indicates that an
instance of A can communicate with the same kinds of use-case instances as an
instance of B.

3.58.2 Notation

An association between an actor and a use case is shown as a solid line between the
actor and the use case.

additional requests :

Order
Product

Supply
Arrange

«include»«include»«include»

Request
Catalog

«extend»Extension points

Payment
Customer Data

after creation of the order

Salesperson

Place Order

1 * the salesperson asks for
the catalog
September 2002 OMG-UML , v1.5 Actor Relationships 3-99

3 UML Notation Guide
A generalization between actors is shown by a generalization arrow; that is, a solid line
with a closed, hollow arrow head. The arrow head points at the more general actor.

3.58.3 Example

Figure 3-54 Actor Relationships

3.58.4 Mapping

A generalization between two actor symbols and an association between actor symbol
and a use case symbol maps into the corresponding relationship between the
corresponding Elements, as described above.

Part 7 - Interaction Diagrams
The description of behavior involves two aspects: 1) the structural description of the
participants and 2) the description of the communication patterns. The structure of
Instances playing roles in a behavior and their relationships is called a Collaboration.
The communication pattern performed by Instances playing the roles to accomplish a
specific purpose is called an Interaction. The two aspects of behavior are often
described together on a single diagram, but at times it is useful to describe the
structural aspects separately.

Interaction diagrams come in two forms based on the same underlying information,
specified by a Collaboration and possibly by an Interaction, but each form emphasizes
a particular aspect of it. The two forms are sequence diagrams and collaboration
diagrams. A sequence diagram shows the explicit sequence of communications and is
better for real-time specifications and for complex scenarios. A collaboration diagram
shows an Interaction organized around the roles in the Interaction and their

Establish
Credit

Place
Order

Salesperson

Supervisor

1 *

1 *
3-100 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
relationships. It does not show time as a separate dimension, so the sequence of
communications and the concurrent threads must be determined using sequence
numbers.

3.59 Collaboration

3.59.1 Semantics

Behavior is implemented by ensembles of Instances that exchange Stimuli within an
overall interaction to accomplish a task. To understand the mechanisms used in a
design, it is important to see only those Instances and their cooperation involved in
accomplishing a purpose or a related set of purposes, projected from the larger system
of which they are part of. Such a static construct is called a Collaboration.

A Collaboration includes an ensemble of ClassifierRoles and AssociationRoles that
define the participants needed for a given set of purposes. Instances conforming to the
ClassifierRoles play the roles defined by the ClassifierRoles, while Links between the
Instances conform to AssociationRoles of the Collaboration. ClassifierRoles and
AssociationRoles define a usage of Instances and Links, and the Classifiers and
Associations declare all required properties of these Instances and Links.

An Interaction is defined in the context of a Collaboration. It specifies the
communication patterns between the roles in the Collaboration. More precisely, it
contains a set of partially ordered Messages, each specifying one communication; for
example, what Signal to be sent or what Operation to be invoked, as well as the roles
to be played by the sender and the receiver, respectively.

A CollaborationInstanceSet references an ensemble of Instances that jointly perform
the task specified by the CollaborationInstanceSet’s Collaboration. These Instances
play the roles defined by the ClassifierRoles of the Collaboration; that is, the Instances
have all the properties declared by the ClassifierRoles (the Instances are said to
conform to the ClassifierRoles). The Stimuli sent between the Instances when
performing the task are participating in the InteractionInstanceSet of the
CollaborationInstanceSet. These Stimuli conform to the Messages in one of the
Interactions of the Collaboration. Since an Instance can participate in several
CollaborationInstanceSets at the same time, all its communications are not necessarily
referenced by only one InteractionInstanceSet. They can be interleaved.

A Collaboration may be attached to an Operation or a Classifier, like a UseCase, to
describe the context in which their behavior occurs; that is, what roles Instances play to
perform the behavior specified by the Operation or the UseCase. A Collaboration is
used for describing the realization of an Operation or a Classifier. A Collaboration
which describes a Classifier, like a UseCase, references Classifiers and Associations in
general, while a Collaboration describing an Operation includes the arguments and
local variables of the Operation, as well as ordinary Associations attached to the
Classifier owning the Operation. The Interactions defined within the Collaboration
specify the communication pattern between the Instances when they perform the
behavior specified in the Operation or the UseCase. These patterns are presented in
September 2002 OMG-UML , v1.5 Collaboration 3-101

3 UML Notation Guide
sequence diagrams or collaboration diagrams. A Collaboration may also be attached to
a Class to define the static structure of the Class; that is, how attributes, parameters,
etc. cooperate with each other.

A parameterized Collaboration represents a design construct that can be used
repeatedly in different designs. The participants in the Collaboration, including the
Classifiers and Relationships, can be parameters of the generic Collaboration. The
parameters are bound to particular ModelElements in each instantiation of thegeneric
Collaboration. Such a parameterized Collaboration can capture the structure of a
design pattern (note that a design pattern involves more than structural aspects).
Whereas most Collaborations can be anonymous because they are attached to a named
ModelElement, Collaboration patterns are free standing design constructs that must
have names.

A Collaboration may be expressed at different levels of granularity. A coarse-grained
Collaboration may be refined to produce another Collaboration that has a finer
granularity.

3.60 Sequence Diagram

3.60.1 Semantics

A sequence diagram presents an Interaction, which is a set of Messages between
ClassifierRoles within a Collaboration, or an InteractionInstanceSet, which is a set of
Stimuli between Instances within a CollaborationInstanceSet to effect a desired
operation or result.

3.60.2 Notation

A sequence diagram has two dimensions: 1) the vertical dimension represents time and
2) the horizontal dimension represents different instances. Normally time proceeds
down the page. (The dimensions may be reversed, if desired.) Usually only time
sequences are important, but in real-time applications the time axis could be an actual
metric. There is no significance to the horizontal ordering of the instances.

The different kinds of arrows used in sequence diagrams are described in Section 3.63,
“Message and Stimulus,” on page 3-111, below. These are the same kinds as in
collaboration diagrams; see Section 3.65, “Collaboration Diagram,” on page 3-114.

Note that much of this notation is drawn directly from the Object Message Sequence
Chart notation of Buschmann, Meunier, Rohnert, Sommerlad, and Stal, which is itself
derived with modifications from the Message Sequence Chart notation.

3.60.3 Presentation Options

The horizontal ordering of the lifelines is arbitrary. Often call arrows are arranged to
proceed in one direction across the page; however, this is not always possible and the
ordering does not convey information.
3-102 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
The axes can be interchanged, so that time proceeds horizontally to the right and
different objects are shown as horizontal lines.

Various labels (such as timing constraints, descriptions of actions during an activation,
and so on) can be shown either in the margin or near the transitions or activations that
they label.

Timing constraints may be expressed using time expressions on message or stimuli
names. The functions sendTime (the time at which a stimulus is sent by an instance)
and receiveTime (the time at which a stimulus is received by an instance) may be
applied to stimuli names to yield a time. The set of time functions is open-ended, so
that users can invent new ones as needed for special situations or implementation
distinctions (such as elapsedTime, executionStartTime, queuedTime, handledTime, etc.)

Construction marks of the kind found in blueprints can be used to indicate a time
interval to which a constraint may be attached (see bottom right of Figure 3-55 on
page 3-104). This notation is visually appealing but it is ambiguous if the arrow is
horizontal, because the send time and the receive time cannot be distinguished. In
many cases the transmission time is negligible, so the ambiguity is harmless, but a tool
must nevertheless map such a notation unambiguously to an expression on message or
stimuli names (as shown in the examples in the left of the diagram) before the
information is placed in the semantic model. (A tool may adopt defaults for this
mapping.) Similarly, a tool might permit the time function to be elided and use the
stimulus name to denote the time of stimulus sending or receipt within a timing
expression (such as “b.receiveTime - a.sendTime < 1 sec.” in Figure 3-55), but again
this is only a surface notation that must be mapped to a proper time expression in the
semantic model).
September 2002 OMG-UML , v1.5 Sequence Diagram 3-103

3 UML Notation Guide
3.60.4 Example

Simple sequence diagram with concurrent objects.

Figure 3-55 Simple Sequence Diagram with Concurrent Objects (denoted by boxes
with thick borders).

caller exchange

a: lift receiver

b: dial tone

c: dial digit

{b.receiveTime

{c.receiveTime

. . .

d: route

{d.receiveTime

receiver

phone ringsringing tone

answer phone

stop ringingstop tone

The call is
routed through
the network.

At this point
the parties
can talk.

- a.sendTime < 1 sec.}

- b.sendTime < 10 sec.}

- d.sendTime < 5 sec.}

< 1 sec.
3-104 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
Figure 3-56 Sequence Diagram with Focus of Control, Conditional, Recursion,
Creation, and Destruction.

[x>0] foo(x)

[x<0] bar(x)

doit(z)
doit(w)

more()

ob1:C1

ob2:C2

ob3:C3 ob4:C4

op()
September 2002 OMG-UML , v1.5 Sequence Diagram 3-105

3 UML Notation Guide
3.60.5 Mapping

This section summarizes the mapping for the sequence diagram and the elements
within it, some of which are described in subsequent sections.

Figure 3-57 A summary of the UML constructs used in the section below.

3.60.5.1 Sequence diagram

A sequence diagram maps into an Interaction and an underlying Collaboration or an
InteractionInstanceSet and an underlying CollaborationInstanceSet depending on
whether the diagram shows Instances or ClassifierRoles. An Interaction specifies a
sequence of communications; it contains a collection of partially ordered Messages,
each specifying a communication between a sender role and a receiver role. A
CollaborationInstanceSet references a collection of Instances that conform to the
ClassifierRoles in the Collaboration owning the Interaction. These Instances
communicate by dispatching Stimuli that conform to the Messages in the Interaction.
The CollaborationInstanceSet has an InteractionInstanceSet that references these
Stimuli. A sequence diagram presents either a collection of object symbols and arrows

Collaboration

ClassifierRole AssociationRole Interaction

AssociationEndRole Message

1..*
*

*

1

*

2..*

0..1

*

1..*

Instance Link

StimulusLinkEnd

2..*

1

*

* 1 1

*

*

0..1

Procedure
0..1

*

Procedure
0..1

*

CollaborationInstanceSet

InteractionInstanceSet

*

3-106 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
mapping to Instances and Stimuli, or a collection of classifier-role symbols and arrows
mapping to ClassifierRoles and Messages. The Instances and Stimuli conform to the
ClassifierRoles and Messages.

The sequence diagram presents either a Collaboration or a CollaborationInstanceSet. In
the former case, the classifier box with its lifeline maps onto a ClassifierRole in the
Collaboration, and the arrows map onto the Messages in one of the Collaboration’s
Interactions. The name strings in the boxes map onto the names of the ClassifierRoles,
while the classifier names map onto the ClassifierRole’s base Classifiers. The
AssociationRoles among the ClassifierRoles are not shown on the sequence diagram.
They must be obtained in the model from a complementary collaboration diagram or
other means.

If the sequence diagram presents a CollaborationInstanceSet, each object box with its
lifeline maps into an Instance, which conforms to a ClassifierRole in the
CollaborationInstanceSet’s Collaboration. The name field maps into the name of the
Instance, the role name into the ClassifierRole’s name, and the class field maps into the
names of the Classifiers being the base Classifiers of the ClassifierRole. An arrow
maps into a Stimulus connected to two Instances: the sender and the receiver. The Link
used for the communication of the Stimulus plays the role specified by the
AssociationRole connected to the Message. Unless the correct Link can be determined
from a complementary collaboration diagram or other means, the Stimulus is either not
attached to a Link (not a complete model), or it is attached to an arbitrary Link or to a
dummy Link between the Instances conforming to the AssociationRole implied by the
two ClassifierRoles due to the lack of complete information.

The label of the arrow is mapped into either the body attribute of the Procedure, or into
a detailed action model. For the action model, the name of the Operation to be invoked
or Signal to be sent is mapped onto the name of the Operation or Signal invoked by the
actions in the Procedure connected to the Message. Different alternatives exists for
showing the arguments of the Stimulus. If references to the actual Instances being
passed as arguments are shown, these are mapped onto the arguments of the Stimulus.
If the argument expressions are shown instead, and a detailed action model is used,
then these are mapped into CodeActions in the Procedure, or additional actions that
compute the values of the expressions. Finally, if the types of the arguments are shown
together with the name of the Operation or the Signal, these are mapped onto the
parameter types of the Operation or the Attribute types of the Signal, respectively. A
timing label placed on the level of an arrow endpoint maps into the name of the
corresponding Message or Stimulus. A constraint placed on the diagram maps into a
Constraint on the entire Interaction.

An arrow with the arrowhead pointing to an object symbol or role symbol within the
frame of the diagram maps into a Stimulus (Message) dispatched by a
CreateObjectAction. The interpretation is that an Instance is created by dispatching the
Stimulus. If the target of the arrow is a classifier-role symbol, the Instance will
conform to the ClassifierRole. (Note, that the diagram does not necessarily show from
which Classifier the Instance originates; only that the newly created Instance conform
to the ClassifierRole.) After the creation of the Instance, it may immediately start
interacting with other Instances. This implies that the creation method (constructor,
initializer) of the Instance dispatches these Stimuli. If an object termination symbol
September 2002 OMG-UML , v1.5 Sequence Diagram 3-107

3 UML Notation Guide
(“X”) is the target of an arrow, the arrow maps into a Stimulus which will cause the
receiving Instance to be removed. If the object termination symbol appears in the
diagram without an incoming arrow, it maps into a Procedure containing a
DestroyObjectAction.

The order of the arrows in the diagram maps onto pairs of associations between the
Stimuli (Messages). A predecessor relationship is established between Stimuli
(Messages) corresponding to successive arrows in the vertical sequence. In case of
concurrent arrows preceding an arrow, the corresponding Stimulus (Message) has a
collection of predecessors. Moreover, each Stimulus (Message) has an activator
association to the Stimulus (Message) corresponding to the incoming arrow of the
activation.

Procedural sequence diagram

On a procedural sequence diagram (one with focus of control and calls), subsequent
arrows on the same lifeline map into Stimuli (Messages) obeying the predecessor
association. An arrow to the head of a focus of control region establishes a nested
activation. The arrow maps into a Stimulus (Message) with the dispatching Procedure
containing a CallOperationAction. The Stimulus holds the sender and receiver
Instance, as well as the argument Instances, to be supplied in the invocation and
references the target Operation to be invoked. The expressions that evaluate to the
arguments of the Operation are, in a detailed action model, mapped into CodeActions
in the Procedure connected to the Stimulus, or additional actions that compute the
values of the expressions. In the case the arrow maps onto a Message the sender and
the receiver are specified by the sender and receiver ClassifierRoles of the Message.
The sender and receiver Instances of a Stimulus conform to these ClassifierRoles. Any
condition or iteration expression attached to the arrow becomes, in a detailed action
model, the test clause action in a ConditionalAction or LoopAction in the dispatching
Procedure. All arrows departing the nested activation map into Stimuli (Messages)
with an activation Association to the Stimulus (Message) corresponding to the arrow at
the head of the activation. A return arrow departing the end of the activation maps into
a Stimulus (Message) with:

• an activation Association to the Stimulus (Message) corresponding to the arrow at
the head of the activation, and

• a predecessor association to the previous Stimulus (Message) within the same
activation; that is, the last Stimulus (Message) being sent in the activation.

A return must be the final Stimulus (Message) within a predecessor chain. It is not the
predecessor of any Stimulus (Message).

3.61 Object Lifeline

3.61.1 Semantics

In a sequence diagram an object lifeline denotes an Instance playing a specific role.
Arrows between the lifelines denote communication between the Instances playing
those roles. Within a sequence diagram the existence and duration of the Instance in a
3-108 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
role is shown, but the relationships among the Instances are not shown. The role is
specified by a ClassifierRole; it describes the properties of an Instance playing the role
and describes the relationships an Instance in that role has to other Instances.

3.61.2 Notation

An Instance is shown as a vertical dashed line called the “lifeline.” The lifeline
represents the existence of the Instance at a particular time. If the Instance is created or
destroyed during the period of time shown on the diagram, then its lifeline starts or
stops at the appropriate point; otherwise, it goes from the top to the bottom of the
diagram. An object symbol is drawn at the head of the lifeline. If the Instance is
created during the diagram, then the arrow, which maps onto the Stimulus that creates
the Instance, is drawn with its arrowhead on the object symbol. If the Instance is
destroyed during the diagram, then its destruction is marked by a large “X,” either at
the arrow mapping to the Stimulus that causes the destruction or (in the case of self-
destruction) at the final return arrow from the destroyed Instance. An Instance that
exists when the transaction starts is shown at the top of the diagram (above the first
arrow), while an Instance that exists when the transaction finishes has its lifeline
continue beyond the final arrow.

The lifeline may split into two or more concurrent lifelines to show conditionality.
Each separate track corresponds to a conditional branch in the communication. The
lifelines may merge together at some subsequent point.

3.61.3 Presentation Options

In some cases, it is necessary to link sequence diagrams to each other; for example, it
might not be possible to put all lifelines in one diagram, or a sub-sequence is included
in several diagrams; hence, it is convenient to put the common sub-sequence in a
separate diagram, which is referenced from the other diagrams. In these cases, the cut
between the diagrams can be expressed in one of the diagrams with a dangling arrow
leaving a lifeline but not arriving at another lifeline, and in the other diagram it is
expressed with a dangling arrow arriving at a lifeline from nowhere. In both cases, it is
recommended to attach a note stating which diagram the sequence originates from or
continues in. This is purely notational. The different diagrams show different parts of
the underlying Interaction.

3.61.4 Example

See also Figure 3-56 on page 3-105.
September 2002 OMG-UML , v1.5 Object Lifeline 3-109

3 UML Notation Guide
Figure 3-58 The flow shown in the sequence diagram to the left continues in the diagram
to the right.

3.61.5 Mapping

See Section 3.60.5, “Mapping,” on page 3-106.

3.62 Activation

3.62.1 Semantics

An activation (focus of control) shows the period during which an Instance is
performing an Procedure either directly or through a subordinate procedure. It
represents both the duration of the performance of the Procedure in time and the
control relationship between the activation and its callers (stack frame).

3.62.2 Notation

An activation is shown as a tall thin rectangle whose top is aligned with its initiation
time and whose bottom is aligned with its completion time. The Procedure being
performed may be labeled in text next to the activation symbol or in the left margin,
depending on style. Alternately, the incoming arrow may indicate the Procedure, in
which case it may be omitted on the activation itself. In procedural flow of control, the
top of the activation symbol is at the tip of an incoming arrow (the one that initiates the
procedure) and the base of the symbol is at the tail of a return arrow.

bar(x)

doit(w)

ob3:C3 ob4:C4

[x<0] bar(x)

ob1:C1

Diagram 1
Diagram 2

The flow
continues in
Diagram 2.

The flow
originates in
Diagram 1.
3-110 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
In the case of concurrent Instances each with their own threads of control, an activation
shows the duration when each Instance is performing an Operation or transition in a
state machine. Operations by other Instances are not relevant. If the distinction
between direct computation and indirect computation (by a nested operation call) is
unimportant, the entire lifeline may be shown as an activation.

3.62.3 Example

See Figure 3-55 on page 3-104 and Figure 3-56 on page 3-105.

3.62.4 Mapping

See Section 3.60.5, “Mapping,” on page 3-106.

3.63 Message and Stimulus

3.63.1 Semantics

A Stimulus is a communication between two Instances that conveys information with
the expectation that action will ensue. A Stimulus will cause an Operation to be
invoked, raise a Signal, or cause an Instance to be created or destroyed.

A Message is a specification of Stimulus, i.e. it specifies the roles that the sender and
the receiver Instances must conform to, as well as the Procedure which will, when
executed, dispatch a Stimulus that conforms to the Message.

3.63.2 Notation

In a sequence diagram a Stimulus as well as a Message is shown as a horizontal solid
arrow from the lifeline of one Instance or ClassifierRole to the lifeline of another
Instance or ClassifierRole. In case of a Stimulus from an Instance to itself, the arrow
may start and finish on the same lifeline. The arrow is labeled with the name of the
Operation to be invoked or the name of the Signal. Its argument values or argument
expressions may be presented, as well.

The arrow may also be labeled with a sequence number to show the sequence of the
Stimulus (Message) in the overall interaction. However, sequence numbers are often
omitted in sequence diagrams, as the physical location of the arrow shows the relative
sequences, but they are necessary in collaboration diagrams. Sequence numbers are
useful on both kinds of diagrams for identifying concurrent threads of control. An
arrow may also be labeled with a condition and/or iteration expression.

3.63.3 Presentation options

The following arrowhead variations may be used to show different kinds of
communications.
September 2002 OMG-UML , v1.5 Message and Stimulus 3-111

3 UML Notation Guide
filled solid arrowhead

Operation call or other nested flow of control. The entire nested sequence is
completed before the outer level sequence resumes. The arrowhead may be used to
denote ordinary operation calls, but it may also be used to denote concurrently
active instances when one of them sends a Signal and waits for a nested sequence of
behavior to complete before it continues.

stick arrowhead

Asynchronous communication; that is, no nesting of control. The sender dispatches
the Stimulus and immediately continues with the next step in the execution.1

dashed arrow with stick arrowhead

Return from operation call.

Variation:

In a procedural flow of control, the return arrow may be omitted (it is implicit at the
end of an activation). It is assumed that every call has a paired return after any
subordinate stimuli. The return value can be shown on the initial arrow. For
nonprocedural flow of control (including parallel processing and asynchronous
messages) returns should be shown explicitly.

Variation:

Normally message arrows are drawn horizontally. This indicates the duration
required to send the stimulus is “atomic;” that is, it is brief compared to the
granularity of the interaction and that nothing else can “happen” during the
transmission of the stimulus. This is the correct assumption within many computers.
If the stimulus requires some time to arrive, during which something else can occur
(such as a stimulus in the opposite direction), then the arrow may be slanted
downward so that the arrowhead is below the arrow tail.

Variation: Branching

A branch is shown by multiple arrows leaving a single point, each possibly labeled
by a condition. Depending on whether the conditions are mutually exclusive, the
construct may represent conditionality or concurrency.

1.UML 1.3 and previous versions included a half-stick arrowhead notation in addition to the
stick arrowhead notation. This notation has been removed because the semantic distinction
between the two was subtle and confusing.
3-112 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
Variation: Iteration

A connected set of arrows may be enclosed and marked as an iteration. For a
generic sequence diagram, the iteration indicates that the dispatch of a set of stimuli
can occur multiple times. For a procedure, the continuation condition for the
iteration may be specified at the bottom of the iteration. If there is concurrency, then
some arrows in the diagram may be part of the iteration and others may be single
execution. It is desirable to arrange a diagram so that the arrows in the iteration can
be enclosed together easily.

Variation:

A lifeline may subsume an entire set of objects on a diagram representing a high-
level view.

Variation:

A distinction may be made between a period during which an Instance has a live
activation and a period in which the activation is actually computing. The former
(during which it has control information on a stack but during which control resides
in something that it called) is shown with the ordinary double line. The latter
(during which it is the top item on the stack) may be distinguished by shading the
region.

3.63.4 Example

See Figure 3-56 on page 3-105.

3.63.5 Mapping

See Section 3.60.5, “Mapping,” on page 3-106.

3.64 Transition Times

3.64.1 Semantics

A Message may specify several different times; for example, a sending time and a
receiving time. These are formal names that may be used within Constraint
expressions. The set of different kinds of times is open-ended so that users can invent
new ones as needed for special situations, such as elapsedTime and
startExecutionTime. These expressions may be used in Constraints to designate
specific time constraints valid for the Message.

3.64.2 Notation

A transition instance (such as a Stimulus or Message in a sequence diagram, a
collaboration diagram, or a Transition in a state machine) may be given a name. A
timing constraint is formed as an expression based on the name of the transition. For
September 2002 OMG-UML , v1.5 Transition Times 3-113

3 UML Notation Guide
example, if the name of a Stimulus is stim, its send-time is expressed by stim.sendTime
(), and its receive-time by stim.receiveTime (). The timing constraint may be shown in
the left margin aligned with the arrow (on a sequence diagram) or near the tail of the
arrow (on a collaboration diagram). Constraints may be specified by placing Boolean
expressions, possibly including time expressions, in braces on the sequence diagram.

3.64.3 Presentation Options

When it is clear from the context, the name of a Message or the name of a Stimulus
may itself be used to denote the time at which the transition started. In cases where the
performance of the transition is not instantaneous, the time at which the transition is
ended may be indicated by the same name with a prime sign appended to the name.

3.64.4 Example

See Figure 3-55 on page 3-104.

3.64.5 Mapping

See Section 3.60.5, “Mapping,” on page 3-106.

Part 8 - Collaboration Diagrams

3.65 Collaboration Diagram

3.65.1 Semantics

A collaboration diagram presents either a Collaboration, which contains a set of roles
to be played by Instances, as well as their required relationships given in a particular
context, or it presents a CollaborationInstanceSet with a collection of Instances and
their relationships. The diagram may also present an Interaction
(InteractionInstanceSet), which defines a set of Messages (Stimuli) specifying the
interaction between the Instances playing the roles within a Collaboration to achieve
the desired result.

A Collaboration is used for describing the realization of an Operation or a Classifier. A
Collaboration that describes a Classifier, like a UseCase, references Classifiers and
Associations in general, while a Collaboration describing an Operation includes the
arguments and local variables of the Operation, as well as ordinary Associations
attached to the Classifier owning the Operation.

3.65.2 Notation

A collaboration diagram shows a graph of either Instances linked to each other, or
ClassifierRoles and AssociationRoles; it may also include the communication stated by
an Interaction or InteractionInstanceSet.
3-114 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
Because collaboration diagrams often are used to help design procedures, they
typically show navigability using arrowheads on the lines representing Links or
AssociationRoles. (An arrowhead on a line between boxes indicates a Link or
AssociationRole with one-way navigability. An arrow next to a line indicates Stimuli
or Message flowing in the given direction. Obviously such an arrow cannot point
backwards over a one-way line.)

The order of the interaction is described with a sequence of numbers, usually starting
with number 1. For a procedural flow of control, the subsequent communication
numbers are nested in accordance with call nesting. For a nonprocedural sequence of
interactions among concurrent instances, all the sequence numbers are at the same
level (that is, they are not nested).

A collaboration diagram without any interaction shows the context in which
interactions can occur. It might be used to show the context for a single Operation or
even for all of the Operations of a Class or group of Classes.

A collection of standard constraints may be used to show whether an Instance or a
Link is created or destroyed during the execution:

• Instances and Links created during the execution may be designated as {new}.

• Instances and Links destroyed during the execution may be designated as
{destroyed}.

• Instances and Links created during the execution and then destroyed may be
designated as {transient}.

These changes in life state are derivable from the detailed interaction among the
Instances, they are provided as notational conveniences.

3.65.2.1 Collaboration Instance

A collaboration diagram given at instance level shows a CollaborationInstanceSet; that
is, a collection of object boxes and lines mapping to Instances and Links, respectively.
These instances conform to the ClassifierRoles and AssociationRoles of the
CollaborationInstanceSet’s Collaboration. The diagram may also include arrows
attached to the lines that correspond to Stimuli communicated over the Links. The
diagram shows the Instances relevant to the realization of an Operation or Classifier,
including Instances indirectly affected or accessed during the performance. The
diagram also shows the Links among the Instances, including transient ones
representing procedure arguments, local variables, and self links. Individual attribute
values are usually not shown explicitly. If Stimuli must be sent to attribute values, the
Attributes should be modeled using Associations instead.

3.65.2.2 Collaboration

A collaboration diagram given at specification level shows a Collaboration; that is, the
roles defined within a Collaboration. Together, these roles form a realization of the
attached Operation or Classifier of the Collaboration. The diagram contains a
September 2002 OMG-UML , v1.5 Collaboration Diagram 3-115

3 UML Notation Guide
collection of class boxes and lines corresponding to ClassifierRoles and
AssociationRoles in the Collaboration. In this case the arrows attached to the lines map
onto Messages.

3.65.3 Example

Figure 3-59 Collaboration Diagram at instance level, presenting Objects, Links, and
Stimuli referenced by a CollaborationInstanceSet and its InteractionInstanceSet.

Figure 3-60 Collaboration Diagram at specification level, presenting the ClassifierRoles
and the AssociationRoles that belong to the Collaboration.

:Controller

wire: Wire

1: displayPositions(window)

left: Bead

wire

redisplay()
:Window

i-1 i

right: Bead

1.1.1b: r1:=position()1.1.1a: r0 := position()

1.1.2: create(r0,r1)

window

«parameter»window

1.1*[i:=1..n]: drawSegment(i) :Line {new}
«local» line

1.1.3: display(window)

1.1.3.1: add(self)

contents {new}

«self»

/ Teacher : Person

: Faculty
given course *

/ Student : Person

student *

: Course

tutor 1

taken course *

participant *lecturer 1faculty member *

faculty 1
3-116 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
Figure 3-61 Collaboration Diagram presenting a CollaborationInstanceSet in which some
of the Objects play the same role. The instances conform to the Collaboration
shown in Figure 3-60 on page 3-116.

3.65.4 Mapping

A collaboration diagram maps either to a Collaboration, possibly together with an
Interaction, or to a CollaborationInstanceSet possibly together with its
InteractionInstanceSet. The mapping of each kind of icon is described in Section 3.69,
“Collaboration Roles,” on page 3-124. The mapping of the stereotypes is explained in
Section 3.49, “Link,” on page 3-84.

3.66 Pattern Structure

3.66.1 Semantics

A Collaboration can be used to specify the implementation of design constructs. For
this purpose, it is necessary to specify its context and interactions. It is also possible to
view a Collaboration as a single entity from the “outside.” For example, this could be
used to identify the presence of design patterns within a system design. A pattern is a
parameterized Collaboration; that is, a Collaboration template. In each use of the
pattern, actual Classifiers are substituted for the parameters in the pattern definition.

Note that patterns as defined in Design Patterns by Gamma, Helm, Johnson, and
Vlissides include much more than structural descriptions. UML describes the structural
aspects and some behavioral aspects of design patterns; however, UML notation does
not include other important aspects of patterns, such as usage trade-offs or examples.
These must be expressed by other means, such as in text or tables.

tutor / Teacher : Person

/ Student : Person

1: namesOfTeachers()

studentTeachers ()

1.1*[i:=1..n]: lecturer()

: Course

1.i.1: name ()

lecturer / Teacher : Person
September 2002 OMG-UML , v1.5 Pattern Structure 3-117

3 UML Notation Guide
A Collaboration can be defined in terms of other, so-called subordinate,
Collaborations. Each role in the former Collaboration, the so-called superordinate
Collaboration, is either a new role that is defined in the superordinate Collaboration or
it is a role defined in one or several of the subordinate Collaborations and reused in the
definition of the superordinate Collaboration. In the latter case, the role is often
renamed so it better suits the purpose of the superordinate Collaboration. If so, the
original names of the roles are shown within curly brackets after the name used within
the superordinate Collaboration (see Figure 3-66 on page 3-120).

3.66.2 Notation

A use of a Collaboration is shown as a dashed ellipse containing the name of the
Collaboration. A dashed line is drawn from the collaboration symbol to each of the
symbols denoting Classifiers that participate in the Collaboration. Each line is labeled
by the role of the participant. The roles correspond to the names of elements within the
context for the Collaboration; such names in the Collaboration are treated as
parameters that are bound to specify elements on each occurrence of the pattern within
a model. Therefore, a collaboration symbol can show the use of a design pattern
together with the actual Classifiers and Associations that occur in that particular use of
the pattern.

Figure 3-62 Use of a Collaboration.

As a Collaboration is a GeneralizableElement, it may have Generalization relationships
to other Collaborations. In this way it is possible to define one Collaboration to be a
specialization of another Collaboration. It is depicted by the ordinary Generalization
arrow from the dashed ellipse representing the child Collaboration to the icon of the
parent Collaboration. The roles of the child Collaborations may be specializations of
roles in the parent Collaboration. This is shown by redefining the role name of the
parent collaboration in the child collaboration.

Observer

SlidingBarIcon
Observer

CallQueue Subject

queue: List of Call
source: Object
waitAlarm: Alarm

reading: Real
color: Color
range: Interval

Observer.reading = length (Subject.queue)

capacity: Integer

Observer.range = (0 .. Subject.capacity)
3-118 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
Figure 3-63 Specialization of a Collaboration. As the Subject role of the Supervisor
collaboration is a specialization (an extension) of the Subject role defined in
the Observer collaboration, the ManagedQueue class is used instead of the
CallQueue class as the base of the Subject role.

A dashed arrow with a stick arrowhead is used to show that a Collaboration is a
realization of an Operation or a Classifier. This relationship can also be presented in
textual form within the Collaboration symbol.

Figure 3-64 The relationship between a Collaboration and the element it is realizing
can be shown either as a dashed arrow with a stick arrowhead from the
Collaboration to the realized element, or in text.

The usual convention is used to show a CollaborationInstanceSet; that is, it is shown as
a dashed ellipse with the name underlined. The Instances and the Links that participate
in the CollaborationInstanceSet are connected to the ellipse with dashed lines. The
name of the role an instance is playing is shown close to the line and the instance.

In some cases it is convenient to show the static structure of a Collaboration within the
collaboration icon (the dashed ellipse).

Observer SlidingBarIcon

Observer

CallQueue

Subject

Supervisor Controller

Manager

ManagedQueue

Subject

Window

display (...)

representedOperation:
alternative notation Window:: display

RealizeDisplayOperation

RealizeDisplayOperation
September 2002 OMG-UML , v1.5 Pattern Structure 3-119

3 UML Notation Guide
Figure 3-65 The static structure of a Collaboration shown within the collaboration icon.

It is possible to denote that a Collaboration is defined in terms of other Collaborations
in two different ways, either using dashed ellipses showing the Collaborations and their
relationships, or using ordinary collaboration diagrams. The former way has the
advantage that it explicitly shows the relationship between the Collaborations, while
the latter shows the structure of the new Collaboration.

Figure 3-66 The ComponentFramework Collaboration uses two occurrences of the Proxy
Collaboration and two occurrences of the Container Collaboration. Note that each
role in the Component Framework corresponds to a role in two of the used
Collaborations.

Observer

/Observer : SlidingBarIcon/Subject : CallQueue

Proxy

Component Framework

Proxy OriginalClient

«usedCollaboration»

Proxy

Proxy OriginalClient

Factory

Component

Component

Container

ElementContainer

Container

ElementContainer

Client Object

Remote
Object

Service
Container

«usedCollaboration»«usedCollaboration»

«usedCollaboration»
3-120 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.66.3 Mapping

A collaboration usage symbol maps into a Collaboration. For each class symbol and
lines attached by a dashed line to the pattern occurrence symbol, the corresponding
Classifier or Association is bound to the template parameter that is the base association
target of the ClassifierRole or AssociationRole in the Collaboration template with the
name equal to the name on the dashed line.

A dashed arrow with a closed hollow arrowhead from a Collaboration symbol to a
Classifier or to an Operation is mapped onto the representedClassifier and onto the
representedOperation association of the Collaboration, respectively.

A collaboration usage symbol with its name underlined is mapped onto a
CollaborationInstanceSet. The object box symbols and the lines attached to the ellipse
by dashed lines are mapped onto Instances and Links, respectively.

3.67 Collaboration Contents

The contents of a Collaboration is a collection of roles specifying how Instances and
Links cooperate within a given context for a particular purpose, such as performing an
Operation or a Use case. A Collaboration is a fragment of a larger complete model that
is intended for a particular purpose.

3.67.1 Semantics

A Collaboration diagram shows either a Collaboration or a CollaborationInstanceSet.
In the former case, the diagram shows one or more roles together with their contents,
relationships, and neighbor roles, plus additional relationships and Classes as needed.
When the diagram shows a CollaborationInstanceSet, it shows instances participating
in the CollaborationInstanceSet, playing the roles defined in the Collaboration. To use
a Collaboration, each role must be bound to an actual Classifier (or collection of
Classifiers, if multiple classification is used) that (jointly) support the Features
required by the role. The additional elements express additional requirements that
cannot be modeled with roles, such as Generalizations between roles.

3.67.2 Notation

A collaboration diagram presents a graph of class boxes or object boxes together with
connecting lines. These icons map onto ClassifierRoles and AssociationRoles, or
Instance, and Links, respectively (see Section 3.69, “Collaboration Roles,” on
page 3-124).

However, a collaboration diagram may also contain other elements, like different kinds
of Classifiers, Generalizations, and Constraints, to express additional information.
These elements are shown using their ordinary icons.
September 2002 OMG-UML , v1.5 Collaboration Contents 3-121

3 UML Notation Guide
Figure 3-67 A collaboration diagram showing a Collaboration with a Constraint as a
constraining element of the Collaboration.

Figure 3-68 A collaboration diagram showing different roles, together with two
additional Generalization relationships as constraining elements.

3.67.3 Mapping

The mapping of roles and instances are described in Section 3.69, “Collaboration
Roles,” on page 3-124. Any constraining element, like a generalization arrow, is
mapped onto its usual model element, such as Generalization. These elements a
referenced by the Collaboration as its constraining elements.

/Observer:SlidingBarIcon

/Subject:CallQueue

queue: List of Call
source: Object
waitAlarm: Alarm

reading: Real
color: Color
range: Interval

capacity: Integer

:Window

color: Color
location: Area

{Observer.reading = length (Subject.queue)
and
Observer.range = (0..Subject.capacity)}

/ Generator : PrintDevice

1: print (info)

: LaserPrinter : LinePrinter

printer 1
3-122 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.68 Interactions

A collaboration of Instances interacts to accomplish a purpose (such as performing an
Operation) by exchanging Stimuli. These may include both sending Signals and
invocations of Operations, as well as more implicit interaction through conditions and
time events. A specific pattern of communication exchanges to accomplish a specific
purpose is called an Interaction. The collection of Stimuli sent between the Instances
that participate in a CollaborationInstanceSet when they perform the task of the
Collaboration is called an InteractionInstanceSet.

3.68.1 Semantics

An Interaction is a behavioral specification that comprises a sequence of
communications exchanged among a set of Instances within a Collaboration to
accomplish a specific purpose, such as the implementation of an Operation. To specify
an Interaction, it is first necessary to specify a Collaboration; that is, to establish the
roles that interact and their relationships. Then, the possible interaction sequences are
specified. These can be specified in a single description containing conditionals
(branches or conditional signals), or they can be specified by supplying multiple
descriptions, each describing a particular path through the possible execution paths.

One communication is specified with a Message; it specifies the sender and the
receiver roles, as well as the Procedure that will cause the communication to take
place. The Procedure specifies what kind of communication that should take place,
such as sending a Signal or invoking an Operation, and determines the actual
arguments to be supplied. The Procedure may also state conditions or iterations of the
communication.

When the Procedure is performed, a Stimulus is dispatched conforming to the
Message. The Stimulus contains references to the sender and the receiver Instances
playing the sender role and the receiver role of the Message, as well as a sequence of
references to Instances being the actual arguments determined by the Procedure. An
InteractionInstanceSet is a collection of Stimuli that conform to the Messages of an
Interaction, i.e. the Stimuli are sent between the Instances participating an a
CollaborationInstanceSet when they perform the task defined by the Collaboration.

3.68.2 Notation

Interactions are shown as sequence diagrams or as collaboration diagrams. Both
diagram formats show the execution of collaborations. However, sequence diagrams do
not show the relationships between the Instances or the Attribute values of the
Instances; therefore, they do not fully show the context aspect of a Collaboration.
Sequence diagrams do show the behavioral aspect of Collaborations explicitly,
including the time sequence of Stimuli and explicit representation of method
activations. Sequence diagrams are described in “Part 7 - Interaction Diagrams” on
page 3-100. Collaboration diagrams show the full context of an interaction, including
the Instances and their relationships relevant to a particular interaction. The sequencing
of the Stimuli is done using sequence numbers, since distributing them along a time
September 2002 OMG-UML , v1.5 Interactions 3-123

3 UML Notation Guide
axis, like in Sequence diagrams, is not possible in this kind of diagram. (In fact, in
some cases it is convenient to use sequence numbers in combination with a time axis.)
The contents of collaboration diagrams are described in the following section.

3.68.3 Mapping

The mapping of roles and instances are described below, while the mapping of
messages and stimuli are described in Section 3.72, “Message and Stimulus,” on
page 3-130.

3.68.4 Example

See Section 3.65, “Collaboration Diagram,” on page 3-114 for examples of Interactions
and InteractionInstanceSets and their Collaborations and CollaborationInstanceSets,
respectively.

3.69 Collaboration Roles

3.69.1 Semantics

A ClassifierRole defines a role to be played by an Instance within a Collaboration. The
role describes the kind of Instance that may play the role, such as required Operations
and Attributes, and describes its relationships to Instances playing other roles. The
relationships to other roles are defined by AssociationRoles. These describe the
required Links between the Instances; that is, a subset of the existing Links.

3.69.2 Notation

A ClassifierRole is shown using a class rectangle symbol. Normally, only the name
compartment is shown, but the attribute and operation compartments may also be
shown when needed. The name compartment contains the string:

‘/’ ClassifierRoleName ‘:’ ClassifierName [‘,’ ClassifierName]*

The name of the Classifier (or Classifiers if multiple classification is used) can include
a full pathname of enclosing Packages, if necessary. A tool will normally permit
shortened pathnames to be used when they are unambiguous. The Package names
precede the Classifier name and are separated by double colons. For example:

display_window: WindowingSystem::GraphicWindows::Window

A stereotype may be shown textually (in guillemets above the name string) or as an
icon in the upper right corner. A ClassifierRole representing a set of Instances can
include a multiplicity indicator (such as “*”) in the upper right corner of the class box.
3-124 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
An AssociationRole is shown with the usual association line. The name string of the
AssociationRole follows the same syntax as for the ClassifierRole. If the name is
omitted, a line connected to ClassifierRole symbols denotes an AssociationRole. The
information attached to the ends of the AssociationRole; that is, to the
AssociationEndRoles, are shown using the same notation as for AssociationEnds.

An Instance playing the role defined by a ClassifierRole is depicted by an object box,
normally without an attribute compartment. The name of the Instance is shown as a
string:

ObjectName ‘/’ ClassifierRoleName ‘:’ ClassifierName [‘,’ ClassifierName]*

That is it starts with the name of the Instance, followed by the complete name of the
ClassifierRole, all underlined. If the attribute compartment is shown, it contains the
names of the Attributes required by an Instance playing the role. If some Attributes are
required to have certain values, this is shown in the same way as in object diagrams;
that is, the name of the attribute followed by an equal sign and the relevant values.

A Link is shown by a line between object boxes. Its name string follows the syntax of
an Object playing a specific role.

3.69.3 Presentation options

The name of a ClassifierRole may be omitted. In this case, the colon is kept together
with the Classifier name. The role name may be omitted only if there is only one role
to be played by Instances of the base Classifier in the Collaboration.

The name of the Classifier may be omitted together with the colon.

At least one of the Classifier name (together with the colon) or the ClassifierRole name
(together with the slash) must be present to denote a ClassifierRole. Otherwise, the
rectangle denotes an ordinary Classifier or Instance depending on whether the name is
underlined or not.

If the role is to be played by an Instance originating from multiple Classifiers, the
names of the Classifiers are shown in a comma separated list after the colon.

In an object box the Instance name, the role name and / or the classifier name may be
omitted. However, the colon should be kept in front of the classifier name, and the
slash should be kept in front of the role name. The notation used is the same for
Instances in general, with the possible addition of the name of the ClassifierRole that
the Instance conforms to.

Note, the name of an Instance is always underlined, whereas the name of a Classifier
(including ClassifierRole) is never underlined. Furthermore, an un-named line between
icons representing Instances is always a Link, and between icons representing
Classifiers (except ClassifierRoles) it is always an Association.
September 2002 OMG-UML , v1.5 Collaboration Roles 3-125

3 UML Notation Guide
These tables summarize the different combinations of names:

3.69.4 Example

See figures in Section 3.65, “Collaboration Diagram,” on page 3-114.

3.69.5 Mapping

A classifier role rectangle maps onto one ClassifierRole. The role name is the name of
the ClassifierRole and the sequence of classifier names are the names of the base
Classifiers. An association role line maps onto an AssociationRole attached to the
ClassifierRoles corresponding to the rectangles at the end points of the line.

An object symbol maps onto an Instance whose name is the object part of the name
string. The Classifiers of the Instance are those named according to the sequence of
names in the class part of the string (or children of these Classifiers). The Instance
conforms to the ClassifierRole, whose name is the role part of the string.

A Collaboration can also be used for describing the internal structure of a Classifier. In
such case, the names of the roles are the same as the names of the attributes of the
Classifier. In this way, the connection between the roles and the Attributes they
represent are established. (The base of the roles are not enough for uniquely
identifying this mapping, since several Attributes may have the same type.)

syntax explanation

: C un-named Instance originating from the Classifier C

/ R un-named Instance playing the role R

/ R : C un-named Instance originating from the Classifier C
playing the role R

O / R an Instance named O playing the role R

O : C an Instance named O originating from the Classifier C

O / R : C an Instance named O originating from the Classifier C
playing the role R

O an Instance named O

syntax explanation

/ R a role named R

: C an un-named role with the base Classifier C

/ R : C a role named R with the base Classifier C
3-126 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.70 Multiobject

3.70.1 Semantics

A multiobject represents a set of Instances on the “many” end of an Association. This
is used to show Operations and Signals that address the entire set, rather than a single
Instance in it. The underlying static model is unaffected by this grouping. This
corresponds to an Association with multiplicity “many” used to access a set of
associated Instances.

3.70.2 Notation

A multiobject is shown as two rectangles in which the top rectangle is shifted slightly
vertically and horizontally to suggest a stack of rectangles. A message arrow to the
multiobject symbol indicates a Stimulus to the set of Instances (for example, a
selection Operation to find an individual Object).

To perform an Operation on each Instance in a set of associated Instances requires two
Stimuli: 1) an iteration to the multiobject to extract Links to the individual Instances
and then 2) a Stimulus sent to each individual Instance using the (temporary) Link.
This may be elided on a diagram by combining the arrows into a single arrow that
includes an iteration and an application to each individual Instance. The target
rolename takes a “many” indicator (*) to show that many individual Links are implied.
Although this may be written as a single Stimulus, in the underlying model (and in any
actual code) it requires the two layers of structure (iteration to find Links,
communication using each Link) mentioned previously.

An Instance from the set is shown as a normal object symbol, but it may be attached to
the multiobject symbol using a composition Link to indicate that it is part of the set. A
communication arrow to the simple object symbol indicates a Stimulus to an individual
Instance.

Typically a selection Stimulus to a multiobject returns a reference to an individual
Instance, to which the original sender then sends a Stimulus.
September 2002 OMG-UML , v1.5 Multiobject 3-127

3 UML Notation Guide
3.70.3 Example

Figure 3-69 Multiobject

3.70.4 Mapping

A multi-object symbol maps to a collection of Instances in which each Instance
conforms to the ClassifierRole and this role has the multiplicity “many” (or whatever is
explicitly specified). In other respects, it maps the same as an object symbol. (The
stereotype is explained in Section 3.49, “Link,” on page 3-84.)

3.71 Active object

An active object is one that owns a thread of control and may initiate control activity.
A passive object is one that holds data, but does not initiate control. However, a passive
object may send Stimuli in the process of processing a request that it has received. In a
collaboration diagram, a ClassifierRole that is an active class represents the active
objects that occur during execution.

3.71.1 Semantics

An active object is an Instance that owns a thread of control. Processes and tasks are
traditional kinds of active objects.

3.71.2 Notation

A role for an active object is shown as a rectangle with a heavy border. Frequently,
active object roles are shown as composites with embedded parts.

The property keyword {active} may also be used to indicate an active object.

servers
:Server

:Server
aServer «local»

client

1: aServer:=find(specs)

2: process(request)
3-128 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.71.3 Example

Figure 3-70 Composite Active Object

3.71.4 Mapping

An active object symbol maps as an object symbol does, with the addition that the
class of the object has the active property set.

job

:FactoryJobMgr

:FactoryScheduler

currentJob : TransferJob

:Factory Manager

1: start(job)

A2,B2 / 2: completed(job)

«local» job

:Oven:Robot

1 / A1: start(job)
1 / B1: start(job)

A2: completedB2: completed
September 2002 OMG-UML , v1.5 Active object 3-129

3 UML Notation Guide
3.72 Message and Stimulus

3.72.1 Semantics

In a collaboration diagram a Stimulus is a communication between two Instances that
conveys information with the expectation that action will ensue. A Stimulus will cause
an Operation to be invoked, raise a Signal, or an Instance to be created or destroyed.

A Message is a specification of Stimulus, i.e. it specifies the roles that the sender and
the receiver Instances should conform to, as well as the Procedure which will, when
executed, dispatch a Stimulus that conforms to the Message.

3.72.2 Notation

Messages and Stimuli are shown as labeled arrows placed near an AssociationRole or
a Link, respectively. The meaning is that the Link is used for transportation of the
Stimulus to the target Instance. The arrow points along the line in the direction of the
receiving Instance.

3.72.2.1 Control flow type

The following arrowhead variations may be used to show different kinds of
communications.

filled solid arrowhead

Operation call or other nested flow of control. The entire nested sequence is
completed before the outer level sequence resumes. The arrowhead may be used to
denote ordinary operation calls, but it may also be used to denote concurrently
active instances when one of them sends a Signal and waits for a nested sequence of
behavior to complete before it continues.

stick arrowhead

Asynchronous communication; that is, no nesting of control. The sender dispatches
the Stimulus and immediately continues with the next step in the execution.

dashed arrow with stick arrowhead

Return from an operation call. The return arrow may be suppressed as it is implicit
at the end of an activation.

other variations

Other kinds of control may be shown, such as “balking” or “time-out;” however,
these are treated as extensions to the UML core.
3-130 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
A half stick arrowhead can be used to show asynchronous communication. This
alternative is included for backwards compatibility. UML 1.3 and previous versions,
included both half stick arrowhead and stick arrowhead with a very small (and not
well-understood) distinction.

3.72.2.2 Arrow label

In the following the term Message is used, but the text applies to Stimulus, as well.

The label has the following syntax:

predecessor sequence-expression return-value := message-name argument-list

The label indicates the Message being sent, its arguments and return values, and the
sequencing of the Message within the larger interaction, including call nesting,
iteration, branching, concurrency, and synchronization.

3.72.2.3 Predecessor

The predecessor is a comma-separated list of sequence numbers followed by a slash
(‘/’):

sequence-number ‘,’ . . . ‘/’

The clause is omitted if the list is empty.

Each sequence-number is a sequence-expression without any recurrence terms. It must
match the sequence number of another Message.

The meaning is that the Message is not enabled until all of the communications whose
sequence numbers appear in the list have occurred. Therefore, the list of predecessors
represents a synchronization of threads.

Note that the Message corresponding to the numerically preceding sequence number is
an implicit predecessor and need not be explicitly listed. All of the sequence numbers
with the same prefix form a sequence. The numerical predecessor is the one in which
the final term is one less. That is, number 3.1.4.5 is the predecessor of 3.1.4.6.

3.72.2.4 Sequence expression

The sequence-expression is a dot-separated list of sequence-terms followed by a colon
(‘:’).

sequence-term ‘.’ . . . ‘:’

Each term represents a level of procedural nesting within the overall interaction. If all
the control is concurrent, then nesting does not occur. Each sequence-term has the
following syntax:

[integer | name] [recurrence]
September 2002 OMG-UML , v1.5 Message and Stimulus 3-131

3 UML Notation Guide
The integer represents the sequential order of the Message within the next higher level
of procedural calling. Messages that differ in one integer term are sequentially related
at that level of nesting. Example: Message 3.1.4 follows Message 3.1.3 within
activation 3.1. The name represents a concurrent thread of control. Messages that differ
in the final name are concurrent at that level of nesting. Example: Message 3.1a and
Message 3.1b are concurrent within activation 3.1. All threads of control are equal
within the nesting depth.

The recurrence represents conditional or iterative execution. This represents zero or
more Messages that are executed depending on the conditions involved. The choices
are:

‘*’ ‘[’ iteration-clause ‘]’an iteration

‘[’ condition-clause ‘]’a branch

An iteration represents a sequence of Messages at the given nesting depth. The
iteration clause may be omitted (in which case the iteration conditions are unspecified).
The iteration-clause is meant to be expressed in pseudocode or an actual programming
language, UML does not prescribe its format. An example would be: *[i := 1..n].

A condition represents a Message whose execution is contingent on the truth of the
condition clause. The condition-clause is meant to be expressed in pseudocode or an
actual programming language; UML does not prescribe its format. An example would
be: [x > y].

Note that a branch is notated the same as an iteration without a star. One might think
of it as an iteration restricted to a single occurrence.

The iteration notation assumes that the Messages in the iteration will be executed
sequentially. There is also the possibility of executing them concurrently. The notation
for this is to follow the star by a double vertical line (for parallelism): *||.

Note that in a nested control structure, the recurrence is not repeated at inner levels.
Each level of structure specifies its own iteration within the enclosing context.

3.72.2.5 Signature

A signature is a string that indicates the name, the arguments, and the return value of
an Operation or a Reception. The signature of a Message is derived from (is the same
as) the signature of the Operation invoked by the Message's dispatching Procedure, or
the Reception for the Signal sent by the Procedure. These have the following
properties.

Return-value

This is a list of names that designates the values returned at the end of the
communication within the subsequent execution of the overall interaction. These
identifiers can be used as arguments to subsequent Messages. If the Message does not
return a value, then the return value and the assignment operator are omitted.
3-132 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
Message-name

This is the name of the Operation to be applied on the receiver, or the Signal that is
sent to the receiver.

Argument list

This is a comma-separated list of arguments (actual parameters) enclosed in
parentheses. The parentheses can be used even if the list is empty. Each argument is
either a reference to an Instance, or an expression in pseudocode or an appropriate
programming language (UML does not prescribe). The expressions may use return
values of previous messages (in the same scope) and navigation expressions starting
from the source Instance; that is, Attributes of it and Links from it and paths reachable
from them.

3.72.3 Presentation Options

Instead of text expressions for arguments and return values, data tokens may be shown
near a message label. A token is a small circle labeled with the argument expression or
return value name. It has a small arrow on it that points along the Message (for an
argument) or opposite the Message (for a return value). Tokens represent arguments
and return values. The choice of text syntax or tokens is a presentation option.

The syntax of Messages may instead be expressed in the syntax of a programming
language, such as C++ or Smalltalk. All of the expressions on a single diagram should
use the same syntax, however.

A return flow may be explicitly shown with a dashed arrow.

3.72.4 Example

See Figure 3-59 on page 3-116 for examples within a diagram.

Samples of control message label syntax:

2: display (x, y)simple Message

1.3.1: p:= find(specs)nested call with return value

4 [x < 0] : invert (x, color)conditional Message

A3,B4/ C3.1*: update ()synchronization with other threads, iteration

3.72.5 Mapping

An arrow symbol maps either onto a Message or a Stimulus. If the arrow is attached to
a line corresponding to an AssociationRole, it maps onto a Message, with the
ClassifierRoles corresponding to the end-points of the line as the sender and the
receiver roles. If the line corresponds to a Link, the arrow maps onto a Stimulus, with
September 2002 OMG-UML , v1.5 Message and Stimulus 3-133

3 UML Notation Guide
the Instances corresponding to the end-points of the line as the sender and the receiver
Instances. The line is the communication connection or the communication link of the
Message or the Stimulus, respectively.

The control flow type sets the corresponding properties:

• solid arrowhead: a synchronous operation invocation

• stick arrowhead: an asynchronous operation invocation

• dashed arrow with stick arrowhead: return from an synchronous operation
invocation

The predecessor expression, together with the sequence expression, determines the
predecessor and activation (caller) relationships of a Message or a Stimulus. The
predecessors of a Message (Stimulus) are those Messages (Stimuli) corresponding to
the sequence numbers in the predecessor list as well as the Message (Stimulus)
corresponding to the immediate preceding sequence number as the Message
(Stimulus); that is, 1.2.2 is the one preceding 1.2.3. The caller is the ClassifierRole
(Instance) receiving the Message (Stimulus) whose sequence number is truncated by
one position; that is, 1.2 is the caller of 1.2.3. The thread-of-control name maps onto a
Classifier stereotyped thread; that is, an active class.

The label of the arrow is mapped into either the body attribute of the Procedure, or into
a detailed action model starting with recurrence. The return of a value maps into a
Message from the called Instance to the caller with the dispatching Procedure that
outputs the return value. Its predecessor is the final Message within the procedure. Its
activation is the Message that called the procedure.

The recurrence expression, the iteration clause, and the condition clause determine if a
ConditionalAction or LoopAction is used in the Procedure attached to the Message.

The operation name and the form of the signature determine the Operation attached to
the CallOperationAction in the Procedure of the Message. Similarly for a Signal and
SendSignalAction. The arguments of the signature determine the arguments associated
with the CallOperationAction and SendSignalAction, respectively

In a procedural interaction, each arrow symbol also maps into a second Message
representing the return flow, unless the return flow is explicitly shown. This Message
has an activation Association to the original call Message. Its associated Procedure
outputs the return values as arguments (if any).

3.73 Creation/Destruction Markers

3.73.1 Semantics

During the execution of an interaction some Instances and Links are created and some
are destroyed. The creation and destruction of elements can be marked.
3-134 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.73.2 Notation

An Instance or a Link that is created during an interaction has the standard constraint
new attached to it. An Instance or a Link that is destroyed during an interaction has the
standard constraint destroyed attached. These constraints may be used even if the
element has no name. Both constraints may be used together, but the standard
constraint transient may be used in place of new destroyed.

3.73.3 Presentation options

Tools may use other graphic markers in addition to or in place of the keywords. For
example, each kind of lifetime might be shown in a different color. A tool may also use
animation to show the creation and destruction of elements and the state of the system
at various times.

3.73.4 Example

See Figure 3-59 on page 3-116.

3.73.5 Mapping

Creation or destruction indicators map either into procedures containing
CreateObjectActions or DestroyObjectActions in the corresponding ClassifierRoles.
The former two Actions dispatch the Stimuli that cause the changes. These status
indicators are merely summaries of the total actions.

Part 9 - Statechart Diagrams
A statechart diagram can be used to describe the behavior of instances of a model
element such as an object or an interaction. Specifically, it describes possible
sequences of states and actions through which the element instances can proceed
during its lifetime as a result of reacting to discrete events (for example, signals,
operation invocations).

The semantics and notation described in this chapter are substantially those of David
Harel’s statecharts with modifications to make them object-oriented. His work was a
major advance on the traditional flat state machines. Statechart notation also
implements aspects of both Moore machines and Mealy machines, traditional state
machine models.
September 2002 OMG-UML , v1.5 Creation/Destruction Markers 3-135

3 UML Notation Guide
3.74 Statechart Diagram

3.74.1 Semantics

Statechart diagrams represent the behavior of entities capable of dynamic behavior by
specifying its response to the receipt of event instances. Typically, it is used for
describing the behavior of class instances, but statecharts may also describe the
behavior of other entities such as use-cases, actors, subsystems, operations, or
methods.

3.74.2 Notation

A statechart diagram is a graph that represents a state machine. States and various
other types of vertices (pseudostates) in the state machine graph are rendered by
appropriate state and pseudostate symbols, while transitions are generally rendered by
directed arcs that inter-connect them. States may also contain subdiagrams by physical
containment or tiling. Note that every state machine has a top state that contains all the
other elements of the entire state machine. The graphical rendering of this top state is
optional.

The association between a state machine and its context does not have a special
notation.

An example statechart diagram for a simple telephone object is depicted in Figure 3-71
on page 3-137.
3-136 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
Figure 3-71 State Diagram

3.74.3 Mapping

A statechart diagram maps into a StateMachine. That StateMachine may be owned by
an instance of a model element capable of dynamic behavior, such as classifier or a
behavioral feature, which provides the context for that state machine. Different
contexts may apply different semantic constraints on the state machine.

3.75 State

3.75.1 Semantics

A state is a condition during the life of an object or an interaction during which it
satisfies some condition, performs some action, or waits for some event. A composite
state is a state that, in contrast to a simple state, has a graphical decomposition.
(Composite states and their notation are described in more detail in Section 3.76,
“Composite States,” on page 3-140.) Conceptually, an object remains in a state for an
interval of time. However, the semantics allow for modeling “flow-through” states that
are instantaneous, as well as transitions that are not instantaneous.

DialTone
Dialing

Talking
Ringing

Busy

dial digit(n)

connected

callee answers

Idle

busy

lift
receiver

caller
hangs up

callee
hangs up

Active

dial digit(n)

/get dial tone

do/ play busy
tone

do/ play ringing
tone/enable speech

/disconnect

do/ play dial tone

Pinned

callee
answers

Connecting

dial digit(n)[valid]

Timeout
do/ play message

dial digit(n)[invalid]

/connectInvalid
do/ play message

[incomplete]after (15 sec.)

after (15 sec.)
September 2002 OMG-UML , v1.5 State 3-137

3 UML Notation Guide
A state may be used to model an ongoing activity. Such an activity is specified either
by a nested state machine or by a computational expression.

3.75.2 Notation

A state is shown as a rectangle with rounded corners (Figure 3-72 on page 3-139).
Optionally, it may have an attached name tab. The name tab is a rectangle, usually
resting on the outside of the top side of a state and it contains the name of that state. It
is normally used to keep the name of a composite state that has concurrent regions, but
may be used in other cases as well (the Process state in Figure 3-77 on page 3-147
illustrates the use of the name tab).

A state may be optionally subdivided into multiple compartments separated from each
other by a horizontal line. They are as follows:

• Name compartment

This compartment holds the (optional) name of the state as a string. States without
names are anonymous and are all distinct. It is undesirable to show the same named
state twice in the same diagram, as confusion may ensue. Name compartments
should not be used if a name tab is used and vice versa.

• Internal transitions compartment

This compartment holds a list of internal actions or activities that are performed
while the element is in the state.

The action label identifies the circumstances under which the action specified by the
action expression will be invoked. The action expression may use any attributes and
links that are in the scope of the owning entity. For list items where the action
expression is empty, the backslash separator is optional.

A number of action labels are reserved for various special purposes and, therefore,
cannot be used as event names. The following are the reserved action labels and their
meaning:

• entry

This label identifies an action, specified by the corresponding action expression,
which is performed upon entry to the state (entry action).

• exit

This label identifies an action, specified by the corresponding action expression,
that is performed upon exit from the state (exit action).

• do

This label identifies an ongoing activity (“do activity”) that is performed as long as
the modeled element is in the state or until the computation specified by the action
expression is completed (the latter may result in a completion event being
generated).
3-138 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
• include

This label is used to identify a submachine invocation. The action expression
contains the name of the submachine that is to be invoked. Submachine states and
the corresponding notation are described in Section 3.82, “Submachine States,” on
page 3-152.

In all other cases, the action label identifies the event that triggers the corresponding
action expression. These events are called internal transitions and are semantically
equivalent to self transitions except that the state is not exited or re-entered. This
means that the corresponding exit and entry actions are not performed. The general
format for the list item of an internal transition is:

event-name ‘(’ comma-separated-parameter-list ‘)’ ‘[’ guard-condition‘]’ ‘/’
 action-expression

Each event name may appear more than once per state if the guard conditions are
different. The event parameters and the guard conditions are optional. If the event has
parameters, they can be used in the action expression through the current event
variable.

3.75.3 Example

Figure 3-72 State

3.75.4 Mapping

A state symbol maps into a State. See Section 3.76, “Composite States,” on page 3-140
for further details on which kind of state.

The name string in the symbol maps to the name of the state. Two symbols with the
same name map into the same state. However, each state symbol with no name (or an
empty name string) maps into a distinct anonymous State.

A list item in the internal transition compartment maps into a corresponding Action
associated with a state. An “entry” list item; that is, an item with the “entry” label
maps to the “entry” role, an “exit” list item maps to the “exit” role, and a “do” item
maps to the “doActivity” role. (The mapping of “include” items is discussed in
Section 3.82, “Submachine States,” on page 3-152.)

Typing Password

help / display help

entry / set echo invisible
exit / set echo normal
character / handle character
September 2002 OMG-UML , v1.5 State 3-139

3 UML Notation Guide
A list item with an event name maps to a Transition associated with the “internal” role
relative to the state. The action expression maps into the ActionSequence and Guard
for the Transition. The event name and arguments map into an Event corresponding to
the event name and arguments. The Event plays the role of a trigger to the Transition.

3.76 Composite States

3.76.1 Semantics

A composite state is decomposed into two or more concurrent substates (called
regions) or into mutually exclusive disjoint substates. A given state may only be
refined in one of these two ways. Naturally, any substate of a composite state can also
be a composite state of either type.

A newly-created object takes its topmost default transition, originating from the
topmost initial pseudostate. An object that transitions to its outermost final state is
terminated.

Each region of a state may have initial pseudostates and final states. A transition to the
enclosing state represents a transition to the initial pseudostate. A transition to a final
state represents the completion of activity in the enclosing region. Completion of
activity in all concurrent regions represents completion of activity by the enclosing
state and triggers a completion event on the enclosing state. Completion of the top state
of an object corresponds to its termination.

3.76.2 Notation

An expansion of a state shows its internal state machine structure. In addition to the
(optional) name and internal transition compartments, the state may have an additional
compartment that contains a region holding a nested diagram. For convenience and
appearance, the text compartments may be shrunk horizontally within the graphic
region.

An expansion of a state into concurrent substates is shown by tiling the graphic region
of the state using dashed lines to divide it into regions. Each region is a concurrent
substate. Each region may have an optional name and must contain a nested state
diagram with disjoint states. The text compartments of the entire state are separated
from the concurrent substates by a solid line. It is also possible to use a tab notation to
place the name of a concurrent state. The tab notation is more space efficient.

An expansion of a state into disjoint substates is shown by showing a nested state
diagram within the graphic region.

An initial pseudostate is shown as a small solid filled circle. In a top-level state
machine, the transition from an initial pseudostate may be labeled with the event that
creates the object; otherwise, it must be unlabeled. If it is unlabeled, it represents any
transition to the enclosing state. The initial transition may have an action.
3-140 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
A final state is shown as a circle surrounding a small solid filled circle (a bull’s eye). It
represents the completion of activity in the enclosing state and it triggers a transition
on the enclosing state labeled by the implicit activity completion event (usually
displayed as an unlabeled transition), if such a transition is defined.

In some cases, it is convenient to hide the decomposition of a composite state. For
example, the state machine inside a composite state may be very large and may simply
not fit in the graphical space available for the diagram. In that case, the composite state
may be represented by a simple state graphic with a special “composite” icon, usually
in the lower right-hand corner. This icon, consisting of two horizontally placed and
connected states, is an optional visual cue that the state has a decomposition that is not
shown in this particular statechart diagram (Figure 3-74 on page 3-141). Instead, the
contents of the composite state are shown in a separate diagram. Note that the “hiding”
here is purely a matter of graphical convenience and has no semantic significance in
terms of access restrictions.

3.76.3 Examples

Figure 3-73 Sequential Substates

Figure 3-74 Composite State with hidden decomposition indicator icon

Start

entry/ start dial tone

Partial Dial

entry/number.append(n)

digit(n)

digit(n)

[number.isValid()]

Dialing

exit/ stop dial tone

HiddenComposite

entry/ start dial tone
exit/ stop dial tone
September 2002 OMG-UML , v1.5 Composite States 3-141

3 UML Notation Guide
Figure 3-75 Concurrent Substates

3.76.4 Mapping

A state symbol maps into a State. If the symbol has no subdiagrams in it, it maps into
a SimpleState. If it is tiled by dashed lines into regions, then it maps into a
CompositeState with the isConcurrent value true; otherwise, it maps into a
CompositeState with the isConcurrent value false. A region maps into a
CompositeState with the isRegion value true and the isConcurrent value false.

An initial pseudostate symbol maps into a Pseudostate of kind initial. A final state
symbol maps to a final state.

3.77 Events

3.77.1 Semantics

An event is a noteworthy occurrence. For practical purposes in state diagrams, it is an
occurrence that may trigger a state transition. Events may be of several kinds (not
necessarily mutually exclusive).

Lab1 Lab2

Term

lab done

project done

Passed

Incomplete

Project

Final pass

Test

Failed
fail

lab
done

Taking Class
3-142 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
• A designated condition becoming true (described by a Boolean expression) results
in a change event instance. The event occurs whenever the value of the expression
changes from false to true. Note that this is different from a guard condition. A
guard condition is evaluated once whenever its event fires. If it is false, then the
transition does not occur and the event is lost.

• The receipt of an explicit signal from one object to another results in a signal event
instance. It is denoted by the signature of the event as a trigger on a transition.

• The receipt of a call for an operation implemented as a transition by an object
represents a call event instance.

• The passage of a designated period of time after a designated event (often the entry
of the current state) or the occurrence of a given date/time is a TimeEvent.

The event declaration has scope within the package it appears in and may be used in
state diagrams for classes that have visibility inside the package. An event is not local
to a single class.

3.77.2 Notation

A signal or call event can be defined using the following format:

event-name ‘(‘ comma-separated-parameter-list ‘)

A parameter has the format:

parameter-name ‘:’ type-expression

A signal can be declared using the «signal» keyword on a class symbol in a class
diagram. The parameters are specified as attributes. A signal can be specified as a
subclass of another signal. This indicates that an occurrence of the subevent triggers
any transition that depends on the event or any of its ancestors.

An elapsed-time event can be specified with the keyword after followed by an
expression that evaluates (at modeling time) to an amount of time, such as “after (5
seconds)” or after (10 seconds since exit from state A).” If no starting point is
indicated, then it is the time since the entry to the current state. Other time events can
be specified as conditions, such as when (date = Jan. 1, 2000).

A condition becoming true is shown with the keyword when followed by a Boolean
expression. This may be regarded as a continuous test for the condition until it is true,
although in practice it would only be checked on a change of values.

Signals can be declared on a class diagram with the keyword «signal» on a rectangle
symbol. These define signal names that may be used to trigger transitions. Their
parameters are shown in the attribute compartment. They have no operations. They
may appear in a generalization hierarchy.
September 2002 OMG-UML , v1.5 Events 3-143

3 UML Notation Guide
3.77.3 Example

Figure 3-76 Signal Declaration

3.77.4 Mapping

A class box with stereotype «signal» maps into a Signal. The name and parameters are
given by the name string and the attribute list of the box. Generalization arrows
between signal class boxes map into Generalization relationships between the Signal.

The usage of an event string expression in a context requiring an event maps into an
implicit reference of the Event with the given name. It is an error if various uses of the
same name (including any explicit declarations) do not match.

UserInput
device

Mouse

location

Button
Keyboard
Character

character

InputEvent

time

Control Graphic

PunctuationAlphanumericSpace

Mouse Mouse
Button
Down

Button
Up

«signal»

«signal»

«signal» «signal»

«signal» «signal» «signal»

«signal» «signal»

«signal»

«signal»

Character Character
3-144 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.78 Simple Transitions

3.78.1 Semantics

A simple transition is a relationship between two states indicating that an instance in
the first state will enter the second state and perform specific actions when a specified
event occurs provided that certain specified conditions are satisfied. On such a change
of state, the transition is said to “fire.” The trigger for a transition is the occurrence of
the event labeling the transition. The event may have parameters, which are accessible
by the actions specified on the transition as well as in the corresponding exit and entry
actions associated with the source and target states respectively. Events are processed
one at a time. If an event does not trigger any transition, it is discarded. If it can trigger
more than one transition within the same sequential region; that is, not in different
concurrent regions, only one will fire. If these conflicting transitions are of the same
priority, an arbitrary one is selected and triggered.

3.78.2 Notation

A transition is shown as a solid line originating from the source state and terminated
by an arrow on the target state. It may be labeled by a transition string that has the
following general format:

event-signature ‘[’ guard-condition ‘]’ ‘/’ action-expression

The event-signature describes an event with its arguments:

event-name ‘(’ comma-separated-parameter-list ‘)’

The guard-condition is a Boolean expression written in terms of parameters of the
triggering event and attributes and links of the object that owns the state machine. The
guard condition may also involve tests of concurrent states of the current machine, or
explicitly designated states of some reachable object (for example, “in State1” or “not
in State2”). State names may be fully qualified by the nested states that contain them,
yielding pathnames of the form “State1::State2::State3.” This may be used in case
same state name occurs in different composite state regions of the overall machine.

The action-expression is executed if and when the transition fires. It may be written in
terms of operations, attributes, and links of the owning object and the parameters of the
triggering event, or any other features visible in its scope. The corresponding action
must be executed entirely before any other actions are considered. This model of
execution is referred to as run-to-completion semantics. The action expression may be
an action sequence comprising a number of distinct actions including actions that
explicitly generate events, such as sending signals or invoking operations. The details
of this expression are dependent on the action language chosen for the model.

3.78.2.1 Transition times

Names may be placed on transitions to designate the times at which they fire. See
Section 3.64, “Transition Times,” on page 3-113.
September 2002 OMG-UML , v1.5 Simple Transitions 3-145

3 UML Notation Guide
3.78.3 Example

right-mouse-down (location) [location in window] / object := pick-object (location);
object.highlight ()

The event may be any of the standard event types. Selecting the type depends on the
syntax of the name (for time events, for example); however, SignalEvents and
CallEvents are not distinguishable by syntax and must be discriminated by their
declaration elsewhere.

3.78.4 Mapping

A transition string and the transition arrow that it labels together map into a Transition
and its attachments. The arrow connects two state symbols. The Transition has the
corresponding States as its source (the state at the tail) and destination (the state at the
head) States in associations to the Transition.

The event name and parameters map into an Event element, which may be a
SignalEvent, a CallEvent, a TimeExpression (if it has the proper syntax), or a
ChangeEvent (if it is expressed as a Boolean expression). The event is attached as a
“trigger” role in the association to the transition.

The guard condition maps into a Guard element attached to the Transition. Note that a
guard condition is distinguished graphically from a change event specification by being
enclosed in brackets.

An action expression maps into an Action attached as an “effect” role relative to the
Transition.

3.79 Transitions to and from Concurrent States

A concurrent transition may have multiple source states and target states. It represents
a synchronization and/or a splitting of control into concurrent threads without
concurrent substates.

3.79.1 Semantics

A concurrent transition is enabled when all the source states are occupied. After a
compound transition fires, all its destination states are occupied.

3.79.2 Notation

A concurrent transition includes a short heavy bar (a synchronization bar, which can
represent synchronization, forking, or both). The bar may have one or more arrows
from states to the bar (these are the source states). The bar may have one or more
arrows from the bar to states (these are the destination states). A transition string may
be shown near the bar. Individual arrows do not have their own transition strings.
3-146 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.79.3 Example

Figure 3-77 Concurrent Transitions

3.79.4 Mapping

A bar with multiple transition arrows leaving it maps into a fork pseudostate. A bar
with multiple transition arrows entering it maps into a join pseudostate. The transitions
corresponding to the incoming and outgoing arrows attach to the pseudostate as if it
were a regular state. If a bar has multiple incoming and multiple outgoing arrows, then
it maps into a join connected to a fork pseudostate by a single transition with no
attachments.

3.80 Transitions to and from Composite States

3.80.1 Semantics

A transition drawn to the boundary of a composite state is equivalent to a transition to
its initial point (or to a complex transition to the initial point of each of its concurrent
regions, if it is concurrent). The entry action is always performed when a state is
entered from outside.

A transition from a composite state indicates a transition that applies to each of the
states within the state region (at any depth). It is “inherited” by the nested states.
Inherited transitions can be masked by the presence of nested transitions with the same
trigger.

3.80.2 Notation

A transition drawn to a composite state boundary indicates a transition to the
composite state. This is equivalent to a transition to the initial pseudostate within the
composite state region. The initial pseudostate must be present. If the state is a
concurrent composite state, then the transition indicates a transition to the initial
pseudostate of each of its concurrent substates.

Process

Setup Cleanup

A1 A2

B2B1
September 2002 OMG-UML , v1.5 Transitions to and from Composite States 3-147

3 UML Notation Guide
Transitions may be drawn directly to states within a composite state region at any
nesting depth. All entry actions are performed for any states that are entered on any
transition. On a transition within a concurrent composite state, transition arrows from
the synchronization bar may be drawn to one or more concurrent states. Any other
concurrent regions start with their default initial pseudostate.

A transition drawn from a composite state boundary indicates a transition of the
composite state. If such a transition fires, any nested states are forcibly terminated and
perform their exit actions, then the transition actions occur and the new state is
established.

Transitions may be drawn directly from states within a composite state region at any
nesting depth to outside states. All exit actions are performed for any states that are
exited on any transition. On a transition from within a concurrent composite state,
transition arrows may be specified from one or more concurrent states to a
synchronization bar; therefore, specific states in the other regions are irrelevant to
triggering the transition.

A state region may contain a history state indicator shown as a small circle containing
an ‘H.’ The history indicator applies to the state region that directly contains it. A
history indicator may have any number of incoming transitions from outside states. It
may have at most one outgoing unlabeled transition. This identifies the default
“previous state” if the region has never been entered. If a transition to the history
indicator fires, it indicates that the object resumes the state it last had within the
composite region. Any necessary entry actions are performed. The history indicator
may also be ‘H*’ for deep history. This indicates that the object resumes the state it
last had at any depth within the composite region, rather than being restricted to the
state at the same level as the history indicator. A region may have both shallow and
deep history indicators.

3.80.3 Presentation Options

3.80.3.1 Stubbed transitions

Nested states may be suppressed. Transitions to nested states are subsumed to the most
specific visible enclosing state of the suppressed state. Subsumed transitions that do
not come from an unlabeled final state or go to an unlabeled initial pseudostate may
(but need not) be shown as coming from or going to stubs. A stub is shown as a small
vertical line (bar) drawn inside the boundary of the enclosing state. It indicates a
transition connected to a suppressed internal state. Stubs are not used for transitions to
initial or from final states.

Note that events should be shown on transitions leading into a state, either to the state
boundary or to an internal substate, including a transition to a stubbed state. Normally
events should not be shown on transitions leading from a stubbed state to an external
state. Think of a transition as belonging to its source state. If the source state is
suppressed, then so are the details of the transition. Note also that a transition from a
final state is summarized by an unlabeled transition from the composite state contour
(denoting the implicit event “action complete” for the corresponding state).
3-148 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
3.80.4 Example

See Figure 3-76 on page 3-144 and Figure 3-77 on page 3-147 for examples of
composite transitions. The following are examples of stubbed transitions and the
history indicator.

Figure 3-78 Stubbed Transitions

Figure 3-79 History Indicator

A C

A C

B
D

E

F

p s

t

B

r

p

r

D

W

W

may be abstracted as

u

s

s

A C

H

A1

A2

interrupt

resume
September 2002 OMG-UML , v1.5 Transitions to and from Composite States 3-149

3 UML Notation Guide
3.80.5 Mapping

An arrow to any state boundary, nested or not, maps into a Transition between the
corresponding States and similarly for transitions directly to history states.

A history indicator maps into a Pseudostate of kind shallowHistory or deepHistory.

A stubbed transition does not map into anything in the model. It is a notational elision
that indicates the presence of transitions to additional states in the model that are not
visible in the diagram.

3.81 Factored Transition Paths

3.81.1 Semantics

By definition, a transition connects exactly two vertices in the state machine graph.
However, since some of these vertices may be pseudostates—which are transient in
nature—there is a need for describing chains of transitions that may be executed in the
context of a single run-to-completion step. Such a transition is known as a compound
transition.

As a practical measure, it is often useful to share segments of a compound transition.
For example, two or more distinct compound transitions may come together and
continue via a common path, sharing its action, and possibly terminating on the same
target state. In other cases, it may be useful to split a transition into separate mutually
exclusive; that is, non-concurrent paths.

Both of these examples of graphical factoring in which some transitions are shared
result in simplified diagrams. However, factoring is also useful for modeling
dynamically adaptive behavior. An example of this occurs when a single event may
lead to any of a set of possible target states, but where the final target state is only
determined as the result of an action (calculation) performed after the triggering of the
compound transition.

Note that the splitting and joining of paths due to factoring is different from the
splitting and joining of concurrent transitions described in Section 3.79, “Transitions to
and from Concurrent States,” on page 3-146. The sources and targets of these factored
transitions are not concurrent.

3.81.2 Notation

Two or more transitions emanating from different non-concurrent states or
pseudostates can terminate on a common junction point. This allows their respective
compound transitions to share the path that emanates from that junction point. A
junction point is represented by a small black circle. Alternatively, it may be
represented by a diamond shape (see Section 3.87, “Decisions,” on page 3-159).

Two or more guarded transitions emanating from the same junction point represent a
static branch point. Normally, the guards are mutually exclusive. This is equivalent to
a set of individual transitions, one for each path through the tree, whose guard
3-150 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
condition is the “and” of all of the conditions along the path. Note that the semantics
of static branches is that all the outgoing guards are evaluated before any transition is
taken.

Two or more guarded transitions emanating from a common dynamic choice point are
used to model dynamic choices. In this case, the guards of the outgoing transitions are
evaluated at the time the choice point has been reached. The value of these guards may
be a function of some calculations performed in the actions of the incoming transition
(s). A dynamic choice point is represented by a small white circle (reminiscent of a
small state icon).

3.81.3 Examples

In Figure 3-80 a single junction point is used to merge and split transitions. Regardless
of whether the junction point was reached from state State0 or from state State1, the
outgoing paths are the same for both cases.

If the state machine in this example is in state State1 and b is less than 0 when event
e1 occurs, the outgoing transition will be taken only if one of the three downstream
guards is true. Thus, if a is equal to 6 at that point, no transition will be triggered.

Figure 3-80 Junction points

In the dynamic choice point example in Figure 3-81 on page 3-152, the decision on
which branch to take is only made after the transition from State1 is taken and the
choice point is reached. Note that the action associated with that incoming transition
computes a new value for a. This new value can then be used to determine the outgoing
transition to be taken. The use of the predefined condition[else] is recommended to
avoid run-time errors.

[a < 0]

State1

State2 State3 State4

e1[b < 0]e2[b < 0]

State0

[a = 5]

[a > 7]
September 2002 OMG-UML , v1.5 Factored Transition Paths 3-151

3 UML Notation Guide
Figure 3-81 Dynamic choice points

3.82 Submachine States

3.82.1 Semantics

A submachine state represents the invocation of a state machine defined elsewhere. It
is similar to a macro call in the sense that it represents a (graphical) shorthand that
implies embedding of a complex specification within another specification. The
submachine must be contained in the same context as the invoking state machine.

In the general case, an invoked state machine can be entered at any of its substates or
through its default (initial) pseudostate. Similarly, it can be exited from any substate or
as a result of the invoked state machine reaching its final state or by an “inherited” or
“group” transition that applies to all substates in the submachine.

The non-default entry and exits are specified through special stub states.

3.82.2 Notation

The submachine state is depicted as a normal state with the appropriate “include”
declaration within its internal transitions compartment (see Section 3.75, “State,” on
page 3-137). The expression following the include reserved word is the name of the
invoked submachine.

Optionally, the submachine state may contain one or more entry stub states and one or
more exit stub states. The notation for these is similar to that used for stub ends of
stubbed transitions, except that the ends are labeled. The labels represent the names of
the corresponding substates within the invoked submachine. A pathname may be used
if the substate is not defined at the top level of the invoked submachine. Naturally, this
name must be a valid name of a state in the invoked state machine.

[a < 0]

State1

State2 State3 State4

e1[b < 0]/a := f(m)

[a = 5]

[else]
3-152 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation Guide
If the submachine is entered through its default pseudostate or if it is exited as a result
of the completion of the submachine, it is not necessary to use the stub state notation
for these cases. Similarly, a stub state is not required if the exit occurs through an
explicit “group” transition that emanates from the boundary of the submachine state
(implying that it applies to all the substates of the submachine).

Submachine states invoking the same submachine may occur multiple times in the
same state diagram with different entry and exit configurations and with different
internal transitions and exit and entry action specifications in each case.

3.82.3 Example

The following diagram shows a fragment from a statechart diagram in which a
submachine (the FailureSubmachine) is invoked in a particular way. The actual
submachine is presumably defined elsewhere and is not shown in this diagram. Note
that the same submachine could be invoked elsewhere in the same statechart diagram
with different entry and exit configurations.

Figure 3-82 Submachine State

In the above example, the transition triggered by event “error1” will terminate on state
“sub1” of the FailureSubmachine state machine. Since the entry point does not contain
a path name, this means that “sub1” is defined at the top level of that submachine. In
contrast, the transition triggered by “error2” will terminate on the “sub12” substate of
the “sub1”substate (as indicated by the path name), while the “error3” transition
implies taking of the default transition of the FailureSubmachine.

The transition triggered by the event “fixed1” emanates from the “subEnd” substate of
the submachine. Finally, the transition emanating from the edge of the submachine
state is taken as a result of the completion event generated when the
FailureSubmachine reaches its final state.

Handle Failure

include / FailureSubmachine

sub1 sub1::sub12

subEnd

error2/error1/

error3/

fixed1/
September 2002 OMG-UML , v1.5 Submachine States 3-153

3 UML Notation Guide
3.82.4 Mapping

A submachine state in a statechart diagram maps directly to a SubmachineState in the
metamodel. The name following the “include” reserved action label represents the state
machine indicated by the “submachine” attribute. Stub states map to the Stub State
concept in the metamodel. The label on the diagram corresponds to the pathname
represented by the “referenceState” attribute of the stub state.

3.83 Synch States

3.83.1 Semantics

A synch state is for synchronizing concurrent regions of a state machine. It is used in
conjunction with forks and joins to insure that one region leaves a particular state or
states before another region can enter a particular state or states. The firing of outgoing
transitions from a synch state can be limited by specifying a bound on the difference
between the number of times outgoing and incoming transitions have fired.

3.83.2 Notation

A synch state is shown as a small circle with the upper bound inside it. The bound is
either a positive integer or an asterisk ('*') for unlimited. Synch states are drawn on the
boundary between two regions when possible.
3-154 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation
3.83.3 Example

Figure 3-83 Synch states

3.83.4 Mapping

A synch state circle maps into a SynchState, contained by the least common containing
state of the regions it is synchronizing. The number inside it maps onto the bound
attribute of the synch state. A star ('*') inside the synch state circle maps to a value of
Unlimited for the bound attribute.

3UMLNotation

Part 10 - Activity Diagrams

3.84 Activity Diagram

3.84.1 Semantics

An activity graph is a variation of a state machine in which the states represent the performance
of actions or subactivities and the transitions are triggered by the completion of the actions or
subactivities. It represents a state machine of a computation itself.

Build

Install
Electricity

Build House

Inspect
Install

Foundation

Frame

In Foundation

Install
Electricity
In Frame

Put On
Roof

Install
Electricity
Outside

Install
Walls

**
September 2002 OMG-UML , v1.5 Activity Diagram 3-155

3 UML Notation
3.84.2 Notation

An activity diagram is a special case of a state diagram in which all (or at least most) of the
states are action or subactivity states and in which all (or at least most) of the transitions are
triggered by completion of the actions or subactivities in the source states. The entire activity
diagram is attached (through the model) to a classifier, such as a use case, or to a package, or to
the implementation of an operation. The purpose of this diagram is to focus on flows driven by
internal processing (as opposed to external events). Use activity diagrams in situations where all
or most of the events represent the completion of internally-generated actions (that is,
procedural flow of control). Use ordinary state diagrams in situations where asynchronous
events occur.
3-156 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation
3.84.3 Example

Figure 3-84 Activity Diagram

Get
Cups

Put Coffee
in Filter Add Water

to Reservoir

[found coffee]

[no coffee]Find
Beverage

Get cans
of cola

[no cola]

[found cola]

Put Filter
in Machine

Turn on
Machine

Person::Prepare Beverage

Brew coffee

Pour Coffee

Drink

/coffeePot.turnOn

light goes out
September 2002 OMG-UML , v1.5 Activity Diagram 3-157

3 UML Notation
3.84.4 Mapping

An activity diagram maps into an ActivityGraph.

3.85 Action state

3.85.1 Semantics

An action state is a shorthand for a state with an entry action and at least one outgoing
transition involving the implicit event of completing the entry action (there may be several such
transitions if they have guard conditions). Action states should not have internal transitions,
outgoing transitions based on explicit events, or exit actions, use normal states for this situation.
Transitions leaving an action state should not include an event signature. Such transitions are
implicitly triggered by the completion of the action in the state. The transitions may include
guard conditions and actions. A common use of an action state is to model a step in the
execution of a workflow process.

3.85.2 Notation

An action state is shown as a shape with straight top and bottom and with convex arcs on the
two sides. The action-expression is placed in the symbol. The action expression need not be
unique within the diagram.

3.85.3 Presentation options

The action may be described by natural language, pseudocode, action language, or
programming language code. It may use only attributes and links of the owning object.

Note that action state notation may be used within ordinary state diagrams; however, they are
more commonly used with activity diagrams, which are special cases of state diagrams.

3.85.4 Example

Figure 3-85 Action States

3.85.5 Mapping

An action state symbol maps into an ActionState with the action-expression mapped to either
the body of the entry action procedure of the State, or to a detailed action model within the
procedure. The State is normally anonymous.

matrix.invert (tolerance:Real) drive to work
3-158 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation
3.86 Subactivity state

3.86.1 Semantics

A subactivity state invokes an activity graph. When a subactivity state is entered, the activity
graph “nested” in it is executed as any activity graph would be. The subactivity state is not
exited until the final state of the nested graph is reached, or when trigger events occur on
transitions coming out of the subactivity state. Since states in activity graphs do not normally
have trigger events, subactivity states are normally exited when their nested graph is finished. A
single activity graph may be invoked by many subactivity states.

3.86.2 Notation

A subactivity state is shown in the same way as an action state with the addition of an icon in
the lower right corner depicting a nested activity diagram. The name of the subactivity is placed
in the symbol. The subactivity need not be unique within the diagram.

This notation is applicable to any UML construct that supports “nested” structure. The icon
must suggest the type of nested structure.

3.86.3 Example

Figure 3-86 Subactivity States

3.86.4 Mapping

A subactivity state symbol maps into a SubactivityState. The name of the subactivity maps to a
submachine link between the SubactivityState and an ActivityGraph of that name. The
SubactivityState is normally anonymous.

3.87 Decisions

3.87.1 Semantics

A state diagram (and by derivation an activity diagram) expresses a decision when guard
conditions are used to indicate different possible transitions that depend on Boolean conditions
of the owning object. UML provides a shorthand for showing decisions and merging their
separate paths back together. Each possible outcome should appear on one of the outgoing
transitions. A predefined guard denoted “else” may be defined for at most one outgoing
transition. This transition is enabled if all the guards labeling the other transitions are false.

Build Product Fill Order
September 2002 OMG-UML , v1.5 Subactivity state 3-159

3 UML Notation
3.87.2 Notation

A decision may be shown by labeling multiple output transitions of an action with different
guard conditions.

The icon provided for a decision is the traditional diamond shape, with one incoming arrow and
with two or more outgoing arrows, each labeled by a distinct guard condition with no event
trigger.

The same icon can be used to merge decision branches back together, in which case it is called
a merge. A merge has two or more incoming arrows and one outgoing arrow.

Note that a chain of decisions may be part of a complex transition, but only the first segment in
such a chain may contain an event trigger label. All segments may have guard expressions. The
transition coming from a merge may not have a trigger label or guard expressions.

3.87.3 Example

Figure 3-87 Decision and merge

3.87.4 Mapping

A decision symbol maps into a Pseudostate of kind junction. Each label on an outgoing arrow
maps into a Guard on the corresponding Transition leaving the Pseudostate. A merge symbol
maps also maps into a Pseudostate of kind junction.

3.88 Call States

3.88.1 Semantics

A call state is an action state that calls a single operation. It is useful in object flow modeling to
reduce notational ambiguity over which action is taking input or providing output.

Calculate
total cost

[cost < $50] Charge
customer’s
account

Get
authorization

[cost ≥ $50]
3-160 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation
3.88.2 Notation

A call state is shown in the same way as an action state, except that the name of the operation
being called is put in the symbol, along with the name of the classifier that hosts the operation
in parentheses under it.

3.88.3 Example

Figure 3-88 Call states and the operations they invoke

3.88.4 Mapping

The top name maps into the operation being called in the entry action of the call state. The
name in parentheses maps into the classifier hosting the operation.

3.89 Swimlanes

3.89.1 Semantics

Actions and subactivities may be organized into swimlanes. Swimlanes are used to organize
responsibility for actions and subactivities. They often correspond to organizational units in a
business model.

3.89.2 Notation

An activity diagram may be divided visually into “swimlanes,” each separated from neighboring
swimlanes by vertical solid lines on both sides. The relative ordering of the swimlanes has no
semantic significance. Each action is assigned to one swimlane. Transitions may cross lanes.
There is no significance to the routing of a transition path.

Invert

(Matrix)

Drive

(Person)

Matrix

Invert()

Person

Drive(to : Place)
September 2002 OMG-UML , v1.5 Swimlanes 3-161

3 UML Notation
3.89.3 Example

Figure 3-89 Swimlanes in Activity Diagram

3.89.4 Mapping

A swimlane maps into a Partition of the States in the ActivityGraph. A state symbol in a
swimlane causes the corresponding State to belong to the corresponding Partition.

Request service

Take order

Fill order

Collect order

Customer Sales Stockroom

Pay

Deliver order
3-162 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation
3.90 Action-Object Flow Relationships

3.90.1 Semantics

Actions operate by and on objects. These objects either have primary responsibility for
initiating an action, or are used or determined by the action. Actions usually specify calls sent
between the object owning the activity graph, which initiates actions, and the objects that are
the targets of the actions.

3.90.2 Notation

Object responsible for an action

In sequence diagrams, the object responsible for performing an action is shown by drawing a
lifeline and placing actions on lifelines. See “Sequence Diagram” on page 3-102. Activity
diagrams do not show the lifeline, but each action specifies which object performs its operation.
These objects may also be related to the swimlane in some way. The actions within a swimlane
can all be handled by the same object or by multiple objects.

Object flow

Objects that are input to or output from an action may be shown as object symbols. A dashed
arrow is drawn from an action state to an output object, and a dashed arrow is drawn from an
input object to an action state. The same object may be (and usually is) the output of one action
and the input of one or more subsequent actions.

The control flow (solid) arrows must be omitted when the object flow (dashed) arrows supply a
redundant constraint. In other words, when a state produces an output that is input to a
subsequent state, that object flow relationship implies a control constraint.

Object in state

Frequently the same object is manipulated by a number of successive actions or subactivities. It
is possible to show one object with arrows to and from all of the relevant actions and
subactivities, but for greater clarity, the object may be displayed multiple times on a diagram.
Each appearance denotes a different point during the object’s life. To distinguish the various
appearances of the same object, the state of the object at each point may be placed in brackets
and appended to the name of the object (for example, PurchaseOrder[approved]). This
notation may also be used in collaboration and sequence diagrams.
September 2002 OMG-UML , v1.5 Action-Object Flow Relationships 3-163

3 UML Notation
3.90.3 Example

Figure 3-90 Actions and Object Flow

3.90.4 Mapping

An object flow symbol maps into an ObjectFlowState whose incoming and outgoing Transitions
correspond to the incoming and outgoing arrows. The Transitions have no attachments. The
classifier name and (optional) state name of the object flow symbol map into a Class or a
ClassifierInState corresponding to the name(s). Solid and dashed arrows both map to
transitions.

Request service

Take order

Fill order

Collect order

Customer Sales Stockroom

Pay

Deliver order

Order
[entered]

Order
[filled]

Order
[delivered]

Order
[placed]
3-164 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation
3.91 Control Icons

The following icons provide explicit symbols for certain kinds of information that can be
specified on transitions. These icons are not necessary for constructing activity diagrams, but
many users prefer the added impact that they provide.

3.91.1 Notation

Signal receipt

The receipt of a signal may be shown as a concave pentagon that looks like a rectangle with a
triangular notch in its side (either side). The signature of the signal is shown inside the symbol.
A unlabeled transition arrow is drawn from the previous action state to the pentagon and
another unlabeled transition arrow is drawn from the pentagon to the next action state. A dashed
arrow may be drawn from an object symbol to the notch on the pentagon to show the sender of
the signal; this is optional.

Signal sending

The sending of a signal may be shown as a convex pentagon that looks like a rectangle with a
triangular point on one side (either side). The signature of the signal is shown inside the
symbol. A unlabeled transition arrow is drawn from the previous action state to the pentagon
and another unlabeled transition arrow is drawn from the pentagon to the next action state. A
dashed arrow may be drawn from the point on the pentagon to an object symbol to show the
receiver of the signal, this is optional.
September 2002 OMG-UML , v1.5 Control Icons 3-165

3 UML Notation
Figure 3-91 Symbols for Signal Receipt and Sending

Deferred events

A frequent situation is when an event that occurs must be “deferred” for later use while some
other action or subactivity is underway. (Normally an event that is not handled immediately is
lost.) This may be thought of as having an internal transition that handles the event and places
it on an internal queue until it is needed or until it is discarded. Each state specifies a set of
events that are deferred if they occur during the state and are not used to trigger a transition. If
an event is not included in the set of deferrable events for a state, and it does not trigger a
transition, then it is discarded from the queue even if it has already occurred. If a transition
depends on an event, the transition fires immediately if the event is already on the internal
queue. If several transitions are possible, the leading event in the queue takes precedence.

A deferrable event is shown by listing it within the state followed by a slash and the special
operation defer. If the event occurs, it is saved and it recurs when the object transitions to
another state, where it may be deferred again. When the object reaches a state in which the
event is not deferred, it must be accepted or lost. The indication may be placed on a composite
state or its equivalents, submachine and subactivity states, in which case it remains deferrable
throughout the composite state. A contained transition may still be triggered by a deferrable
event, whereupon it is removed from the queue.

Turn on
Machine

Brew coffee

Pour Coffee

turnOn

light goes out

coffeePot
3-166 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation
It is not necessary to defer events on action states, because these states are not interruptible for
event processing. In this case, both deferred and undeferred events that occur during the state
are deferred until the state is completed. This means that the timing of the transition will be the
same regardless of the relative order of the event and the state completion, and regardless of
whether events are deferred.

Figure 3-92 Deferred Event

3.91.2 Mapping

A signal receipt symbol maps into a state with no actions or internal transitions. Its specified
event maps to a trigger event on the outgoing transition between it and the following state.

A signal send symbol maps into a procedure containing a SendSignalAction on the incoming
transition between it and the previous state.

A deferred event attached to a state maps into a deferrableEvent association from the State to
the Event.

Turn on
Machine

Brew coffee

Pour Coffee

turnOn

light goes out / defer

Get Cups

light goes out

light goes out / defer
September 2002 OMG-UML , v1.5 Control Icons 3-167

3 UML Notation
3.92 Synch States

The SynchState notation may be omitted in Activity Diagrams when a SynchState has one
incoming and one outgoing transition, and an unlimited bound. The semantics and mapping are
the same as if the synch state circles were included, as defined for state machine notation.

Figure 3-93 Synchronizing parallel activities

3.93 Dynamic Invocation

3.93.1 Semantics

The actions of an action state or the activity graph of a subactivity state may be executed more
than once concurrently. The number of concurrent invocations is determined at runtime by a
concurrency expression, which evaluates to a set of argument lists, one argument list for each
invocation.

3.93.2 Notation

If the dynamic concurrency of an action or subactivity state is not always exactly one, its
multiplicity is shown in the upper right corner of the state. Otherwise, nothing is shown.

3.93.3 Mapping

A multiplicity string in the upper right corner of an action or subactivity state maps to the same
value in the dynamicMultiplicity attribute of the state. The presence of a multiplicity string also
maps to a value of true for the isDynamic attribute of the state. If no multiplicity is present, the
value of the isDynamic attribute is false.

Build

Install
Electricity

Build House

Inspect
Install

Foundation

Frame

In Foundation

Install
Electricity
In Frame

Put On
Roof

Install
Electricity

Outside

Install
Walls
3-168 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation
3.94 Conditional Forks

In Activity Diagrams, transitions outgoing from forks may have guards. This means the region
initiated by a fork transition might not start, and therefore is not required to complete at the
corresponding join. The usual notation and mapping for guards may be used on the transition
outgoing from a fork.

Part 11 - Implementation Diagrams
Implementation diagrams show aspects of physical implementation, including the
structure of components and the run-time deployment system. They come in two
forms: 1) component diagrams show the structure of components, including the
classifiers that specify them and the artifacts that implement them; and 2) deployment
diagrams show the structure of the nodes on which the components are deployed.
These diagrams can also be applied in a broader way to business modeling where the
components represent business procedures and artifacts, and the deployment nodes
represent the organization units and resources (human and otherwise) of the business.

3.95 Component Diagram

3.95.1 Semantics

A component diagram shows the dependencies among software components, including
the classifiers that specify them (for example, implementation classes) and the artifacts
that implement them; such as, source code files, binary code files, executable files,
scripts.

A component diagram has only a type form, not an instance form. To show component
instances, use a deployment diagram (possibly a degenerate one without nodes).

3.95.2 Notation

A component diagram is a graph of components connected by dependency
relationships. Components may also be connected to components by physical
containment representing composition relationships.

Classifiers that specify components can be connected to them by physical containment
or by a «reside» relationship, which is an instance of the metaassociation between
Component and ModelElement. Likewise, artifacts that specify components can be
connected to them by physical containment or by an «implement» relationship, which
is an instance of the metaassociation between Component and Artifact.

A diagram containing component types may be used to show static dependencies, such
as compiler dependencies between programs, which are shown as dashed arrows
(dependencies) from a client component to a supplier component that it depends on in
some way. The kinds of dependencies are implementation-specific and may be shown
as stereotypes of the dependencies.
September 2002 OMG-UML , v1.5 Conditional Forks 3-169

3 UML Notation
Although a component does not have its own features (for example, attributes,
operations), it acts as a container for other classifiers that are defined with features.
Components typically expose a set of interfaces, which represent the services provided
by the elements that reside on the component. The diagram may show these interfaces
and calling dependencies among components, using dashed arrows from components to
interfaces on other components.

3.95.3 Example

Figure 3-94 Component Diagram

<<EJBEntity>>
Catalog

CatalogHome

Catalog

CatalogPK

<<EJBSession>>
ShoppingSession

ShoppingSessionHome

ShoppingSession

CatalogInfo

<<file>>
CatalogJAR

<<focus>>
Catalog

<<auxiliary>>
CatalogPK

<<auxiliary>>
CatalogInfo

CatalogHome

Catalog

<<EJBEntity>>
ShoppingCart

ShoppingCartHome

ShoppingCart
3-170 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation
Figure 3-95 Component Diagram Showing Relationships with Classifiers and Artifacts

3.95.4 Mapping

A component diagram maps to a static model whose elements include Components.
The physical containment of a Classifier by a Component represents a «reside»
relationship, which is an instance of the metaassociation between Component and
ModelElement. The physical containment of an Artifact by a Component represents an
«implement» relationship, which is an instance of the metaassociation between
Component and Artifact.

3.96 Deployment Diagram

3.96.1 Semantics

Deployment diagrams show the configuration of run-time processing elements and the
software components, processes, and objects that execute on them. Software
component instances represent run-time manifestations of software code units.
Components that do not exist as run-time entities (because they have been compiled
away) do not appear on these diagrams, they should be shown on component diagrams.

For business modeling, the run-time processing elements include workers and
organizational units, and the software components include procedures and documents
used by the workers and organizational units.

<<ejbEntity>>
Catalog

<<auxiliary>>
CatalogInfo

<<focus>>
Catalog

<<reside>> <<reside>>

<<auxiliary>>
CatalogPK

<<reside>>

<<file>>
CatalogJAR

<<implement>>
September 2002 OMG-UML , v1.5 Deployment Diagram 3-171

3 UML Notation
3.96.2 Notation

A deployment diagram is a graph of nodes connected by communication associations.
Nodes may contain component instances. This indicates that the component runs or
executes on the node. Components may contain instances of classifiers, which
indicates that the instance resides on the component. Components are connected to
other components by dashed-arrow dependencies (possibly through interfaces). This
indicates that one component uses the services of another component. A stereotype
may be used to indicate the precise dependency, if needed.

The deployment type diagram may also be used to show which components may reside
on which nodes, by using dashed arrows with the stereotype «deploy» from the
component symbol to the node symbol or by graphically nesting the component
symbol within the node symbol.

Migration of component instances from node instance to node instance or objects from
component instance to component instance may be shown using the «become»
stereotype of the dependency relationship. In this case the component instance or
object is resident on its node instance or component instance only part of the entire
time.

Note that a process is just a special kind of object (see Section 3.71, “Active object,”
on page 3-128).

3.96.3 Example

Figure 3-96 Deployment Diagram

:DBServer

videoStoreServer:AppServer

<<Container>>
VideoStoreApplication

:Client

<<browser>>
:OpenSourceBrowser

<<Session>>
ShoppingSession

<<Focus>>
ShoppingSession

<<Entity>>
Catalog

<<Focus>>
Catalog

<<Entity>>
ShoppingCart

<<Focus>>
ShoppingCart

<<database>>
:VideoStoreDB
3-172 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation
3.96.4 Mapping

A deployment diagram maps to a static model whose elements include Nodes. It is not
particularly distinguished in the model.

3.97 Node

3.97.1 Semantics

A node is a physical object that represents a processing resource, generally, having at
least a memory and often processing capability as well. Nodes include computing
devices but also human resources or mechanical processing resources. Nodes may be
represented as types and as instances. Run time computational instances, both objects
and component instances, may reside on node instances.

3.97.2 Notation

A node is shown as a figure that looks like a 3-dimensional view of a cube. A node
type has a type name:

node-type

A node instance has a name and a type name. The node may have an underlined name
string in it or below it. The name string has the syntax:

name ‘:’ node-type

The name is the name of the individual node (if any). The node-type says what kind of
a node it is. Either or both elements are optional; if the node-type is omitted, then so is
the colon.

Dashed arrows with the keyword «deploy» show the capability of a node type to
support a component type. Alternatively, this may be shown by nesting component
symbols inside the node symbol.

Component instances and objects may be contained within node instance symbols.
This indicates that the items reside on the node instances.

Nodes may be connected by associations to other nodes. An association between nodes
indicates a communication path between the nodes. The association may have a
stereotype to indicate the nature of the communication path (for example, the kind of
channel or network).

3.97.3 Example

This example shows two nodes containing components, where a «become» flow shows
the backupBroker migrating from the backupServer to the primaryServer while the
other components remain in place.
September 2002 OMG-UML , v1.5 Node 3-173

3 UML Notation
Figure 3-97 Node and Component Instances

3.97.4 Mapping

A node maps to a Node.

A «deploy» arrow or the nesting of a component symbol within a node symbol maps
into a residence metassociation between Component and Node. The nesting of a
component-instance symbol within a node-instance symbol maps to a residence
metaassociation between the ComponentInstance and the NodeInstance.

3.98 Component

3.98.1 Semantics

A component represents a modular, deployable, and replaceable part of a system that
encapsulates implementation and exposes a set of interfaces.

backupServer:AppServer

backupBroker
:BondBroker

:QuoteService <<database>>
:AccountsDB

primaryServer:AppServer

primaryBroker
:BondBroker

:QuoteService

<<database>>
:AccountsDB

<<become>>
3-174 OMG-Unified Modeling Language, v1.5 September 2002

3 UML Notation
A component is typically specified by one or more classifiers that reside on the
component. A subset of these classifiers explicitly define the component’s external
interfaces. A component conforms to the interfaces that it exposes, where the interfaces
represent services provided by elements that reside on the component. A component
may be implemented by one or more artifacts, such as binary, executable, or script
files. A component may be deployed on a node.

3.98.2 Notation

A component is shown as a rectangle with two small rectangles protruding from its
side. A component type has a type name:

component-type

A component instance has a name and a type. The name of the component and its type
may be shown as an underlined string either within the component symbol or above or
below it, with the syntax:

component-name ‘:’ component-type

Either or both elements are optional. If the component-type is omitted, then so is the
colon.

Objects that reside on a component instance are shown as nested inside the component
instance symbol. By analogy, classes that are implemented by a component may be
shown as nested within it; this indicates residence and not ownership.

Elements that reside on a component are shown nested inside the component symbol.
The visibility of a resident element to other components may be shown using the same
notation as for the visibility of the contents of a package (prepending a visibility
symbol to the name of the package). The meaning of the visibility depends on the
nature of the component. For a source-language component (such as program text), it
would control the accessibility of source-language constructs. For a run-time code
component (such as executable code), it would control the ability of code in other
components to call or otherwise access code in the component.

3.98.3 Example

The example shows a component with interfaces and also a component that contains
objects at run time.
September 2002 OMG-UML , v1.5 Component 3-175

3 UML Notation
Figure 3-98 Components

3.98.4 Mapping

A component symbol maps to a Component.

The graphical nesting of an element (other than a component symbol) in a component
symbol maps to an ElementResidence metaassociation class between ModelElement
and the Component. Graphical nesting of a component symbol in another component
symbol maps to a composition association. The graphical nesting of an instance
symbol in a component instance symbol maps to a residence metaassociation between
Instance and ComponentInstance.

<<Entity>>
030303zak:Order

OrderHome

Order

OrderPK

<<Session>>
ShoppingSession

ShoppingSessionHome

ShoppingSession

OrderInfo

<<focus>>
:Order

<<auxiliary>>
:OrderPK

<<auxiliary>>
:OrderInfo

OrderHome

Order
3-176 OMG-Unified Modeling Language, v1.5 September 2002

UML Example Profiles 4
Contents

This chapter contains the following topics.

Example 1 - UML Profile for Software Development Processes

4.1 Introduction

The UML Profile for Software Development Processes is an example profile that is
based on the Unified Process for software engineering. The profile is defined using the
extensibility mechanisms of UML, which allow modelers to customize UML for
specific domains, such as software development processes.

Topic Page

“Example 1 - UML Profile for Software Development Processes”

“Introduction” 4-1

“Summary of Profile” 4-2

“Stereotypes and Notation” 4-2

“Well-Formedness Rules” 4-9

“Example 2 - UML Profile for Business Modeling”

“Introduction” 4-9

“Summary of Profile” 4-10

“Stereotypes and Notation” 4-10

“Well-Formedness Rules” 4-16
September 2002 4- 4-1

4 UML Example Profiles
Note that this profile is not a complete definition of the Unified Process or how to
apply it, but rather an example that shows how some of the profile terminology and
notation is used. This example is defined only through stereotypes and constraints;
profiles also commonly include tagged values.

4.2 Summary of Profile

The stereotypes that are defined by this profile are summarized in Table 4-1.

4.3 Stereotypes and Notation

A system modeled by the Unified Process consists of several different, but related
models. These models are characterized by the lifecycle stage that they represent, and
each model makes use of one specific stereotype. Many of the stereotypes are used
particularly to give the ability to structure and categorize models and systems during
different stages of the development process.

Table 4-1 Stereotype Summary

Name Base Class

UseCaseModel Model

AnalysisModel Model

DesignModel Model

ImplementationModel Model

UseCaseSystem Package

AnalysisSystem Package

DesignSystem Subsystem

ImplementationSystem Subsystem

AnalysisPackage Package

DesignSubsystem Subsystem

ImplementationSubsystem Subsystem

UseCasePackage Package

AnalysisServicePackage Package

DesignServiceSubsystem Subsystem

Boundary Class

Entity Class

Control Class

Communicate Association

Subscribe Association
4-2 OMG-Unified Modeling Language, v1.5 September 2002

4 UML Example Profiles
In addition, there are stereotypes describing different kinds of commonly occurring
analysis classes (such as boundary, entity, and control) and their relationships, whereas
design classes are by default not stereotyped in the Unified Process.

4.3.1 Use Case Stereotypes

4.3.1.1 UseCaseModel

The notation used for a UseCaseModel is a package stereotyped as «useCaseModel».
Though superfluous, it is optionally possible to in addition use the model icon in the
upper right corner of the package symbol.

The explicit modeling of the stereotype is shown in Figure 4-1.

Figure 4-1 Explicit Modeling of a Stereotype

4.3.1.2 UseCaseSystem

The notation used for a UseCaseSystem is a package stereotyped as «useCaseSystem».

Stereotype Base Class Parent Description Constraints

UseCaseModel
«useCaseModel»

Model NA A use case model specifies the services a
system provides to its users; that is, the
different ways of using the system, and
whose top-level package is a use case
system.

None.

Stereotype Base Class Parent Description Constraints

UseCaseSystem
«useCaseSystem»

Package NA A use case system is a top-level package
that may contain use case packages, use
cases, and relationships.

None.

UseCaseModel
<<stereotype>>

Model
<<metaclass>>

<<stereotype>>
September 2002 OMG-UML , v1.5 Stereotypes and Notation 4-3

4 UML Example Profiles
4.3.1.3 UseCasePackage

The notation used for a UseCasePackage is a package stereotyped as
«useCasePackage».

4.3.2 Analysis Stereotypes

4.3.2.1 AnalysisModel

The notation used for an AnalysisModel is a package stereotyped as «analysisModel».

4.3.2.2 AnalysisSystem

The notation used for an AnalysisSystem is a package stereotyped as
«analysisSystem».

4.3.2.3 AnalysisPackage

The notation used for an AnalysisPackage is a package stereotyped as
«analysisPackage».

Stereotype Base Class Parent Description Constraints

UseCasePackage
«useCasePackage»

Package NA A use case package contains use
cases and relationships.

A use case is not
partitioned over
several use case
packages.

Stereotype Base Class Parent Description Constraints

AnalysisModel
«analysisModel»

Model NA An analysis model is a model whose
top-level package is an analysis system.

None.

Stereotype Base Class Parent Description Constraints

AnalysisSystem
«analysisSystem»

Package NA An analysis system is a top-level package
that may contain analysis packages,
analysis service packages, analysis
classes, and relationships.

None.

Stereotype Base Class Parent Description Constraints

AnalysisPackage
«analysisPackage»

Package NA An analysis package is a package that
may contain other analysis packages,
analysis service packages, analysis
classes, and relationships.

None.
4-4 OMG-Unified Modeling Language, v1.5 September 2002

4 UML Example Profiles
4.3.2.4 AnalysisServicePackage

The notation used for an AnalysisServicePackage is a package stereotyped as
«analysisServicePackage».

4.3.3 Design Stereotypes

4.3.3.1 DesignModel

The notation used for a DesignModel is a package stereotyped as «designModel».

4.3.3.2 DesignSystem

The notation used for a DesignSystem is a package stereotyped as «designSystem».
Though superfluous, it is optionally possible to in addition use the subsystem icon in
the upper right corner of the package symbol.

4.3.3.3 DesignSubsystem

The notation used for a DesignSubsystem is a package stereotyped as
«designSubsystem».

Stereotype Base Class Parent Description Constraints

AnalysisServicePackage
«analysisServicePackage»

Package NA An analysis service package is a
package that may contain
analysis classes and
relationships.

None.

Stereotype Base Class Parent Description Constraints

DesignModel
«designsModel»

Model NA A design model is a model whose top-
level package is a design system.

None.

Stereotype Base Class Parent Description Constraints

DesignSystem
«designSystem»

Subsystem NA A design system is a top-level subsystem
that may contain design subsystems,
design service subsystems, design classes,
and relationships.

None.

Stereotype Base Class Parent Description Constraints

DesignSubsystem
«designSubsystem»

Subsystem NA A design subsystem is a subsystem
that may contain other design
subsystems, design classes, and
relationships.

None.
September 2002 OMG-UML , v1.5 Stereotypes and Notation 4-5

4 UML Example Profiles
4.3.3.4 DesignServiceSubsystem

The notation used for a DesignServiceSubsystem is a package stereotyped as
«designServiceSubsystem».

4.3.4 Implementation Stereotypes

4.3.4.1 ImplementationModel

The notation used for an ImplementationModel is a package stereotyped as
«implementationModel».

4.3.4.2 ImplementationSystem

The notation used for an ImplementationSystem is a package stereotyped as
«implementationSystem».

4.3.4.3 ImplementationSubsystem

The notation used for an ImplementationModel is a package stereotyped as
«implementationModel».

Stereotype Base Class Parent Description Constraints

DesignServiceSubsystem
«designServiceSubsystem»

Subsystem NA A design service subsystem is
a subsystem that may contain
design classes and
relationships.

None.

Stereotype Base Class Parent Description Constraints

ImplementationModel
«implementationModel»

Model NA An implementation model is a
model whose top-level package is
an implementation system.

None.

Stereotype Base Class Parent Description Constraints

ImplementationSystem
«implementationSystem»

Subsystem NA An implementation model is
a subsystem that may contain
implementation subsystems,
components, and
relationships.

None.

Stereotype Base Class Parent Description Constraints

ImplementationModel
«implementationModel»

Model NA An implementation model is a
model whose top-level package is
an implementation system.

None.
4-6 OMG-Unified Modeling Language, v1.5 September 2002

4 UML Example Profiles
4.3.5 Class Stereotypes

4.3.5.1 Entity

The notation for Entity is shown below.

4.3.5.2 Control

The notation for Control is shown below.

4.3.5.3 Boundary

The notation for Boundary is shown below.

4.3.5.4 Notation

The notation given as part of the UML specification for stereotyped classes can be
used for entity, control, and boundary, but it is also possible to substitute that notation
with the icons shown below.

Stereotype Base Class Parent Description Constraints

Entity
«entity»

Class NA An entity is a passive class; that is, its
objects do not initiate interactions on their
own. An entity object may participate in
many different use case realizations and
usually outlives any single interaction.

None.

Stereotype Base Class Parent Description Constraints

Control
«control»

Class NA A control is a class whose objects manage
interactions between collections of objects.
A control class usually has behavior that is
specific for one use case, and a control
object usually does not outlive the use case
realizations in which it participates.

None.

Stereotype Base Class Parent Description Constraints

Boundary
«boundary»

Class NA A boundary is a class that lies on the
periphery of a system, but within it. It
interacts with actors outside the system as
well as with entity, control, and other
boundary classes within the system.

None.
September 2002 OMG-UML , v1.5 Stereotypes and Notation 4-7

4 UML Example Profiles
Figure 4-2 Class Stereotypes

4.3.6 Association Stereotypes

4.3.6.1 Communicate

The notation used for Communicate is an association that is marked with the
stereotype «communicate».

4.3.6.2 Subscribe

The notation used for Subscribe is an association that is marked with the stereotype
«subscribe».

Stereotype Base Class Parent Description Constraints

Communicate
«communicate»

Association NA Communicate is an association between
actors and use cases that is used to denote
messages that may be sent between them.
It may also be used between boundary,
control, and entity, and between actor and
boundary.

None.

Stereotype Base Class Parent Description Constraints

Subscribe
«subscribe»

Association NA A subscribe association between two classes
states that objects of the source class (called
the subscriber) will be notified when a
particular event has occurred in objects of
the target class (called the publisher). The
association includes a specification of a set
of events defining the events that causes the
subscriber to be notified.

None.

PenTracker
PenTracker
«control»

OrderEntry
OrderEntry
«boundary»

BankAccount
BankAccount

«entity»
4-8 OMG-Unified Modeling Language, v1.5 September 2002

4 UML Example Profiles
4.4 Well-Formedness Rules

The UML Specification relies on the use of well-formedness rules to express
constraints on model elements, and this profile uses the same approach. The constraints
applicable to the profile are added to the ones of the stereotyped base model elements,
which cannot be changed.

4.4.1 Generalization

All the modeling elements in a generalization must be of the same stereotype; for
example, a boundary class may only inherit from other boundary classes.

context Generalization inv:

(self.parent.stereotype->size>0) implies
(if (self.parent.stereotype->name->includes(“boundary”)then

((self.child.stereotype->name->includes(“boundary”) and
(self.child.stereotype->name->excludes(“control”) and
(self.child.stereotype->name->excludes(“entity”))

else
(if (self.parent.stereotype->name->includes(“control”)then

((self.child.stereotype->name->includes(“control”) and
(self.child.stereotype->name->excludes(“boundary”) and
(self.child.stereotype->name->excludes(“entity”))

else
(if (self.parent.stereotype->name->includes(“entity”)then

((self.child.stereotype->name->includes(“entity”) and
(self.child.stereotype->name->excludes(“boundary”) and
(self.child.stereotype->name->excludes(“control”))))

4.4.2 Containment

Something that has been stereotyped using a stereotype of kind use case, analysis,
design, or implementation may not contain elements that are stereotyped with one of
the other kinds. For example, a use case model may not contain analysis systems.

Example 2 - UML Profile for Business Modeling

4.5 Introduction

The UML Profile for Business Modeling is an example profile that describes how
UML can be customized for business modeling. Although all UML concepts can be
brought to bear on this domain, but example emphasizes common stereotypes and
some useful terminology. Note that UML can be used to model different kinds of
systems (such as software systems, hardware systems, and real-world organizations).

This example is defined only through stereotypes and constraints; profiles also
commonly include tagged values.
September 2002 OMG-UML , v1.5 Well-Formedness Rules 4-9

4 UML Example Profiles
4.6 Summary of Profile

The stereotypes that are defined by this profile are summarized in Table 4-2.

4.7 Stereotypes and Notation

A business system comprises several different, but related, models. The models are
characterized by being exterior or interior to the business system they represent.
Exterior models are use case models and interior models are object models. A large
business system may be partitioned into subordinate business systems.

Table 4-2 Stereotypes

Stereotype Base Class

UseCaseModel Model

UseCaseSystem Package

UseCasePackage Package

ObjectModel Model

ObjectSystem Subsystem

OrganizationUnit Subsystem

WorkUnit Subsystem

Worker Class

CaseWorker Class

InternalWorker Class

Entity Class

Communicate Association

Subscribe Association
4-10 OMG-Unified Modeling Language, v1.5 September 2002

4 UML Example Profiles
4.7.1 Use Case Stereotypes

4.7.1.1 Use Case Model

The notation used for a UseCaseModel is a package stereotyped as «useCaseModel».

4.7.1.2 UseCaseSystem

The notation used for a UseCaseSystem is a package stereotyped as «useCaseSystem».

4.7.1.3 UseCasePackage

The notation used for a UseCasePackage is a package stereotyped as
«useCasePackage».

Stereotype Base Class Parent Description Constraints

UseCaseModel
«useCaseModel»

Model NA A use case model is a model that
describes the business processes of a
business and their interactions with
external parties such as customers and
partners. A use case model describes:
• The business modeled as use cases
• Parties exterior to the business

modeled as actors
• The relationships between the

external parties and the business
process

None.

Stereotype Base Class Parent Description Constraints

UseCaseSystem
«useCaseSystem»

Package NA A use case system is the top-level
package in a use case model, and may
contain use case packages, use cases,
and relationships.

None.

Stereotype Base Class Parent Description Constraints

UseCasePackage
«useCasePackage»

Package NA A use case package is a package
that may contain use cases and
relationships.

A use case is not
partitioned over
several use case
packages.
September 2002 OMG-UML , v1.5 Stereotypes and Notation 4-11

4 UML Example Profiles
4.7.2 Organization Stereotypes

4.7.2.1 ObjectModel

The notation used for an ObjectModel is a package stereotyped as «objectModel».

4.7.2.2 ObjectSystem

The notation used for an ObjectSystem is a package stereotyped as «objectSystem».

4.7.2.3 OrganizationUnit

The notation used for an OrganizationUnit is a package stereotyped as
«organizationUnit».

4.7.2.4 WorkUnit

The notation used for a WorkUnit is a package stereotyped as «workUnit».

Stereotype Base Class Parent Description Constraints

ObjectModel
«objectModel»

Model NA An object model is a model whose top-level
package is an object system that describe
the things interior to the business system
itself.

None.

Stereotype Base Class Parent Description Constraints

ObjectSystem
«objectSystem»

Subsystem NA An object system is the top-level
subsystem in an object model, and may
contain organization units, work units,
classes, and relationships.

None.

Stereotype Base Class Parent Description Constraints

OrganizationUnit
«organizationUnit»

Subsystem NA An organization unit is a subsystem that
may contain other organization units,
work units, classes, and relationships.

None.

Stereotype Base Class Parent Description Constraints

WorkUnit
«workUnit»

Subsystem NA A work unit is a subsystem that may contain
one or more entities. It is a task-oriented set
of objects that forms a recognizable whole
to the end user, and may have a facade
defining the view of the work unit’s entities
relevant to the task.

None.
4-12 OMG-Unified Modeling Language, v1.5 September 2002

4 UML Example Profiles
4.7.3 Class Stereotypes

4.7.3.1 Worker

The notation for Worker is shown below.

4.7.3.2 CaseWorker

The notation for CaseWorker is shown below. Note that CaseWorker is not stereotyped
of a UML metaclass, but rather inherits its properties from the stereotype Worker that
was previously defined.

The explicit subtyping of a stereotype is shown in Figure 4-3.

Figure 4-3 Subtyping a Stereotype

Stereotype Base Class Parent Description Constraints

Worker
«worker»

Class NA A worker is a class that represents
an abstraction of a human that acts
within the system. A worker
interacts with other workers and
manipulates entities while
participating in use case
realizations.

None.

Stereotype Base Class Parent Description Constraints

CaseWorker
«caseWorker»

Class Worker A case worker is a special case of
worker that interacts directly with
actors outside the system.

None.

W ork er
<<s te re o typ e >>

Cas eW ork e r
<<s te r e o typ e>>
September 2002 OMG-UML , v1.5 Stereotypes and Notation 4-13

4 UML Example Profiles
4.7.3.3 InternalWorker

The notation for InternalWorker is shown below. Note that InternalWorker, like
CaseWorker above, is subtyped from the previously defined stereotype Worker.

4.7.3.4 Entity

The notation for Entity is shown below.

4.7.3.5 Notation

The notation given as part of the UML specification for stereotyped classes can be
used for entity, control, and boundary, but it is also possible to substitute that notation
with the icons shown below.

Stereotype Base Class Parent Description Constraints

InternalWorker
«internalWorker»

Class Worker An internal worker is a special case of
worker that interacts with other workers
and entities inside the system.

None.

Stereotype Base Class Parent Description Constraints

Entity
«entity»

Class NA An entity is a passive class; that is, its objects
do not initiate interactions on their own. An
entity object may participate in many
different use case realizations and usually
outlives any single interaction.

None.
4-14 OMG-Unified Modeling Language, v1.5 September 2002

4 UML Example Profiles
Figure 4-4 Class Stereotypes

4.7.4 Association Stereotypes

4.7.4.1 Communicate

The notation used for Communicate is an association that is marked with the
stereotype «communicate».

Stereotype Base Class Parent Description Constraints

Communicate
«communicate»

Association NA Communicate is an association used for
defining that instances of the associated
classifiers interact.

None.

OrderEntry
«case worker»

Trade
«entity»

Trade

Salesperson

Administrator
Administrator

«worker»

Designer
Designer

«internal worker»«internalWorker»

«caseWorker»
September 2002 OMG-UML , v1.5 Stereotypes and Notation 4-15

4 UML Example Profiles
4.7.4.2 Subscribe

The notation used for Subscribe is an association that is marked with the stereotype
«subscribe».

4.8 Well-Formedness Rules

The UML Specification relies on the use of well-formedness rules to express
constraints on model elements, and this profile uses the same approach. The constraints
applicable to the profile are added to the ones of the stereotyped base model elements,
which cannot be changed.

4.8.1 Generalization

All the modeling elements in a generalization must be of the same stereotype; for
example, a worker class may only inherit from other worker classes.

context Generalization inv:

let stNames : Set(Name) = self.child.stereotype->name

self.parent.stereotype->size>0) implies
(if (self.parent.stereotype->name->includes(“worker”) then

((stNames->includes(“worker”) and
(selfstNames->excludes(“case worker”) and
(stNames->excludes(“internal worker”) and
(stNames->excludes(“entity”))

else
(if (self.parent.stereotype->name->includes(“case worker”) then

((stNames->includes(“case worker”) and
(selfstNames->excludes(“worker”) and
(stNames->excludes(“internal worker”) and
(stNames->excludes(“entity”))

else
(if (self.parent.stereotype->name->includes(“internal worker”)

then
((stNames->includes(“internal worker”) and
(selfstNames->excludes(“case worker”) and
(stNames->excludes(“worker”) and
(stNames->excludes(“entity”))

else
(if (self.parent.stereotype->name->includes(“entity”) then

((stNames->includes(“entity”) and

Stereotype Base Class Parent Description Constraints

Subscribe
«subscribe»

Association NA A subscribe association between two classes
states that objects of the source class (called
the subscriber) will be notified when a
particular event has occurred in objects of the
target class (called the publisher). The
association includes a specification of a set of
events defining the event that causes the
subscriber to be notified.

None.
4-16 OMG-Unified Modeling Language, v1.5 September 2002

4 UML Example Profiles
(selfstNames->excludes(“case worker”) and
(stNames->excludes(“internal worker”) and
(self.child.stereotype->name->excludes(“worker”))))))
September 2002 OMG-UML , v1.5 Well-Formedness Rules 4-17

4 UML Example Profiles
4-18 OMG-Unified Modeling Language, v1.5 September 2002

 UML Model Interchange 5
5.1 Overview

UML model interchange is based on the Metaobject Facility (MOF) 1.3 Specification. The
UML Semantics abstract syntax is mapped to a set of MOF packages called the UML
Interchange Metamodel. The packages are available as an XML document called
UML_1.4_Interchange_Metamodel.xml (OMG document ad/01-02-15) whose document type is
based on the MOF 1.3 Model and the XML Metadata Interchange (XMI) 1.1 Specification.

Except for the Data_Types package, each package of the UML Interchange Metamodel defines
a separate unit of compliance. The Core package defines the most basic level of compliance.
The UML package, which is a cluster of all of the others, defines complete compliance.

Dependencies between the packages are shown in Figure 5-1. Each package imports whatever
other packages it requires such that it can be directly deployed within a MOF facility. The
packages can also be incorporated into other clusters in order to create other package groupings
or to define extensions.

The UML Interchange Metamodel closely follows the UML Semantics Metamodel as expressed
in its abstract syntax. Changes are introduced as needed to conform to MOF requirements.
Details are added to support XML and IDL generation. The following changes are made.

• Spaces in package names are changed to "_".

• Each unnamed association end is given its type's name with the first letter downcased.

• Associations in the UML Semantics Metamodel are unnamed, so names are generated by
this pattern: "A_" followed by the first end's name followed by "_" and the second end's
name.

• MOF references are added for most association ends in order to facilitate easy navigation.
References are not added were they would create new package dependencies or where they
would prevent linking to external models.
September 2002 OMG-Unified Modeling Language, v1.5 5-1

5 UML Model Interchange
• MOF does not support association classes, so the ElementOwnership association class is
removed and its attributes moved to ModelElement. Each other association class is changed
into a class with each connection made into a separate association.

• Prefixes are added to enumeration literals to make them unique for IDL generation.

The Interchange Metamodel addresses semantic content of UML models and does not address
diagram layout details. The metamodel can be extended to handle diagrams by subclassing the
abstract class PresentationElement of the Core package. There is currently no standard
extension for diagram interchange.

The Interchange Metamodel is shown using UML notation below. Figure 5-1 shows the
separate packages and their dependencies. Figure 5-2 through Figure 5-21 show the classes,
features, and associations of the metamodel.
5-2 OMG-UML , v1.5 Overview

5.1 Overview
Figure 5-1 UML Package Dependencies

Data_Types
<<metamodel>>

(from Foundation)
Core

<<metamodel>>

(from Foundation)

Common_Behavior
<<metamodel>>

(from Behavioral_Elements)

se_Cases
<<metamodel>>

(from Behavioral_Elements)
State_Machines
<<metamodel>>

(from Behavioral_Elements)
Collaborations

<<metamodel>>

(from Behavioral_Elements)

Activity_Graphs
<<metamodel>>

from Behavioral_Elements)

Model_Managem
ent

<<metamodel>>

Actions
<<metamodel>>

(from Behavioral_Elements)
September 2002 OMG-Unified Modeling Language, v1.5 5-3

5 UML Model Interchange
Figure 5-2 Core Package - Backbone

Element

GeneralizableElement

isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean
/ generalization : Generalization

Attribute
initialValue : Expression
/ associationEnd : AssociationEnd

Method
body : ProcedureExpression
/ specification : Operation

Operation

concurrency : CallConcurrencyKind
isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean
specification : String

*1

+method

*

+specification

1

Namespace

/ ownedElement : ModelElement

Constraint
body : BooleanExpression
/ constrainedElement : ModelElement

ModelElement
name : Name
visibility : VisibilityKind
isSpecification : Boolean
/ namespace : Namespace
/ clientDependency : Dependency
/ constraint : Constraint
/ targetFlow : Flow
/ sourceFlow : Flow
/ comment : Comment
/ templateParameter : TemplateParameter
/ stereotype : Stereotype
/ taggedValue : TaggedValue

0..1

*

+namespace
0..1

+ownedElement *

*

*

+constraint*

+constrainedElement

* {ordered}

BehavioralFeature

isQuery : Boolean
/ parameter : Parameter

Feature

ownerScope : ScopeKind
/ owner : Classi fier

StructuralFeature

multiplicity : Multiplicity
changeability : ChangeableKind
targetScope : ScopeKind
ordering : OrderingKind
/ type : Class ifier

Parameter

defaultValue : Express ion
kind : ParameterDirectionKind
/ behavioralFeature : BehavioralFeature
/ type : Classifier

0..1

*

+behavioralFeature

0..1

+parameter*
{ordered}

Classifier

/ feature : Feature
/ powertypeRange : Generalization

*

0..1+feature

* {ordered} +owner

0..1

*

1

+typedFeature

*

+type 1

*

1

+typedParameter*

+type

1

5-4 OMG-UML , v1.5 Overview

5.1 Overview
Figure 5-3 Core Package - Relationships

AssociationClass

Class

isActive : Boolean

Relationship

Association
/ connection :AssociationEnd

Attribute

initialValue : Expression
/ associationEnd : AssociationEnd

AssociationEnd

isNavigable :Boolean
ordering : OrderingKind
aggregation :AggregationKind
targetScope :ScopeKind
multiplicity :Multipl icity
changeabil ity : ChangeableKind
/ association : Association
/ qualifier :Attribute
/ participant: Classifier
/ specification : Classifier

2..*

1+connection

2..*

{ordered}

+association

1

*

0..1+qualifier

*
{ordered}

+associationEnd

0..1

GeneralizableElement
isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean
/ generalization : Generalization

Classifier
/ feature : Feature
/ powertypeRange : Generalization

1 *

+participant

1

+association

*
**

+specifiedEnd
*

+specification
*

Generalization

discriminator : Name
/ child : GeneralizableElement
/ parent : GeneralizableElement
/ powertype : Classifier

* 1

+generalization

*

+child

1

1*

+parent

1

+specialization

*

0..1

*

+powertype
0..1

+powertypeRange
*

Flow
/ target : ModelElement
/ source : ModelElement

ModelElement

*

*

+sourceFlow

*

+source *

*

*

+targetFlow

*

+target *
September 2002 OMG-Unified Modeling Language, v1.5 5-5

5 UML Model Interchange
Figure 5-4 Core Package - Dependencies

Usage PermissionAbstraction
mapping : MappingExpression

Binding
/ argument : TemplateArgument

ModelElement

name : Name
visibility : VisibilityKind
isSpecification : Boolean
/ namespace : Namespace
/ clientDependency : Dependency
/ constraint : Constraint
/ targetFlow : Flow
/ sourceFlow : Flow
/ comment : Comment
/ templateParameter : TemplateParameter
/ stereotype : Stereotype
/ taggedValue : TaggedValue

Dependency
/ client : ModelElement
/ supplier : ModelElement

1..* *

+supplier

1..*

+supplierDependency

*

1..* *

+client

1..*

+clientDependency

*

Relationship
5-6 OMG-UML , v1.5 Overview

5.1 Overview
Figure 5-5 Core Package - Classifiers

Classi fier
/ feature : Feature
/ powertype Range : Generalization

Class
isActive : Boolean

DataType

Interface

Primitive

Enumeration

/ literal : EnumerationLiteral

EnumerationLiteral

/ enum eration : Enum eration
1 1..*

+enumerat ion

1

+literal

1..*
{ordered}

Programming LanguageDa taType

expression : TypeExpression
ModelElement

Node

/ deployedComponent : Component

ElementResidence

visibility : VisibilityKind
/ resident : ModelElement
/ container : Component

1

*

+resident1

+elementRes idence*

Artifact
Component

/ deployme ntLo cation : Node
/ residentElement : ElementResidence
/ im plementation : Artifact

*

*

+deploymentLocation*

+deployedComponent*
1

*

+container
1

+residentElement*

** +implementation *

+implementationLocation

*

September 2002 OMG-Unified Modeling Language, v1.5 5-7

5 UML Model Interchange
Figure 5-6 Core Package - Auxiliary Elements

Element

PresentationElement
/ subject : ModelElement

Binding
/ argument : Tem pla teArgum ent

Comment

body : String
/ annotatedElement : ModelElement

TemplateParameter

/ template : ModelElement
/ parameter : ModelElement
/ defaultElement : ModelElement

TemplateArgument

/ modelElement : ModelElement
/ binding : Binding

1

1..*

+binding1

+argument1..*
{ordered}

ModelElement

**

+presentation

*

+subject

*

*

*

+comment*

+annota tedElem ent*

0..1

*

+defaultElement
0..1

+defaultedParameter*

1

*

+template

1

+templateParameter

*{ordered}

1

0..1

+parameter 1

+parameterTemplate 0..1

1

*

+modelElement

+templateArgument

1

*

5-8 OMG-UML , v1.5 Overview

5.1 Overview
Figure 5-7 Extension Mechanisms

GeneralizableElement

Stereotype
icon : Geometry
baseClass : Name [1..*]
/ definedTag : TagDefinition
/ stereotypeConstraint : Constraint

Constraint

0..1

*

+constrainedStereotype

0..1

+stereotypeConstraint *

TagDefinition
tagType : Name
multiplicity :Multiplicity
/ owner :Stereotype

*0..1

+definedTag

*

+owner

0..1

ModelElement

*

*

+stereotype*

+extendedElement

*

*

*

+constrainedElement *

{ordered}

+constraint * TaggedValue
dataValue : String [*]
/ modelElement : ModelElement
/ type : TagDefinition
/ referenceValue : ModelElement

1

*

+type

1

+typedValue*

1

*

+modelElement

1

+taggedValue*

*

*

+referenceValue*

+referenceTag *
September 2002 OMG-Unified Modeling Language, v1.5 5-9

5 UML Model Interchange
Figure 5-8 Data Types

AggregationKind

ak_none
ak_aggregate
ak_composite

<<enumeration>>

Boolean

false
true

<<datatype>>

ChangeableKind

ck_changeable
ck_frozen
ck_addOnly

<<enumeration>>

Name
<<datatype>>

Integer
<<datatype>>

ParameterDirectionKind

pdk_in
pdk_inout
pdk_out
pdk_return

<<enumeration>>

ScopeKind

sk_instance
sk_class ifier

<<enumeration>>

String
<<datatype>>

VisibilityKind

vk_public
vk_protected
vk_private
vk_package

<<enumeration>>

PseudostateKind
pk_choice
pk_deepHistory
pk_fork
pk_initial
pk_join
pk_junction
pk_shallowHistory

<<enumeration>>

CallConcurrencyKind

cck_sequent ial
cck_guarded
cck_concurrent

<<enumeration>>

MultiplicityRange
lower : Integer
upper : UnlimitedInteger
/ multiplicity : Multiplicity

Multiplicity

1..*

1

+range1..*

+multiplicity1

UnlimitedInteger
<<datatype>>

LocationReference
<<datatype>>

OrderingKind

ok_unordered
ok_ordered

<<enumeration>>

Geometry
<<datatype>>
5-10 OMG-UML , v1.5 Overview

5.1 Overview
Figure 5-9 Datatypes - Expressions

Figure 5-10 Common Behavior - Signals

BooleanExpression TimeExpression TypeExpressionArgListsExpression MappingExpression

Expression

language : Name
body : String

ProcedureExpression

Exception

Reception
specification : String
isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean
/ signal : Signal

BehavioralFeature
(from Core)

Signal

1

0..*

+signal

1

+reception

0..*

**

+context

*

raisedSignal

*

Classifier
(from Core)
September 2002 OMG-Unified Modeling Language, v1.5 5-11

5 UML Model Interchange
Figure 5-11 Common Behavior - Procedure

Expression
(from Data_Types)

Procedure

language : Name
body : String
isList : Boolean

0..1 0..1

+procedure

0..1 0..1

Method
(from Core)

..1

0..1

+procedure

..1

0..1

ModelElement
(from Core)
5-12 OMG-UML , v1.5 Overview

5.1 Overview
Figure 5-12 Common Behavior - Instances

DataValue Object

ModelElement
(from Core)

SubsystemInstance

NodeInstance

/ resident : ComponentInstance

Attribute
(from Core)

ComponentInstance

/ nodeInstance : NodeInstance
/ resident : Instance *

0..1+resident
* +nodeInstance

0..1

Classifier
(from Core)

AttributeLink
/ attribute : Attribute
/ value : Instance
/ instance : Instance
/ linkEnd : LinkEnd

*

1 +attributeLink

*+attribute

1

Instance

/ classifier : Classifier
/ linkEnd : LinkEnd
/ slot : AttributeLink
/ componentInstance : ComponentInstance
/ ownedInstance : Instance
/ ownedLink : Link

*

0..1

+resident

*

+componentInstance 0..1

1..*
*+classifier

1..* +instance
*

0..1

*

instance
0..1

+slot**

1

*

+value 1

*

0..1

+ownedInstance

*

+owner

0..1

Stimulus

/ argument : Instance
/ sender : Instance
/ receiver : Instance
/ communicationLink : Link
/ dispatchAction : Procedure

*

*

*

+argument *

{ordered}

*

1

*

+sender1 1

*

+receiver1

*

Procedure

* 1

+stimulus

*

+dispatchAction

1

September 2002 OMG-Unified Modeling Language, v1.5 5-13

5 UML Model Interchange
Figure 5-13 Common Behavior - Links

LinkObject

Object

ModelElement
(fromCore)

AssociationEnd
(f rom Core)

AttributeLink

Association
(from Core)

LinkEnd
/ instance : Instance
/ link : Link
/ associationEnd : AssociationEnd
/ qualifiedValue : AttributeLink

Link
/ association : Ass ociation
/ connection : LinkEnd

Instance

Stimulus

+connection

2..*
{ordered}

+associationEnd 1

+qualifiedValue *{ordered}

+association

1

2..*

1

+association1

+linkEnd *

1

*

+linkEnd0..10..1

*

+linkEnd *
+link*

1

*

1

2 .. *+link

1 +connection

2 .. *
{ordered}

+ownedLink *

+communicationLink

0..1

+instance

11

*

+owner 0..1

*

0..1

+stimulus
**

0..1
5-14 OMG-UML , v1.5 Overview

5.1 Overview
Figure 5-14 Collaborations - Roles

Attribute
(from Core)

AssociationEndRole

collaborationMultiplicity : Multiplicity
/ base : AssociationEnd
/ availableQualifier : Attribute

*

*

*

+availableQualifier*

AssociationEnd
(from Core)

0..1 *

+base

0..1 *

Collaboration

/ interaction : Interaction
/ representedClassifier : Classifier
/ representedOperation : Operation
/ constrainingElement : ModelElement
/ usedCollaboration : Collaboration

Association
(from Core)

2..*

1

+connection
2..* {ordered}

1

Feature
(from Core)

ModelElement
(from Core)* **

+constrainingElement

*

Classifier
(from Core)

AssociationRole

multiplicity : Multiplicity
/ base : Association
/ message : Message
/ conformingLink : Link

0..1

*+base

0..1

*

ClassifierRole

multiplicity : Multiplicity
/ base : Classifier
/ availableFeature : Feature
/ availableContents : ModelElement
/ conformingInstance : Instance

** *

+availableFeature

*

*

*

*

+availableContents *

1..* *+base1..* *

Procedure
(from Common_Behavior)

Message

/ interaction : Interaction
/ activator : Message
/ sender : ClassifierRole
/ receiver : ClassifierRole
/ predecessor : Message
/ communicationConnection : AssociationRole
/ procedure : Procedure
/ conformingStimulus : Stimulus *

0..1

*

+activator

0..1

*

*

+successor
*

+predecessor

**

0..1 +message
*+communicationConnection

0..1

1

*

+sender 1

**

1

*

+receiver
1

1

*

+procedure 1

*

September 2002 OMG-Unified Modeling Language, v1.5 5-15

5 UML Model Interchange
Figure 5-15 Collaborations - Interactions

GeneralizableElement
(from Core)

Namespace
(from Core)

Message
Interaction

/ message : Message
/ context : Collaboration 1 1..*

+interaction

1

+message

1..*

Operation
(f rom Core)

Collaboration
/ interaction : Interaction
/ representedClassi fier : Classi fier
/ representedOperation : Operation
/ constrainingElement :ModelElemen t
/ usedCol laboration : Collaboration

1

*

+context1

+interaction *

0..1*

+representedOperation

0..1*

*

*

+usedCollaboration

*

*

Classifier
(from Core)

* 0..1*

+representedClassifier

0..1

ModelElement
(from Core)
5-16 OMG-UML , v1.5 Overview

5.1 Overview
Figure 5-16 Collaborations - Instances

Message

Stimulus
(f rom Common_Behavior)

*

*

+playedRole*

+conformingStimulus*

Interaction
/ mess age : Message
/ context : Coll aboration1..*

1+message

1..* +interaction

1

ClassifierRole
mul tipl icity :Multiplicity
/ base : Classifier
/ avai lableFeature : Feature
/ avai lableContents : ModelElem ent
/ conform ingIns tance : Instance

AssociationRole
multiplicity : Multiplicity
/ base : Association
/ message : Message
/ conformingLink : Link

InteractionInstanceSet
/ context : CollaborationInstanceSet
/ interaction : Interaction
/ participati ngStim ulus : Stimulus

0..1

*

+interaction
0..1

*

1.. *

+participatingStimulus

1..*

Collaboration
/ interaction : Interaction
/ representedClassifier : Classifier
/ representedOperation : Operation
/ constrainingElement : ModelElement
/ usedCollaboration : Collaboration

*

1+interact ion

* +context

1

Instance
* *

+playedRole

*

+conformingInstance

*

Link
* *

+playedRole

*

+conformingLink

*

CollaborationInstanceSet
/ interactionInstanceSet : InteractionInstanceSet
/ collaboration : Collaboration
/ participatingInstance : Instance
/ participatingLink : Link
/ constrainingElement : ModelElement

1

* +context

1+interactionInstanceSet

*

0..1

*

+collaboration 0..1

+co llaborationInstanceSet *

*

1..*

*

+participatingInstance 1..*

*

*

+participatingL ink *

*

ModelElement
(from Core)

*

*

*

+constrainingElement

*

+interactionInstanceSet
September 2002 OMG-Unified Modeling Language, v1.5 5-17

5 UML Model Interchange
Figure 5-17 Use Cases

UseCaseInstance

Actor

Classifier
(from Core)

Instance
(from Common_Behavior)

1..* *

+classifier

1..*

+instance

*

ModelElement
(from Core)

Include

/ addit ion : UseCase
/ base : UseCase

UseCase
/ extend : Extend
/ include : Include
/ extensionPoint : ExtensionPoint

*

1

+includer

*

+addition
1

*

1

+include*

+base1

ExtensionPoint
location : LocationReference
/ useCase : UseCase

*

1 +extensionPoint

*+useCase

1

Extend

condition : BooleanExpression
/ base : UseCase
/ extension : UseCase
/ extensionPoint : ExtensionPoint

1

*

+base1

+extender*

1

*

+extension

1

+extend*

1..*

*

+extensionPoint 1..*
{ordered}

*

Relationship
(from Core)
5-18 OMG-UML , v1.5 Overview

5.1 Overview
Figure 5-18 State Machines

Pseudostate

kind : PseudostateKind

SimpleState

SynchState

bound: UnlimitedInteger

StubState

referenceState : Name

FinalStateCompositeState

isConcurrent : Boolean
/ subvertex : StateVertex

SubmachineState

/ submachine : StateMachine

ModelElement
(fromCore)

Guard

expression : BooleanExpression
/ transition: Transition

StateVertex

/ container : CompositeState
/ outgoing : Transition
/ incoming : Transition0..*

0..1

+subvertex

0..*

+container

0..1

Event

/ parameter : Parameter

StateMachine

/ context : ModelElement
/ top : State
/ transitions : Transition
/ submachineState: SubmachineState

*

1

+submachineState
*

+submachine

1

*

0..1

+behavior *

+context
0..1

Transition

/ guard : Guard
/ effect : Procedure
/ trigger : Event
/ source : StateVertex
/ target : StateVertex
/ stateMachine : StateMach...

1

0..1

+transition1

+guard0..1

0..1

*

+trigger 0..1

+transition

*

*

0..1

+transitions *

0..1

1 *

+source

1

+outgoing

*

1 *

+target

1

+incoming

*

State
/ entry : Procedure
/ exit : Procedure
/ deferrableEvent : Event
/ internalTransition : Transition
/ doActivity : Procedure
/ stateMachine : StateMachine

0..*

0..*

0..*

+deferrableEvent

0..*

1

0..1

+top1

+stateMachine 0..1

*

0..1

+internalTransition *

0..1
Procedure

(fromCommon_Behavior)

0..1 0..10..1

+doActivity

0..1

0..1

0..1

+effect0..1

+transition0..1

0..1 0..10..1

+entry
0..1

0..1 0..10..1

+exit

0..1
September 2002 OMG-Unified Modeling Language, v1.5 5-19

5 UML Model Interchange
Figure 5-19 State Machines - Events

TimeEvent
when : TimeExpression

ChangeEvent
changeExpression : BooleanExpres sion

Operation
(f rom Core)

CallEvent
/ operation : Operation

1

*

+operation 1

+occurrence *

SignalEvent
/ signal : Signal

Signal
(f rom Common_Behav ior)

*

1

+occurrence*

+s ignal 1

Parameter
(from Core)

Event

/ parameter : Parameter* 0..1

+parameter

* {ordered}

+event

0..1

ModelElement
(from Core)
5-20 OMG-UML , v1.5 Overview

5.1 Overview
Figure 5-20 Activity Graphs

The interchange metamodels of Actions package are the same as the logical metamodels of
Actions package with the following exception:

• The MOF IDL name for the attribute end of the association between
AttributeAction and Attribute is “umlAttribute”.

ActionState

isDynamic : Boolean
dynamicArguments : ArgListsExpression
dynamicMultiplicity: Multiplicity

SimpleState
(f rom State_Machines)

SubactivityState

isDynamic : Boolean
dynamicArguments : ArgListsExpression
dynamicMultiplicity: Multiplicity

SubmachineState
(f rom State_Machines)

CompositeState
isConcurrent : Boolean
/ subvertex: StateVertex

CallState

ActivityGraph
/ partition : Partition

Partition
/ contents : ModelElement
/ activityGraph : ActivityGraph

1

0..*+activityGraph

1 +partit ion

0..*

ModelElement
(from Core)

*

*

+contents*

partition*

StateMachine
(f rom State_Machines)

0..1*

+context

0..1

+behavior

*

State
(fromState_Machines)

0..1

1

+stateMachine 0..1

+top 1

ClassifierInState

/ type : Classifier
/ inState : State

0..*

1..*

0..*

+inState

1..*

Parameter
(from Core)

Classifier
(fromCore)

1

*

+type 1

+classifierInState *

ObjectFlowState

isSynch : Boolean
/ parameter : Parameter
/ type : Classifier

*

*

+parameter *

+state *

1

*

+type

1

*

September 2002 OMG-Unified Modeling Language, v1.5 5-21

5 UML Model Interchange
• The MOF IDL name for the object end of the association between
AttributeAction and InputPin is actionObject. Likewise for
ReadLinkObjectEndAction, ReadLinkObjectQualifierAction,
ClearAssociationAction.

• The Action Foundation diagram and its contents (except for Procedure) are in a
separate package with explicit references. Associations from Procedure made
bidirectional with references from Action.

• The associations from Procedure to Expression and Method are bidirectional with
references on Procedure end.

• The association end between Action and Procedure on the Procedure end is
named procedure.

• All slashes are removed from association end names and these associations are
marked as derived with MOF changeability set to false, except for the association
between CreateLinkAction and LinkEndCreationData.
5-22 OMG-UML , v1.5 Overview

5.2 Model Interchange Using XMI
Figure 5-21 Model Management

5.2 Model Interchange Using XMI

UML models can be exchanged between software tools as streams or files with a standard XML
format. An XML document type file named UML_1.4_XMI_1.1.dtd (OMG document ad/01-
02-16) is generated from the UML Interchange Metamodel following the rules of the XML
Metadata Interchange (XMI) 1.1 Specification. The single document type supports all packages
of the UML Interchange Metamodel, but a tool that exchanges models using XML might
support some packages and not others.

To illustrate use of XML to represent a UML model, Figure 5-22 shows an example model.

GeneralizableElement
(from Core)

Subsystem
isInstantiable : Boolean

Model

Classifier
(f rom Core)

Namespace
(from Core)

ModelElement
(from Core)

*

0..1

+ownedElement

*

+namespace

0..1

Package

/ elementImport : ElementImport

ElementImport

visibility : VisibilityKind
alias : Name
isSpecification : Boolean
/ package : Package
/ importedElement : ModelElement

1

*

+importedElement

1

+elementImport*

1

*

+package

1

+elementImport*
September 2002 OMG-Unified Modeling Language, v1.5 5-23

5 UML Model Interchange
Figure 5-22 Example: Employment Model

The model shown above is expressed in XML below.

<?xml version='1.0' encoding='ISO-8859-1' ?>
<!DOCTYPE XMI SYSTEM 'UML_1.4_XMI_1.1.dtd'>
<XMI xmi.version='1.2' xmlns:UML='omg.org/UML/1.4'>
 <XMI.header>
 <XMI.metamodel xmi.name='UML' xmi.version='1.4'/>
 </XMI.header>
 <XMI.content>
 <UML:Model xmi.id='S.1' name='Employment Model' visibility='public'
 isSpecification='false' isRoot='false' isLeaf='false' isAbstract='false'>
 <UML:Namespace.ownedElement>
 <UML:Class xmi.id='S.2' name='Person' visibility='public' isSpecification='false'
 namespace='S.1' isRoot='true' isLeaf='true' isAbstract='false' isActive='false'/>
 <UML:Class xmi.id='S.3' name='Business' visibility='public' isSpecification='false'
 namespace='S.1' isRoot='true' isLeaf='true' isAbstract='false' isActive='false'/>
 <UML:Association xmi.id='G.1' name='Employment' visibility='public'
 isSpecification='false' isRoot='false' isLeaf='false' isAbstract='false'>
 <UML:Association.connection>
 <UML:AssociationEnd name='employer' visibility='public' isSpecification='false'
 isNavigable='true' ordering='unordered' aggregation='none' targetScope='instance'
 changeability='changeable' participant='S.3' association='G.1'>
 <UML:AssociationEnd.multiplicity>
 <UML:Multiplicity>
 <UML:Multiplicity.range>
 <UML:MultiplicityRange lower='0' upper='-1'/>
 </UML:Multiplicity.range>
 </UML:Multiplicity>
 </UML:AssociationEnd.multiplicity>
 </UML:AssociationEnd>
 <UML:AssociationEnd name='employee' visibility='public' isSpecification='false'
 isNavigable='true' ordering='unordered' aggregation='none' targetScope='instance'
 changeability='changeable' participant='S.2' association='G.1'>
 <UML:AssociationEnd.multiplicity>
 <UML:Multiplicity>
 <UML:Multiplicity.range>
 <UML:MultiplicityRange lower='0' upper='-1'/>
 </UML:Multiplicity.range>
 </UML:Multiplicity>
 </UML:AssociationEnd.multiplicity>
 </UML:AssociationEnd>
 </UML:Association.connection>
 </UML:Association>
 </UML:Namespace.ownedElement>
 </UML:Model>
 </XMI.content>
</XMI>

Person Business

**

Employment
+employer+employee

**
5-24 OMG-UML , v1.5 Model Interchange Using XMI

5.3 Model Interchange Using CORBA IDL
5.3 Model Interchange Using CORBA IDL

CORBA interfaces can be used for creating, accessing, and manipulating UML models. The
MOF Specification's Reflective module provides generic interfaces for accessing all objects of
a model. Tailored interfaces extend the generic interfaces. One tailored IDL module is
generated from each UML Interchange Metamodel package following rules defined in the MOF
Specification. The tailored interfaces support fine-grained creation, access, and modification of
model elements with type safety in terms of the UML Interchange Metamodel. Support of
tailored interfaces is optional. A facility might support some packages and not others.

The module files are combined in a file named UML_1.4_CORBA_IDL.zip (OMG document
ad/01-02-17).

The behavior of a CORBA Facility is defined by the MOF Specification for both reflective and
tailored interfaces. Additionally, a UML CORBA Facility must provide access to UML
Standard Elements (stereotypes, constraints, and tags) documented in chapter 2, UML
Semantics.
September 2002 OMG-Unified Modeling Language, v1.5 5-25

5 UML Model Interchange
5-26 OMG-UML , v1.5 Model Interchange Using CORBA IDL

Object Constraint Language
Specification 6
This chapter introduces and defines the Object Constraint Language (OCL), a formal
language to express side-effect-free constraints.

Contents

This chapter contains the following topics.

6.1 Overview

This chapter introduces and defines the Object Constraint Language (OCL), a formal
language used to express constraints. These typically specify invariant conditions that
must hold for the system being modeled. Note that when the OCL expressions are
evaluated, they do not have side effects; that is, their evaluation cannot alter the state of

Topic Page

“Overview” 6-1

“Introduction” 6-3

“Relation to the UML Metamodel” 6-4

“Basic Values and Types” 6-7

“Objects and Properties” 6-11

“Collection Operations” 6-22

“The Standard OCL Package” 6-28

“Predefined OCL Types” 6-29

“Grammar” 6-45
September 2002 OMG-Unified Modeling Language, v1.5 6-1

6 Object Constraint Language Specification
the corresponding executing system. In addition, to specifying invariants of the UML
metamodel, UML modelers can use OCL to specify application-specific constraints in
their models.

OCL is used in the UML Semantics chapter to specify the well-formedness rules of the
metaclasses comprising the UML metamodel. A well-formedness rule in the static
semantics chapters in the UML Semantics section normally contains an OCL
expression, specifying an invariant for the associated metaclass. The grammar for OCL
is specified at the end of this chapter. A parser generated from this grammar has
correctly parsed all the constraints in the UML Semantics section, a process which
improved the correctness of the specifications for OCL and UML.

6.1.1 Why OCL?

A UML diagram, such as a class diagram, is typically not refined enough to provide all
the relevant aspects of a specification. There is, among other things, a need to describe
additional constraints about the objects in the model. Such constraints are often
described in natural language. Practice has shown that this will always result in
ambiguities. In order to write unambiguous constraints, so-called formal languages
have been developed. The disadvantage of traditional formal languages is that they are
usable to persons with a strong mathematical background, but difficult for the average
business or system modeler to use.

OCL has been developed to fill this gap. It is a formal language that remains easy to
read and write. It has been developed as a business modeling language within the IBM
Insurance division, and has its roots in the Syntropy method.

OCL is a pure expression language; therefore, an OCL expression is guaranteed to be
without side effect. When an OCL expression is evaluated, it simply returns a value. It
cannot change anything in the model. This means that the state of the system will never
change because of the evaluation of an OCL expression, even though an OCL
expression can be used to specify a state change (for example, in a post-condition).

OCL is not a programming language; therefore, it is not possible to write program
logic or flow control in OCL. You cannot invoke processes or activate non-query
operations within OCL. Because OCL is a modeling language in the first place, not
everything in it is promised to be directly executable.

OCL is a typed language, so that each OCL expression has a type. To be well formed,
an OCL expression must conform to the type conformance rules of the language. For
example, you cannot compare an Integer with a String. Each Classifier defined within
a UML model represents a distinct OCL type. In addition, OCL includes a set of
supplementary predefined types (these are described in Section 6.8, “Predefined OCL
Types,” on page 6-29).

As a specification language, all implementation issues are out of scope and cannot be
expressed in OCL.

The evaluation of an OCL expression is instantaneous. This means that the states of
objects in a model cannot change during evaluation.
6-2 OMG-Unified Modeling Language, v1.5 September 2002

6 Object Constraint Language Specification
6.1.2 Where to Use OCL

OCL can be used for a number of different purposes:

• To specify invariants on classes and types in the class model

• To specify type invariant for Stereotypes

• To describe pre- and post conditions on Operations and Methods

• To describe Guards

• As a navigation language

• To specify constraints on operations

Within the UML Semantics chapter, OCL is used in the well-formedness rules as
invariants on the metaclasses in the abstract syntax. In several places, it is also used to
define ‘additional’ operations which are used in the well-formedness rules. Starting
with UML 1.4, these additional operations can be formally defined using «definition»
constraints and let-expressions.

6.2 Introduction

6.2.1 Legend

Text written in the courier typeface as shown below is an OCL expression.

'This is an OCL expression'

The context keyword introduces the context for the expression. The keyword inv, pre
and post denote the stereotypes, respectively «invariant», «precondition», and
«postcondition», of the constraint. The actual OCL expression comes after the colon.

context TypeName inv:

'this is an OCL expression with stereotype <<invariant>> in the

context of TypeName' = 'another string'

In the examples. the keywords of OCL are written in boldface in this document. The
boldface has no formal meaning, but is used to make the expressions more readable in
this document. OCL expressions in this document are written using ASCII characters
only.

Words in Italics within the main text of the paragraphs refer to parts of OCL
expressions.

6.2.2 Example Class Diagram

Figure 6-1 on page 6-4 is used in the examples in this document.
September 2002 OMG-UML , v1.5 Introduction 6-3

6 Object Constraint Language Specification
Figure 6-1 Class Diagram Example

6.3 Relation to the UML Metamodel

6.3.1 Self

Each OCL expression is written in the context of an instance of a specific type. In an
OCL expression, the reserved word self is used to refer to the contextual instance. For
instance, if the context is Company, then self refers to an instance of Company.

6.3.2 Specifying the UML context

The context of an OCL expression within a UML model can be specified through a so-
called context declaration at the beginning of an OCL expression. The context
declaration of the constraints in the following sections is shown.

Person

isMarried : Boolean
isUnemployed : Boolean
birthDate : Date
age : Integer
firstName : String
lastName : String
sex : Sex

income(Date) : Integer

accountNumber:Integer

Bank

0..1

customer

Company

name : String
numberOfEmployees : Integer

stockPrice() : Real

manager 0..*

managedCompanies

employee employer

wife

husband 0..1

0..1

0..*0..*

Job

title : String
startDate : Date
salary : Integer

Marriage

place : String
date : Date

male
female

«enumeration»
Sex
6-4 OMG-Unified Modeling Language, v1.5 September 2002

6 Object Constraint Language Specification
If the constraint is shown in a diagram with the proper stereotype and the dashed lines
to connect it to its contextual element, there is no need for an explicit context
declaration in the test of the constraint. The context declaration is optional.

6.3.3 Invariants

The OCL expression can be part of an Invariant which is a Constraint stereotyped as an
«invariant». When the invariant is associated with a Classifier, the latter is referred to
as a “type” in this chapter. An OCL expression is an invariant of the type and must be
true for all instances of that type at any time. (Note that all OCL expressions that
express invariants are of the type Boolean.)

For example, if in the context of the Company type in Figure 6-1 on page 6-4, the
following expression would specify an invariant that the number of employees must
always exceed 50:

self.numberOfEmployees > 50

where self is an instance of type Company. (We can view self as the object from where
we start the expression.) This invariant holds for every instance of the Company type.

The type of the contextual instance of an OCL expression, which is part of an
invariant, is written with the context keyword, followed by the name of the type as
follows. The label inv: declares the constraint to be an «invariant» constraint.

context Company inv:

self.numberOfEmployees > 50

In most cases, the keyword self can be dropped because the context is clear, as in the
above examples. As an alternative for self, a different name can be defined playing the
part of self:

context c : Company inv:

c.numberOfEmployees > 50

This invariant is equivalent to the previous one.

Optionally, the name of the constraint may be written after the inv keyword, allowing
the constraint to be referenced by name. In the following example the name of the
constraint is enoughEmployees. In the UML metamodel, this name is an attribute of the
metaclass Constraint that is inherited from ModelElement.

context c : Company inv enoughEmployees:

c.numberOfEmployees > 50

6.3.4 Pre- and Postconditions

The OCL expression can be part of a Precondition or Postcondition, corresponding to
«precondition» and «postcondition» stereotypes of Constraint associated with an
Operation or Method. The contextual instance self then is an instance of the type that
owns the operation or method as a feature. The context declaration in OCL uses the
September 2002 OMG-UML , v1.5 Relation to the UML Metamodel 6-5

6 Object Constraint Language Specification
context keyword, followed by the type and operation declaration. The stereotype of
constraint is shown by putting the labels ‘pre:’ and ‘post:’ before the actual
Preconditions and Postconditions

context Typename::operationName(param1 : Type1, ...): ReturnType

pre : param1 > ...

post: result = ...

The name self can be used in the expression referring to the object on which the
operation was called. The reserved word result denotes the result of the operation, if
there is one. The names of the parameters (param1) can also be used in the OCL
expression. In the example diagram, we can write:

context Person::income(d : Date) : Integer

post: result = 5000

Optionally, the name of the precondition or postcondition may be written after the pre
or post keyword, allowing the constraint to be referenced by name. In the following
example the name of the precondition is parameterOk and the name of the
postcondition is resultOk. In the UML metamodel, these names are attributes of the
metaclass Constraint that is inherited from ModelElement.

context Typename::operationName(param1 : Type1, ...): ReturnType

pre parameterOk: param1 > ...

post resultOk: result = ...

6.3.5 Package context

The above context declaration is precise enough when the package in which the
Classifier belongs is clear from the environment. To specify explicitly in which
package invariant, pre or postcondition Constraints belong, these constraints can be
enclosed between 'package' and 'endpackage' statements. The package statements have
the syntax:

package Package::SubPackage

context X inv:

... some invariant ...

context X::operationName(..)

pre: ... some precondition ...

endpackage

An OCL file (or stream) may contain any number package statements, thus allowing all
invariant, preconditions, and postconditions to be written down and stored in one file.
This file may co-exist with a UML model as a separate entity.
6-6 OMG-Unified Modeling Language, v1.5 September 2002

6 Object Constraint Language Specification
6.3.6 General Expressions

Any OCL expression can be used as the value for an attribute of the UML metaclass
Expression or one of its subtypes. In that case, the semantics section describes the
meaning of the expression.

6.4 Basic Values and Types

In OCL, a number of basic types are predefined and available to the modeler at all
times. These predefined value types are independent of any object model and part of
the definition of OCL.

The most basic value in OCL is a value of one of the basic types. Some basic types
used in the examples in this document, with corresponding examples of their values,
are shown in Table 6-1.

OCL defines a number of operations on the predefined types. Table 6-2 gives some
examples of the operations on the predefined types. See Section 6.8, “Predefined OCL
Types,” on page 6-29 for a complete list of all operations.

The complete list of operations provided for each type is described at the end of this
chapter. Collection, Set, Bag, and Sequence are basic types as well. Their specifics will
be described in the upcoming sections.

6.4.1 Types from the UML Model

Each OCL expression is written in the context of a UML model, a number of
classifiers (types/classes, ...), their features and associations, and their generalizations.
All classifiers from the UML model are types in the OCL expressions that are attached
to the model.

Table 6-1 Basic Types

type values

Boolean true, false

Integer 1, -5, 2, 34, 26524, ...

Real 1.5, 3.14, ...

String 'To be or not to be...'

Table 6-2 Operations on predefined types

type operations

Integer *, +, -, /, abs()

Real *, +, -, /, floor()

Boolean and, or, xor, not, implies, if-then-else

String toUpper(), concat()
September 2002 OMG-UML , v1.5 Basic Values and Types 6-7

6 Object Constraint Language Specification
6.4.2 Enumeration Types

Enumerations are Datatypes in UML and have a name, just like any other Classifier.
An enumeration defines a number of enumeration literals, that are the possible values
of the enumeration. Within OCL one can refer to the value of an enumeration. When
we have Datatype named Sex with values ‘female’ or ‘male’ they can be used as
follows:

context Person inv:

sex = Sex::male

6.4.3 Let Expressions and «definition» Constraints

Sometimes a sub-expression is used more than once in a constraint. The let expression
allows one to define an attribute or operation that can be used in the constraint.

context Person inv:

let income : Integer = self.job.salary->sum()

let hasTitle(t : String) : Boolean =

self.job->exists(title = t) in

if isUnemployed then

self.income < 100

else

self.income >= 100 and self.hasTitle(‘manager’)

endif

A let expression may be included in an invariant or pre- or postcondition. It is then
only known within this specific constraint. To enable reuse of let variables/operations
one can use a Constraint with the stereotype «definition», in which let
variables/operations are defined. This «definition» Constraint must be attached to a
Classifier and may only contain let definitions. All variables and operations defined in
the «definition» constraint are known in the same context as where any property of the
Classifier can be used. In essence, such variables and operations are psuedo-attributes
and psuedo-operations of the classifier. They are used in an OCL expression in exactly
the same way as attributes or operations are used. The textual notation for a
«definition» Constraint uses the keyword ‘def’ as shown below:

context Person def:

let income : Integer = self.job.salary->sum()

let hasTitle(t : String) : Boolean =

self.job->exists(title = t)

The names of the attributes / operations in a let expression may not conflict with the
names of respective attributes/associationEnds and operations of the Classifier. Also,
the names of all let variables and operations connected with a Classifier must be
unique.
6-8 OMG-Unified Modeling Language, v1.5 September 2002

6 Object Constraint Language Specification
6.4.4 Type Conformance

OCL is a typed language and the basic value types are organized in a type hierarchy.
This hierarchy determines conformance of the different types to each other. You
cannot, for example, compare an Integer with a Boolean or a String.

An OCL expression in which all the types conform is a valid expression. An OCL
expression in which the types don’t conform is an invalid expression. It contains a type
conformance error. A type type1 conforms to a type type2 when an instance of type1
can be substituted at each place where an instance of type2 is expected. The type
conformance rules for types in the class diagrams are simple.

• Each type conforms to each of its supertypes.

• Type conformance is transitive: if type1 conforms to type2, and type2 conforms to
type3, then type1 conforms to type3.

The effect of this is that a type conforms to its supertype, and all the supertypes above.
The type conformance rules for the value types are listed in Table 6-3.

The conformance relation between the collection types only holds if they are
collections of element types that conform to each other. See Section 6.5.14, “Collection
Type Hierarchy and Type Conformance Rules,” on page 6-21 for the complete
conformance rules for collections.

Table 6-4 provides examples of valid and invalid expressions.

6.4.5 Re-typing or Casting

In some circumstances, it is desirable to use a property of an object that is defined on
a subtype of the current known type of the object. Because the property is not defined
on the current known type, this results in a type conformance error.

Table 6-3 Type conformance rules

Type Conforms to/Is a subtype of

Set(T) Collection(T)

Sequence(T) Collection(T)

Bag(T) Collection(T)

Integer Real

Table 6-4 Valid expressions

OCL expression valid explanation

1 + 2 * 34 yes

1 + 'motorcycle' no type String does not conform to type
Integer

23 * false no type Boolean does not conform to Integer

12 + 13.5 yes
September 2002 OMG-UML , v1.5 Basic Values and Types 6-9

6 Object Constraint Language Specification
When it is certain that the actual type of the object is the subtype, the object can be re-
typed using the operation oclAsType(OclType). This operation results in the same
object, but the known type is the argument OclType. When there is an object object of
type Type1 and Type2 is another type, it is allowed to write:

object.oclAsType(Type2) --- evaluates to object with type Type2

An object can only be re-typed to one of its subtypes; therefore, in the example, Type2
must be a subtype of Type1.

If the actual type of the object is not a subtype of the type to which it is re-typed, the
expression is undefined (see Section 6.4.10, “Undefined Values,” on page 6-11).

6.4.6 Precedence Rules

The precedence order for the operations, starting with highest precedence, in OCL is:

• @pre

• dot and arrow operations: ‘.’ and ‘->’

• unary ‘not’ and unary minus ‘-’

• ‘*’ and ‘/’

• ‘+’ and binary ‘-’

• ‘if-then-else-endif’

• ‘<’, ‘>’, ‘<=’, ‘>=’

• ‘=’, ‘<>’

• ‘and’, ‘or’ and ‘xor’

• ‘implies’

Parentheses ‘(’ and ‘)’ can be used to change precedence.

6.4.7 Use of Infix Operators

The use of infix operators is allowed in OCL. The operators ‘+’, ‘-’, ‘*’. ‘/’, ‘<‘, ‘>’,
‘<>’ ‘<=’ ‘>=’ are used as infix operators. If a type defines one of those operators with
the correct signature, they will be used as infix operators. The expression:

a + b

is conceptually equal to the expression:

a.+(b)

that is, invoking the ‘+’ operation on a with b as the parameter to the operation.

The infix operators defined for a type must have exactly one parameter. For the infix
operators ‘<‘, ‘>’, ‘<=’, ‘>=’, ‘<>’, ‘and’, ‘or’, and ‘xor’ the return type must be
Boolean.
6-10 OMG-Unified Modeling Language, v1.5 September 2002

6 Object Constraint Language Specification
6.4.8 Keywords

Keywords in OCL are reserved words. That means that the keywords cannot occur
anywhere in an OCL expression as the name of a package, a type or a property. The list
of keywords is shown below:

6.4.9 Comment

Comments in OCL are written following two successive dashes (minus signs).
Everything immediately following the two dashes up to and including the end of line is
part of the comment. For example:

-- this is a comment

6.4.10 Undefined Values

Whenever an OCL expression is being evaluated, there is a possibility that one or more
of the queries in the expression are undefined. If this is the case, then the complete
expression will be undefined.

There are two exceptions to this for the Boolean operators:

• True OR-ed with anything is True

• False AND-ed with anything is False

The above two rules are valid irrespective of the order of the arguments and the above
rules are valid whether or not the value of the other sub-expression is known.

6.5 Objects and Properties

OCL expressions can refer to Classifiers; for example, types, classes, interfaces,
associations (acting as types), and datatypes. Also all attributes, association-ends,
methods, and operations without side-effects that are defined on these types, etc. can
be used. In a class model, an operation or method is defined to be side-effect-free if the

if implies

then endpackage

else package

endif context

not def

let inv

or pre

and post

xor in
September 2002 OMG-UML , v1.5 Objects and Properties 6-11

6 Object Constraint Language Specification
isQuery attribute of the operations is true. For the purpose of this document, we will
refer to attributes, association-ends, and side-effect-free methods and operations as
being properties. A property is one of:

• an Attribute

• an AssociationEnd

• an Operation with isQuery being true

• a Method with isQuery being true

6.5.1 Properties

The value of a property on an object that is defined in a class diagram is specified by a
dot followed by the name of the property.

context AType inv:

self.property

If self is a reference to an object, then self.property is the value of the property
property on self.

6.5.2 Properties: Attributes

For example, the age of a Person is written as self.age:

context Person inv:

self.age > 0

The value of the subexpression self.age is the value of the age attribute on the
particular instance of Person identified by self. The type of this subexpression is the
type of the attribute age, which is the basic type Integer.

Using attributes, and operations defined on the basic value types, we can express
calculations etc. over the class model. For example, a business rule might be “the age
of a Person is always greater than zero.” This can be stated as shown in the invariant
above.

6.5.3 Properties: Operations

Operations may have parameters. For example, as shown earlier, a Person object has an
income expressed as a function of the date. This operation would be accessed as
follows, for a Person aPerson and a date aDate:

aPerson.income(aDate)

The operation itself could be defined by a postcondition constraint. This is a constraint
that is stereotyped as «postcondition». The object that is returned by the operation can
be referred to by result. It takes the following form:

context Person::income (d: Date) : Integer

post: result = age * 1000
6-12 OMG-Unified Modeling Language, v1.5 September 2002

6 Object Constraint Language Specification
The right-hand-side of this definition may refer to the operation being defined; that is,
the definition may be recursive as long as the recursion is not infinite. The type of
result is the return type of the operation, which is Integer in the above example.

To refer to an operation or a method that doesn’t take a parameter, parentheses with an
empty argument list are mandatory:

context Company inv:

self.stockPrice() > 0

6.5.4 Properties: Association Ends and Navigation

Starting from a specific object, we can navigate an association on the class diagram to
refer to other objects and their properties. To do so, we navigate the association by
using the opposite association-end:

object.rolename

The value of this expression is the set of objects on the other side of the rolename
association. If the multiplicity of the association-end has a maximum of one (“0..1” or
“1”), then the value of this expression is an object. In the example class diagram, when
we start in the context of a Company; that is, self is an instance of Company, we can
write:

context Company

inv: self.manager.isUnemployed = false

inv: self.employee->notEmpty()

In the first invariant self.manager is a Person, because the multiplicity of the
association is one. In the second invariant self.employee will evaluate in a Set of
Persons. By default, navigation will result in a Set. When the association on the Class
Diagram is adorned with {ordered}, the navigation results in a Sequence.

Collections, like Sets, Bags, and Sequences are predefined types in OCL. They have a
large number of predefined operations on them. A property of the collection itself is
accessed by using an arrow ‘->’ followed by the name of the property. The following
example is in the context of a person:

context Person inv:

self.employer->size() < 3

This applies the size property on the Set self.employer, which results in the number of
employers of the Person self.

context Person inv:

self.employer->isEmpty()

This applies the isEmpty property on the Set self.employer. This evaluates to true if the
set of employers is empty and false otherwise.
September 2002 OMG-UML , v1.5 Objects and Properties 6-13

6 Object Constraint Language Specification
6.5.4.1 Missing Rolenames

When a rolename is missing at one of the ends of an association, the name of the type
at the association end, starting with a lowercase character, is used as the rolename. If
this results in an ambiguity, the rolename is mandatory. This is the case with unnamed
rolenames in reflexive associations. If the rolename is ambiguous, then it cannot be
used in OCL.

6.5.4.2 Navigation over Associations with Multiplicity Zero or One

Because the multiplicity of the role manager is one, self.manager is an object of type
Person. Such a single object can be used as a Set as well. It then behaves as if it is a
Set containing the single object. The usage as a set is done through the arrow followed
by a property of Set. This is shown in the following example:

context Company inv:

self.manager->size() = 1

The sub-expression self.manager is used as a Set, because the arrow is used to access
the size property on Set. This expression evaluates to true.

The following example shows how a property of a collection can be used.

context Company inv:

self.manager->foo

The sub-expression self.manager is used as Set, because the arrow is used to access the
foo property on the Set. This expression is incorrect, because foo is not a defined
property of Set.

context Company inv:

self.manager.age> 40

The sub-expression self.manager is used as a Person, because the dot is used to access
the age property of Person.

In the case of an optional (0..1 multiplicity) association, this is especially useful to
check whether there is an object or not when navigating the association. In the example
we can write:

context Person inv:

self.wife->notEmpty() implies self.wife.sex = Sex::female

6.5.4.3 Combining Properties

Properties can be combined to make more complicated expressions. An important rule
is that an OCL expression always evaluates to a specific object of a specific type. After
obtaining a result, one can always apply another property to the result to get a new
result value. Therefore, each OCL expression can be read and evaluated left-to-right.

Following are some invariants that use combined properties on the example class
diagram:
6-14 OMG-Unified Modeling Language, v1.5 September 2002

6 Object Constraint Language Specification
[1] Married people are of age >= 18

context Person inv:

self.wife->notEmpty() implies self.wife.age >= 18 and

self.husband->notEmpty() implies self.husband.age >= 18

[2] a company has at most 50 employees

context Company inv:

self.employee->size() <= 50

6.5.5 Navigation to Association Classes

To specify navigation to association classes (Job and Marriage in the example), OCL
uses a dot and the name of the association class starting with a lowercase character:

context Person inv:

self.job

The sub-expression self.job evaluates to a Set of all the jobs a person has with the
companies that are his/her employer. In the case of an association class, there is no
explicit rolename in the class diagram. The name job used in this navigation is the
name of the association class starting with a lowercase character, similar to the way
described in the section “Missing Rolenames” above.

In case of a recursive association, that is an association of a class with itself, the name
of the association class alone is not enough. We need to distinguish the direction in
which the association is navigated as well as the name of the association class. Take
the following model as an example.

Figure 6-2 Navigating recursive association classes

When navigating to an association class such as employeeRanking there are two
possibilities depending on the direction. For instance, in the above example, we may
navigate towards the employees end, or the bosses end. By using the name of the
association class alone, these two options cannot be distinguished. To make the
distinction, the rolename of the direction in which we want to navigate is added to the
association class name, enclosed in square brackets.

In the expression

context Person inv:

EmployeeRanking

Person
age

bosses

employees * score

*

September 2002 OMG-UML , v1.5 Objects and Properties 6-15

6 Object Constraint Language Specification
self.employeeRanking[bosses]->sum() > 0

the self.employeeRanking[bosses] evaluates to the set of EmployeeRankings belonging
to the collection of bosses. And in the expression

context Person inv:

self.employeeRanking[employees]->sum() > 0

the self.employeeRanking[employees] evaluates to the set of EmployeeRankings
belonging to the collection of employees. The unqualified use of the association class
name is not allowed in such a recursive situation. Thus, the following example is
invalid:

context Person inv:

self.employeeRanking->sum() > 0 -- INVALID!

In a non-recursive situation, the association class name alone is enough, although the
qualified version is allowed as well. Therefore, the examples at the start of this section
could also be written as:

context Person inv:

self.job[employer]

6.5.6 Navigation from Association Classes

We can navigate from the association class itself to the objects that participate in the
association. This is done using the dot-notation and the role-names at the association-
ends.

context Job

inv: self.employer.numberOfEmployees >= 1

inv: self.employee.age > 21

Navigation from an association class to one of the objects on the association will
always deliver exactly one object. This is a result of the definition of AssociationClass.
Therefore, the result of this navigation is exactly one object, although it can be used as
a Set using the arrow (->).

6.5.7 Navigation through Qualified Associations

Qualified associations use one or more qualifier attributes to select the objects at the
other end of the association. To navigate them, we can add the values for the qualifiers
to the navigation. This is done using square brackets, following the role-name. It is
permissible to leave out the qualifier values, in which case the result will be all objects
at the other end of the association.

context Bank inv:

self.customer

This results in a Set(Person) containing all customers of the Bank.

context Bank inv:

self.customer[8764423]
6-16 OMG-Unified Modeling Language, v1.5 September 2002

6 Object Constraint Language Specification
This results in one Person, having accountnumber 8764423.

If there is more than one qualifier attribute, the values are separated by commas, in the
order which is specified in the UML class model. It is not permissible to partially
specify the qualifier attribute values.

6.5.8 Using Pathnames for Packages

Within UML, different types are organized in packages. OCL provides a way of
explicitly referring to types in other packages by using a package-pathname prefix. The
syntax is a package name, followed by a double colon:

Packagename::Typename

This usage of pathnames is transitive and can also be used for packages within
packages:

Packagename1::Packagename2::Typename

6.5.9 Accessing overridden properties of supertypes

Whenever properties are redefined within a type, the property of the supertypes can be
accessed using the oclAsType() operation. Whenever we have a class B as a subtype of
class A, and a property p1 of both A and B, we can write:

context B inv:

self.oclAsType(A).p1 -- accesses the p1 property defined in A

self.p1 -- accesses the p1 property defined in B

Figure 6-3 shows an example where such a construct is needed.

Figure 6-3 Accessing Overridden Properties Example

In this model fragment there is an ambiguity with the OCL expression on Dependency:

context Dependency inv:

....

Dependency

target

source
*

*

ModelElement

Note
value: Uninterpreted
September 2002 OMG-UML , v1.5 Objects and Properties 6-17

6 Object Constraint Language Specification
self.source <> self

This can either mean normal association navigation, which is inherited from
ModelElement, or it might also mean navigation through the dotted line as an
association class. Both possible navigations use the same role-name, so this is always
ambiguous. Using oclAsType() we can distinguish between them with:

context Dependency

inv: self.oclAsType(Dependency).source

inv: self.oclAsType(ModelElement).source

6.5.10 Predefined properties on All Objects

There are several properties that apply to all objects, and are predefined in OCL. These
are:

oclIsTypeOf(t : OclType) : Boolean

oclIsKindOf(t : OclType) : Boolean

oclInState(s : OclState) : Boolean

oclIsNew() : Boolean

oclAsType(t : OclType) : instance of OclType

The operation is oclTypeOf results in true if the type of self and t are the same. For
example:

context Person

inv: self.oclIsTypeOf(Person) -- is true

inv: self.oclIsTypeOf(Company) -- is false

The above property deals with the direct type of an object. The oclIsKindOf property
determines whether t is either the direct type or one of the supertypes of an object.

The operation oclInState(s) results in true if the object is in the state s. Values for s are
the names of the states in the statemachine(s) attached to the Classifier of object. For
nested states the statenames can be combined using the double colon ‘::’ .

On Off

Standby NoPower
6-18 OMG-Unified Modeling Language, v1.5 September 2002

6 Object Constraint Language Specification
In the example statemachine above, values for s can be On, Off, Off::Standby,
Off::NoPower. If the classifier of object has the above associated statemachine valid
OCL expressions are:

object.oclInState(On)

object.oclInState(Off)

object.oclInstate(Off::Standby)

object.oclInState(Off:NoPower)

If there are multiple statemachines attached to the object’s classifier, then the
statename can be prefixed with the name of the statemachine containing the state and
the double semicolon ::, as with nested states.

The operation oclIsNew evaluates to true if, used in a postcondition, the object is
created during performing the operation; that is, it didn’t exist at precondition time.

6.5.11 Features on Classes Themselves

All properties discussed until now in OCL are properties on instances of classes. The
types are either predefined in OCL or defined in the class model. In OCL, it is also
possible to use features defined on the types/classes themselves. These are, for
example, the class-scoped features defined in the class model. Furthermore, several
features are predefined on each type.

A predefined feature on each type is allInstances, which results in the Set of all
instances of the type in existence at the specific time when the expression is evaluated.
If we want to make sure that all instances of Person have unique names, we can write:

context Person inv:

Person.allInstances->forAll(p1, p2 |

p1 <> p2 implies p1.name <> p2.name)

The Person.allInstances is the set of all persons and is of type Set(Person). It is the set
of all persons that exist at the snapshot in time that the expression is evaluated.

Note – The use of allInstances has some problems and its use is discouraged in most
cases. The first problem is best explained by looking at the types like Integer, Real and
String. For these types the meaning of allInstances is undefined. What does it mean for
an Integer to exist? The evaluation of the expression Integer.allInstances results in an
infinite set and is therefore undefined within OCL. The second problem with
allInstances is that the existence of objects must be considered within some overall
context, like a system or a model. This overall context must be defined, which is not
done within OCL. A recommended style is to model the overall contextual system
explicitly as an object within the system and navigate from that object to its containing
instances without using allInstances.
September 2002 OMG-UML , v1.5 Objects and Properties 6-19

6 Object Constraint Language Specification
6.5.12 Collections

Single navigation results in a Set, combined navigations in a Bag, and navigation over
associations adorned with {ordered} results in a Sequence. Therefore, the collection
types play an important role in OCL expressions.

The type Collection is predefined in OCL. The Collection type defines a large number
of predefined operations to enable the OCL expression author (the modeler) to
manipulate collections. Consistent with the definition of OCL as an expression
language, collection operations never change collections; isQuery is always true. They
may result in a collection, but rather than changing the original collection they project
the result into a new one.

Collection is an abstract type, with the concrete collection types as its subtypes. OCL
distinguishes three different collection types: Set, Sequence, and Bag. A Set is the
mathematical set. It does not contain duplicate elements. A Bag is like a set, which
may contain duplicates; that is, the same element may be in a bag twice or more. A
Sequence is like a Bag in which the elements are ordered. Both Bags and Sets have no
order defined on them. Sets, Sequences, and Bags can be specified by a literal in OCL.
Curly brackets surround the elements of the collection, elements in the collection are
written within, separated by commas. The type of the collection is written before the
curly brackets:

Set { 1 , 2 , 5 , 88 }

Set { 'apple' , 'orange', 'strawberry' }

A Sequence:

Sequence { 1, 3, 45, 2, 3 }

Sequence { 'ape', 'nut' }

A bag:

Bag {1 , 3 , 4, 3, 5 }

Because of the usefulness of a Sequence of consecutive Integers, there is a separate
literal to create them. The elements inside the curly brackets can be replaced by an
interval specification, which consists of two expressions of type Integer, Int-expr1 and
Int-expr2, separated by ‘..’. This denotes all the Integers between the values of Int-
expr1 and Int-expr2, including the values of Int-expr1 and Int-expr2 themselves:

Sequence{ 1..(6 + 4) }

Sequence{ 1..10 }

-- are both identical to

Sequence{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }

The complete list of Collection operations is described at the end of this chapter.

Collections can be specified by a literal, as described above. The only other way to get
a collection is by navigation. To be more precise, the only way to get a Set, Sequence,
or Bag is:

1. a literal, this will result in a Set, Sequence, or Bag:

Set {1 , 2, 3 , 5 , 7 , 11, 13, 17 }
6-20 OMG-Unified Modeling Language, v1.5 September 2002

6 Object Constraint Language Specification
Sequence {1 , 2, 3 , 5 , 7 , 11, 13, 17 }

Bag {1, 2, 3, 2, 1}

2. a navigation starting from a single object can result in a collection:

context Company inv:

self.employee

3. operations on collections may result in new collections:

collection1->union(collection2)

6.5.13 Collections of Collections

Within OCL, all Collections of Collections are flattened automatically; therefore, the
following two expressions have the same value:

Set{ Set{1, 2}, Set{3, 4}, Set{5, 6} }

Set{ 1, 2, 3, 4, 5, 6 }

6.5.14 Collection Type Hierarchy and Type Conformance Rules

In addition to the type conformance rules in Section 6.4.4, “Type Conformance,” on
page 6-9, the following rules hold for all types, including the collection types:

• The types Set (X), Bag (X) and Sequence (X) are all subtypes of Collection (X).

 Type conformance rules are as follows for the collection types:

• Type1 conforms to Type2 when they are identical (standard rule for all types).

• Type1 conforms to Type2 when it is a subtype of Type2 (standard rule for all types).

• Collection(Type1) conforms to Collection(Type2), when Type1 conforms to Type2.

• Type conformance is transitive: if Type1 conforms to Type2, and Type2 conforms to
Type3, then Type1 conforms to Type3 (standard rule for all types).

For example, if Bicycle and Car are two separate subtypes of Transport:

Set(Bicycle) conforms to Set(Transport)

Set(Bicycle) conforms to Collection(Bicycle)

Set(Bicycle) conforms to Collection(Transport)

Note that Set(Bicycle) does not conform to Bag(Bicycle), nor the other way around.
They are both subtypes of Collection(Bicycle) at the same level in the hierarchy.

6.5.15 Previous Values in Postconditions

As stated in Section 6.3.4, “Pre- and Postconditions,” on page 6-5, OCL can be used to
specify pre- and post-conditions on operations and methods in UML. In a
postcondition, the expression can refer to two sets of values for each property of an
object:

• the value of a property at the start of the operation or method
September 2002 OMG-UML , v1.5 Objects and Properties 6-21

6 Object Constraint Language Specification
• the value of a property upon completion of the operation or method

The value of a property in a postcondition is the value upon completion of the
operation. To refer to the value of a property at the start of the operation, one has to
postfix the property name with the keyword ‘@pre’:

context Person::birthdayHappens()

post: age = age@pre + 1

The property age refers to the property of the instance of Person on which executes the
operation. The property age@pre refers to the value of the property age of the Person
that executes the operation, at the start of the operation.

If the property has parameters, the ‘@pre’ is postfixed to the propertyname, before the
parameters.

context Company::hireEmployee(p : Person)

post: employees = employees@pre->including(p) and
stockprice() = stockprice@pre() + 10

The above operation can also be specified by a postcondition and a precondition
together:

context Company::hireEmployee(p : Person)

pre : not employee->includes(p)

post: employees->includes(p) and

stockprice() = stockprice@pre() + 10

When the pre-value of a property evaluates to an object, all further properties that are
accessed of this object are the new values (upon completion of the operation) of this
object. So:

a.b@pre.c -- takes the old value of property b of a, say x

-- and then the new value of c of x.

a.b@pre.c@pre -- takes the old value of property b of a, say x

-- and then the old value of c of x.

The ‘@pre’ postfix is allowed only in OCL expressions that are part of a
Postcondition. Asking for a current property of an object that has been destroyed
during execution of the operation results in Undefined. Also, referring to the previous
value of an object that has been created during execution of the operation results in
Undefined.

6.6 Collection Operations

OCL defines many operations on the collection types. These operations are specifically
meant to enable a flexible and powerful way of projecting new collections from
existing ones. The different constructs are described in the following sections.
6-22 OMG-Unified Modeling Language, v1.5 September 2002

6 Object Constraint Language Specification
6.6.1 Select and Reject Operations

Sometimes an expression using operations and navigations delivers a collection, while
we are interested only in a special subset of the collection. OCL has special constructs
to specify a selection from a specific collection. These are the select and reject
operations. The select specifies a subset of a collection. A select is an operation on a
collection and is specified using the arrow-syntax:

collection->select(...)

The parameter of select has a special syntax that enables one to specify which elements
of the collection we want to select. There are three different forms, of which the
simplest one is:

collection->select(boolean-expression)

This results in a collection that contains all the elements from collection for which the
boolean-expression evaluates to true. To find the result of this expression, for each
element in collection the expression boolean-expression is evaluated. If this evaluates
to true, the element is included in the result collection, otherwise not. As an example,
the following OCL expression specifies that the collection of all the employees older
than 50 years is not empty:

context Company inv:

self.employee->select(age > 50)->notEmpty()

The self.employee is of type Set(Person). The select takes each person from
self.employee and evaluates age > 50 for this person. If this results in true, then the
person is in the result Set.

As shown in the previous example, the context for the expression in the select
argument is the element of the collection on which the select is invoked. Thus the age
property is taken in the context of a person.

In the above example, it is impossible to refer explicitly to the persons themselves; you
can only refer to properties of them. To enable to refer to the persons themselves, there
is a more general syntax for the select expression:

collection->select(v | boolean-expression-with-v)

The variable v is called the iterator. When the select is evaluated, v iterates over the
collection and the boolean-expression-with-v is evaluated for each v. The v is a
reference to the object from the collection and can be used to refer to the objects
themselves from the collection. The two examples below are identical:

context Company inv:

self.employee->select(age > 50)->notEmpty()

context Company inv:

self.employee->select(p | p.age > 50)->notEmpty()

The result of the complete select is the collection of persons p for which the p.age >
50 evaluates to True. This amounts to a subset of self.employee.

As a final extension to the select syntax, the expected type of the variable v can be
given. The select now is written as:
September 2002 OMG-UML , v1.5 Collection Operations 6-23

6 Object Constraint Language Specification
collection->select(v : Type | boolean-expression-with-v)

The meaning of this is that the objects in collection must be of type Type. The next
example is identical to the previous examples:

context Company inv:

self.employee.select(p : Person | p.age > 50)->notEmpty()

The compete select syntax now looks like one of:

collection->select(v : Type | boolean-expression-with-v)

collection->select(v | boolean-expression-with-v)

collection->select(boolean-expression)

The reject operation is identical to the select operation, but with reject we get the
subset of all the elements of the collection for which the expression evaluates to False.
The reject syntax is identical to the select syntax:

collection->reject(v : Type | boolean-expression-with-v)

collection->reject(v | boolean-expression-with-v)

collection->reject(boolean-expression)

As an example, specify that the collection of all the employees who are not married is
empty:

context Company inv:

self.employee->reject(isMarried)->isEmpty()

The reject operation is available in OCL for convenience, because each reject can be
restated as a select with the negated expression. Therefore, the following two
expressions are identical:

collection->reject(v : Type | boolean-expression-with-v)

collection->select(v : Type | not (boolean-expression-with-v))

6.6.2 Collect Operation

As shown in the previous section, the select and reject operations always result in a
sub-collection of the original collection. When we want to specify a collection that is
derived from some other collection, but which contains different objects from the
original collection; that is, it is not a sub-collection, we can use a collect operation.
The collect operation uses the same syntax as the select and reject and is written as one
of:

collection->collect(v : Type | expression-with-v)

collection->collect(v | expression-with-v)

collection->collect(expression)

The value of the reject operation is the collection of the results of all the evaluations of
expression-with-v.

An example: specify the collection of birthDates for all employees in the context of a
company. This can be written in the context of a Company object as one of:

self.employee->collect(birthDate)
6-24 OMG-Unified Modeling Language, v1.5 September 2002

6 Object Constraint Language Specification
self.employee->collect(person | person.birthDate)

self.employee->collect(person : Person | person.birthDate)

An important issue here is that the resulting collection is not a Set, but a Bag. When
more than one employee has the same value for birthDate, this value will be an
element of the resulting Bag more than once. The Bag resulting from the collect
operation always has the same size as the original collection.

It is possible to make a Set from the Bag, by using the asSet property on the Bag. The
following expression results in the Set of different birthDates from all employees of a
Company:

self.employee->collect(birthDate)->asSet()

6.6.2.1 Shorthand for Collect

Because navigation through many objects is very common, there is a shorthand
notation for the collect that makes the OCL expressions more readable. Instead of

self.employee->collect(birthdate)

we can also write:

self.employee.birthdate

In general, when we apply a property to a collection of Objects, then it will
automatically be interpreted as a collect over the members of the collection with the
specified property.

For any propertyname that is defined as a property on the objects in a collection, the
following two expressions are identical:

collection.propertyname

collection->collect(propertyname)

and so are these if the property is parameterized:

collection.propertyname(par1, par2, ...)

collection->collect(propertyname(par1, par2, ...)

6.6.3 ForAll Operation

Many times a constraint is needed on all elements of a collection. The forAll operation
in OCL allows specifying a Boolean expression, which must hold for all objects in a
collection:

collection->forAll(v : Type | boolean-expression-with-v)

collection->forAll(v | boolean-expression-with-v)

collection->forAll(boolean-expression)

This forAll expression results in a Boolean. The result is true if the boolean-
expression-with-v is true for all elements of collection. If the boolean-expression-with-
v is false for one or more v in collection, then the complete expression evaluates to
false. For example, in the context of a company:
September 2002 OMG-UML , v1.5 Collection Operations 6-25

6 Object Constraint Language Specification
context Company

inv: self.employee->forAll(forename = 'Jack')

inv: self.employee->forAll(p | p.forename = 'Jack')

inv: self.employee->forAll(p : Person | p.forename = 'Jack')

These invariants evaluate to true if the forename feature of each employee is equal to
‘Jack.’

The forAll operation has an extended variant in which more then one iterator is used.
Both iterators will iterate over the complete collection. Effectively this is a forAll on
the Cartesian product of the collection with itself.

context Company inv:

self.employee->forAll(e1, e2 |

e1 <> e2 implies e1.forename <> e2.forename)

context Company inv:

self.employee->forAll(e1, e2 : Person |

e1 <> e2 implies e1.forename <> e2.forename)

This expression evaluates to true if the forenames of all employees are different. It is
semantically equivalent to:

context Company inv:

self.employee->forAll(e1 | self.employee->forAll (e2 |

e1 <> e2 implies e1.forename <> e2.forename)))

6.6.4 Exists Operation

Many times one needs to know whether there is at least one element in a collection for
which a constraint holds. The exists operation in OCL allows you to specify a Boolean
expression that must hold for at least one object in a collection:

collection->exists(v : Type | boolean-expression-with-v)

collection->exists(v | boolean-expression-with-v)

collection->exists(boolean-expression)

This exists operation results in a Boolean. The result is true if the boolean-expression-
with-v is true for at least one element of collection. If the boolean-expression-with-v is
false for all v in collection, then the complete expression evaluates to false. For
example, in the context of a company:

context Company inv:

self.employee->exists(forename = 'Jack')

context Company inv:

self.employee->exists(p | p.forename = 'Jack')

context Company inv:

self.employee->exists(p : Person | p.forename = 'Jack')

These expressions evaluate to true if the forename feature of at least one employee is
equal to ‘Jack.’
6-26 OMG-Unified Modeling Language, v1.5 September 2002

6 Object Constraint Language Specification
6.6.5 Iterate Operation

The iterate operation is slightly more complicated, but is very generic. The operations
reject, select, forAll, exists, collect can all be described in terms of iterate.

An accumulation builds one value by iterating over a collection.

collection->iterate(elem : Type; acc : Type = <expression> |

expression-with-elem-and-acc)

The variable elem is the iterator, as in the definition of select, forAll, etc. The variable
acc is the accumulator. The accumulator gets an initial value <expression>.

When the iterate is evaluated, elem iterates over the collection and the expression-with-
elem-and-acc is evaluated for each elem. After each evaluation of expression-with-
elem-and-acc, its value is assigned to acc. In this way, the value of acc is built up
during the iteration of the collection. The collect operation described in terms of iterate
will look like:

collection->collect(x : T | x.property)

-- is identical to:

collection->iterate(x : T; acc : T2 = Bag{} |

acc->including(x.property))

Or written in Java-like pseudocode the result of the iterate can be calculated as:

iterate(elem : T; acc : T2 = value)

{

acc = value;

for(Enumeration e = collection.elements() ; e.hasMoreElements();
){

elem = e.nextElement();

acc = <expression-with-elem-and-acc>

}

}

Although the Java pseudo code uses a ‘next element,’ the iterate operation is defined
for each collection type and the order of the iteration through the elements in the
collection is not defined for Set and Bag. For a Sequence the order is the order of the
elements in the sequence.

6.6.6 Iterators in Collection Operations

The collection operations that take an OclExpression as parameter may all have an
optional iterator declaration. For any operation name op, the syntax options are:

collection->op(iter : Type | OclExpression)

collection->op(iter | OclExpression)

collection->op(OclExpression)
September 2002 OMG-UML , v1.5 Collection Operations 6-27

6 Object Constraint Language Specification
6.6.7 Resolving Properties

For any property (attribute, operation, or navigation), the full notation includes the
object of which the property is taken. As seen in Section 6.3.3, “Invariants,” on
page 6-5, self can be left implicit, and so can the iterator variables in collection
operations. At any place in an expression, when an iterator is left out, an implicit
iterator-variable is introduced. For example in:

context Person inv:

employer->forAll(employee->exists(lastName = name))

three implicit variables are introduced. The first is self, which is always the instance
from which the constraint starts. Secondly an implicit iterator is introduced by the
forAll and third by the exists. The implicit iterator variables are unnamed. The
properties employer, employee, lastName and name all have the object on which they
are applied left out. Resolving these goes as follows:

• At the place of employer there is one implicit variable: self : Person. Therefore
employer must be a property of self.

• At the place of employee there are two implicit variables: self : Person and iter1 :
Company. Therefore employer must be a property of either self or iter1. If employee
is a property of both self and iter1, then this is unambiguous and the instance on
which employee is applied must be stated explicitly. In this case only iter1.employee
is possible.

• At the place of lastName and name there are three implicit variables: self : Person ,
iter1 : Company and iter2 : Person. Therefore lastName and name must both be a
property of either self or iter1 or iter2. Property name is a property of iter1.
However, lastName is a property of both self and iter2. This is ambiguous and
therefore the OCL expression is incorrect. The expression must state either
self.lastName or define the iter2 iterator variable explicit and state iter2.lastName.

Both of the following invariant constraints are correct:

context Person

inv: employer->forAll(employee->exists(p | p.lastName = name))

inv: employer->forAll(employee->exists(self.lastName = name))

6.7 The Standard OCL Package

Each UML model that uses OCL constraints contains a predefined standard package
called “UML_OCL.” This package is used by default in all other packages in the model
to evaluate OCL expressions. This package contains all predefined OCL types and their
features.

To extend the predefined OCL types, a modeler should define a separate package. The
standard OCL package can be imported, and each OCL type can be extended with new
features.
6-28 OMG-Unified Modeling Language, v1.5 September 2002

6 Object Constraint Language Specification
To specify that a package used the predefined OCL types from a user defined package
instead of the standard package, the using package must define a Dependency with
stereotype «OCL_Types» to the package that defines the extended OCL types.

A constraint on the user defined OCL package is that as a minimum all predefined
OCL types with all of their features must be defined. The user defined package must be
a proper extension to the standard OCL package.

6.8 Predefined OCL Types

This section contains all standard types defined within OCL, including all the
properties defined on those types. Its signature and a description of its semantics define
each property. Within the description, the reserved word ‘result’ is used to refer to the
value that results from evaluating the property. In several places, post conditions are
used to describe properties of the result. When there is more than one postcondition, all
postconditions must be true.

6.8.1 Basic Types

The basic types used are Integer, Real, String, and Boolean. They are supplemented
with OclExpression, OclType, and OclAny.

6.8.1.1 OclType

All types defined in a UML model, or pre-defined within OCL, have a type. This type
is an instance of the OCL type called OclType. Access to this type allows the modeler
limited access to the meta-level of the model. This can be useful for advanced
modelers.

Properties of OclType, where the instance of OclType is called type.

type.name() : String

The name of type.

type.attributes() : Set(String)

The set of names of the attributes of type, as they are defined in the model.

type.associationEnds() : Set(String)

The set of names of the navigable associationEnds of type, as they are defined in the
model.

type.operations() : Set(String)

The set of names of the operations of type, as they are defined in the model.
September 2002 OMG-UML , v1.5 Predefined OCL Types 6-29

6 Object Constraint Language Specification
6.8.1.2 OclAny

Within the OCL context, the type OclAny is the supertype of all types in the model and
the basic predefined OCL type. The predefined OCL Collection types are not subtypes
of OclAny. Properties of OclAny are available on each object in all OCL expressions.

All classes in a UML model inherit all properties defined on OclAny. To avoid name
conflicts between properties in the model and the properties inherited from OclAny, all
names on the properties of OclAny start with ‘ocl.’ Although theoretically there may
still be name conflicts, they can be avoided. One can also use the oclAsType()
operation to explicitly refer to the OclAny properties.

Properties of OclAny, where the instance of OclAny is called object.

type.supertypes() : Set(OclType)

The set of all direct supertypes of type.
post: type.allSupertypes()->includesAll(result)

type.allSupertypes() : Set(OclType)

The transitive closure of the set of all supertypes of type.

type.allInstances() : Set(type)

The set of all instances of type and all its subtypes in existence at the snapshot at the
time that the expression is evaluated.

object = (object2 : OclAny) : Boolean

True if object is the same object as object2.

object <> (object2 : OclAny) : Boolean

True if object is a different object from object2.
post: result = not (object = object2)

object.oclIsKindOf(type : OclType) : Boolean

True if type is one of the types of object, or one of the supertypes (transitive) of the
types of object.

object.oclIsTypeOf(type : OclType) : Boolean

True if type is equal to one of the types of object.

object.oclAsType(type : OclType) : type

Results in object, but of known type type.
Results in Undefined if the actual type of object is not type or one of its subtypes.
pre : object.oclIsKindOf(type)
post: result = object
post: result.oclIsKindOf(type)
6-30 OMG-Unified Modeling Language, v1.5 September 2002

6 Object Constraint Language Specification
6.8.1.3

6.8.1.4

6.8.1.5 OclState

The type OclState is used as a parameter for the operation oclInState. There are no
properties defined on OclState. One can only specify an OclState by using the name of
the state, as it appears in a statemachine. These names can be fully qualified by the
nested states and statemachine that contain them.

6.8.1.6 OclExpression

Each OCL expression itself is an object in the context of OCL. The type of the
expression is OclExpression. This type and its properties are used to define the
semantics of properties that take an expression as one of their parameters: select,
collect, forAll, etc.

An OclExpression includes the optional iterator variable and type and the optional
accumulator variable and type.

Properties of OclExpression, where the instance of OclExpression is called expression.

6.8.1.7 Real

The OCL type Real represents the mathematical concept of real. Note that Integer is a
subclass of Real, so for each parameter of type Real, you can use an integer as the
actual parameter.

Properties of Real, where the instance of Real is called r.

object.oclInState(state : OclState) : Boolean

Results in true if object is in the state state, otherwise results in false. The argument
is a name of a state in the state machine corresponding with the class of object.

object.oclIsNew() : Boolean

Can only be used in a postcondition.
Evaluates to true if the object is created during performing the operation. That is it
didn’t exist at precondition time.

expression.evaluationType() : OclType

The type of the object that results from evaluating expression.

r = (r2 : Real) : Boolean

True if r is equal to r2.
September 2002 OMG-UML , v1.5 Predefined OCL Types 6-31

6 Object Constraint Language Specification
r <> (r2 : Real) : Boolean

True if r is not equal to r2.
post: result = not (r = r2)

r + (r2 : Real) : Real

The value of the addition of r and r2.

r - (r2 : Real) : Real

The value of the subtraction of r2 from r.

r * (r2 : Real) : Real

The value of the multiplication of r and r2.

- r : Real

The negative value of r.

r / (r2 : Real) : Real

The value of r divided by r2.

r.abs() : Real

The absolute value of r.
post: if r < 0 then result = - r else result = r endif

r.floor() : Integer

The largest integer which is less than or equal to r.
post: (result <= r) and (result + 1 > r)

r.round() : Integer

The integer that is closest to r. When there are two such integers, the largest one.
post: ((r - result) < r).abs() < 0.5) or ((r - result).abs() = 0.5 and (result > r))

r.max(r2 : Real) : Real

The maximum of r and r2.
post: if r >= r2 then result = r else result = r2 endif

r.min(r2 : Real) : Real

The minimum of r and r2.
post: if r <= r2 then result = r else result = r2 endif

r < (r2 : Real) : Boolean

True if r1 is less than r2.
6-32 OMG-Unified Modeling Language, v1.5 September 2002

6 Object Constraint Language Specification
6.8.1.8 Integer

The OCL type Integer represents the mathematical concept of integer.

Properties of Integer, where the instance of Integer is called i.

r > (r2 : Real) : Boolean

True if r1 is greater than r2.
post: result = not (r <= r2)

r <= (r2 : Real) : Boolean

True if r1 is less than or equal to r2.
post: result = (r = r2) or (r < r2)

r >= (r2 : Real) : Boolean

True if r1 is greater than or equal to r2.
post: result = (r = r2) or (r > r2)

i = (i2 : Integer) : Boolean

True if i is equal to i2.

- i : Integer

The negative value of i.

i + (i2 : Integer) : Integer

The value of the addition of i and i2.

i - (i2 : Integer) : Integer

The value of the subtraction of i2 from i.

i * (i2 : Integer) : Integer

The value of the multiplication of i and i2.

i / (i2 : Integer) : Real

The value of i divided by i2.

i.abs() : Integer

The absolute value of i.
post: if i < 0 then result = - i else result = i endif
September 2002 OMG-UML , v1.5 Predefined OCL Types 6-33

6 Object Constraint Language Specification
6.8.1.9 String

The OCL type String represents strings consisting of ASCII characters or multi-byte
characters.

Properties of String, where the instance of String is called string.

i.div(i2 : Integer) : Integer

The number of times that i2 fits completely within i.
pre : i2 <> 0
post: if i / i2 >= 0 then result = (i / i2).floor() else result = -((-i/i2).floor()) endif

i.mod(i2 : Integer) : Integer

The result is i modulo i2.
post: result = i - (i.div(i2) * i2)

i.max(i2 : Integer) : Integer

The maximum of i an i2.
post: if i >= i2 then result = i else result = i2 endif

i.min(i2 : Integer) : Integer

The minimum of i an i2.
post: if i <= i2 then result = i else result = i2 endif

string = (string2 : String) : Boolean

True if string and string2 contain the same characters, in the same order.

string.size() : Integer

The number of characters in string.

string.concat(string2 : String) : String

The concatenation of string and string2.
post: result.size() = string.size() + string2.size()
post: result.substring(1, string.size()) = string
post: result.substring(string.size() + 1, result.size()) = string2

string.toUpper() : String

The value of string with all lowercase characters converted to uppercase characters.
post: result.size() = string.size()

string.toLower() : String

The value of string with all uppercase characters converted to lowercase characters.
post: result.size() = string.size()
6-34 OMG-Unified Modeling Language, v1.5 September 2002

6 Object Constraint Language Specification
6.8.1.10 Boolean

The OCL type Boolean represents the common true/false values.

Features of Boolean, the instance of Boolean is called b.

6.8.1.11 Enumeration

The OCL type Enumeration represents the enumerations defined in a UML model.

string.substring(lower : Integer, upper : Integer) : String

The sub-string of string starting at character number lower, up to and including
character number upper.

b = (b2 : Boolean) : Boolean

Equal if b is the same as b2.

b or (b2 : Boolean) : Boolean

True if either b or b2 is true.

b xor (b2 : Boolean) : Boolean

True if either b or b2 is true, but not both.
post: (b or b2) and not (b = b2)

b and (b2 : Boolean) : Boolean

True if both b1 and b2 are true.

not b : Boolean

True if b is false.
post: if b then result = false else result = true endif

b implies (b2 : Boolean) : Boolean

True if b is false, or if b is true and b2 is true.
post: (not b) or (b and b2)

if b then (expression1 : OclExpression)

else (expression2 : OclExpression) endif : expression1.evaluationType()

If b is true, the result is the value of evaluating expression1; otherwise, result is the
value of evaluating expression2.
September 2002 OMG-UML , v1.5 Predefined OCL Types 6-35

6 Object Constraint Language Specification
Features of Enumeration, the instance of Enumeration is called enumeration.

6.8.2 Collection-Related Types

The following sections define the properties on collections; that is, these properties are
available on Set, Bag, and Sequence. As defined in this section, each collection type is
actually a template with one parameter. ‘T’ denotes the parameter. A real collection
type is created by substituting a type for the T. So Set (Integer) and Bag (Person) are
collection types.

All collection operations with an OclExpression as parameter can have an iterator
declarator.

6.8.2.1 Collection

Collection is the abstract supertype of all collection types in OCL. Each occurrence of
an object in a collection is called an element. If an object occurs twice in a collection,
there are two elements. This section defines the properties on Collections that have
identical semantics for all collection subtypes. Some properties may be defined with
the subtype as well, which means that there is an additional postcondition or a more
specialized return value.

The definition of several common properties is different for each subtype. These
properties are not mentioned in this section.

Properties of Collection, where the instance of Collection is called collection.

enumeration = (enumeration2 : Boolean) : Boolean

Equal if enumeration is the same as enumeration2.

enumeration <> (enumeration2 : Boolean) : Boolean

Equal if enumeration is not the same as enumeration2.
post: result = not (enumeration = enumeration2)

collection->size() : Integer

The number of elements in the collection collection.
post: result = collection->iterate(elem; acc : Integer = 0 | acc + 1)

collection->includes(object : OclAny) : Boolean

True if object is an element of collection, false otherwise.
post: result = (collection->count(object) > 0)

collection->excludes(object : OclAny) : Boolean

True if object is not an element of collection, false otherwise.
post: result = (collection->count(object) = 0)
6-36 OMG-Unified Modeling Language, v1.5 September 2002

6 Object Constraint Language Specification
collection->count(object : OclAny) : Integer

The number of times that object occurs in the collection collection.
post: result = collection->iterate(elem; acc : Integer = 0 |
 if elem = object then acc + 1 else acc endif)

collection->includesAll(c2 : Collection(T)) : Boolean

Does collection contain all the elements of c2 ?
post: result = c2->forAll(elem | collection->includes(elem))

collection->excludesAll(c2 : Collection(T)) : Boolean

Does collection contain none of the elements of c2 ?
post: result = c2->forAll(elem | collection->excludes(elem))

collection->isEmpty() : Boolean

Is collection the empty collection?
post: result = (collection->size() = 0)

collection->notEmpty() : Boolean

Is collection not the empty collection?
post: result = (collection->size() <> 0)

collection->sum() : T

The addition of all elements in collection. Elements must be of a type supporting the
+ operation. The + operation must take one parameter of type T and be both
associative: (a+b)+c = a+(b+c), and commutative: a+b = b+a. Integer and Real fulfill
this condition.

post: result = collection->iterate(elem; acc : T = 0 |
 acc + elem)

collection->exists(expr : OclExpression) : Boolean

Results in true if expr evaluates to true for at least one element in collection.

post: result = collection->iterate(elem; acc : Boolean = false |
 acc or expr)

collection->forAll(expr : OclExpression) : Boolean

Results in true if expr evaluates to true for each element in collection; otherwise, result
is false.

post: result = collection->iterate(elem; acc : Boolean = true |
 acc and expr)
September 2002 OMG-UML , v1.5 Predefined OCL Types 6-37

6 Object Constraint Language Specification
6.8.2.2 Set

The Set is the mathematical set. It contains elements without duplicates. Features of
Set, the instance of Set is called set.

collection->isUnique(expr : OclExpression) : Boolean

Results in true if expr evaluates to a different value for each element in collection;
otherwise, result is false.

post: let values = collection->collect(expr) in
result = res->forAll(e | values->count(e) = 1)

collection->sortedBy(expr : OclExpression) : Sequence(T)

Results in the Sequence containing all elements of collection. The element for which
expr has the lowest value comes first, and so on. The type of the expr expression must
have the < operation defined. The < operation must return a Boolean value and must be
transitive (i.e., if a < b and b < c, then a < c).

pre: expr.evaluationType().operations()->includes(‘<‘)
post: result->includesAll(collection) and collection->includesAll(result)

collection->iterate(expr : OclExpression) : expr.evaluationType()

Iterates over the collection. See Section 6.6.5, “Iterate Operation,” on page 6-27 for a
complete description. This is the basic collection operation with which the other
collection operations can be described.

collection->any(expr : OclExpression) : T

Returns any element in the collection for which expr evaluates to true. If there is more
than one element for which expr is true, one of them is returned. The precondition
states that there must be at least one element fulfilling expr; otherwise, the result of
this operation is Undefined.

pre: collection->exists(expr)
post collection->select(expr)->includes(result)

collection->one(expr : OclExpression) : Boolean

Results in true if there is exactly one element in the collection for which expr is true.
post: collection->select(expr)->size() = 1

set->union(set2 : Set(T)) : Set(T)

The union of set and set2.

post: result->forAll(elem | set->includes(elem) or set2->includes(elem))
post: set->forAll(elem | result->includes(elem))
post: set2->forAll(elem | result->includes(elem))
6-38 OMG-Unified Modeling Language, v1.5 September 2002

6 Object Constraint Language Specification
set->union(bag : Bag(T)) : Bag(T)

The union of set and bag.

post: result->forAll(elem |
result->count(elem) = set->count(elem) + bag->count(elem))

post: set->forAll(elem | result->includes(elem))
post: bag->forAll(elem | result->includes(elem))

set = (set2 : Set(T)) : Boolean

Evaluates to true if set and set2 contain the same elements.

post: result = (set->forAll(elem | set2->includes(elem)) and
set2->forAll(elem | set->includes(elem)))

set->intersection(set2 : Set(T)) : Set(T)

The intersection of set and set2; that is, the set of all elements that are in both set and
set2.

post: result->forAll(elem | set->includes(elem) and set2->includes(elem))
post: set->forAll(elem | set2->includes(elem) = result->includes(elem))
post: set2->forAll(elem | set->includes(elem) = result->includes(elem))

set->intersection(bag : Bag(T)) : Set(T)

The intersection of set and bag.
post: result = set->intersection(bag->asSet)

set – (set2 : Set(T)) : Set(T)

The elements of set, which are not in set2.

post: result->forAll(elem | set->includes(elem) and set2->excludes(elem))
post: set->forAll(elem | result->includes(elem) = set2->excludes(elem))

set->including(object : T) : Set(T)

The set containing all elements of set plus object.

post: result->forAll(elem | set->includes(elem) or (elem = object))
post: set->forAll(elem | result->includes(elem))
post: result->includes(object)

set->excluding(object : T) : Set(T)

The set containing all elements of set without object.

post: result->forAll(elem | set->includes(elem) and (elem <> object))
post: set->forAll(elem | result->includes(elem) = (object <> elem))
post: result->excludes(object)
September 2002 OMG-UML , v1.5 Predefined OCL Types 6-39

6 Object Constraint Language Specification
6.8.2.3 Bag

A bag is a collection with duplicates allowed. That is, one object can be an element of
a bag many times. There is no ordering defined on the elements in a bag.

set->symmetricDifference(set2 : Set(T)) : Set(T)

The sets containing all the elements that are in set or set2, but not in both.

post: result->forAll(elem | set->includes(elem) xor set2->includes(elem))
post: set->forAll(elem | result->includes(elem) = set2->excludes(elem))
post: set2->forAll(elem | result->includes(elem) = set->excludes(elem))

set->select(expr : OclExpression) : Set(T)

The subset of set for which expr is true.

post: result = set->iterate(elem; acc : Set(T) = Set{} |
 if expr then acc->including(elem) else acc endif)

set->reject(expr : OclExpression) : Set(T)

The subset of set for which expr is false.
post: result = set->select(not expr)

set->collect(expr : OclExpression) : Bag(expr.evaluationType())

The Bag of elements that results from applying expr to every member of set.

post: result = set->iterate(elem; acc : Bag(expr.evaluationType()) = Bag{} |
 acc->including(expr))

set->count(object : T) : Integer

The number of occurrences of object in set.
post: result <= 1

set->asSequence() : Sequence(T)

A Sequence that contains all the elements from set, in undefined order.

post: result->forAll(elem | set->includes(elem))
post: set->forAll(elem | result->count(elem) = 1)

set->asBag() : Bag(T)

The Bag that contains all the elements from set.

post: result->forAll(elem | set->includes(elem))
post: set->forAll(elem | result->count(elem) = 1)
6-40 OMG-Unified Modeling Language, v1.5 September 2002

6 Object Constraint Language Specification
Properties of Bag, where the instance of Bag is called bag.

bag = (bag2 : Bag(T)) : Boolean

True if bag and bag2 contain the same elements, the same number of times.

post: result = (bag->forAll(elem | bag->count(elem) = bag2->count(elem)) and
bag2->forAll(elem | bag2->count(elem) = bag->count(elem)))

bag->union(bag2 : Bag(T)) : Bag(T)

The union of bag and bag2.

post: result->forAll(elem |
result->count(elem) = bag->count(elem) + bag2->count(elem))

post: bag->forAll(elem |
result->count(elem) = bag->count(elem) + bag2->count(elem))

post: bag2->forAll(elem |
result->count(elem) = bag->count(elem) + bag2->count(elem))

bag->union(set : Set(T)) : Bag(T)

The union of bag and set.

post: result->forAll(elem |
result->count(elem) = bag->count(elem) + set->count(elem))

post: bag->forAll(elem |
result->count(elem) = bag->count(elem) + set->count(elem))

post: set->forAll(elem |
result->count(elem) = bag->count(elem) + set->count(elem))

bag->intersection(bag2 : Bag(T)) : Bag(T)

The intersection of bag and bag2.

post: result->forAll(elem |
result->count(elem) = bag->count(elem).min(bag2->count(elem)))

post: bag->forAll(elem |
result->count(elem) = bag->count(elem).min(bag2->count(elem)))

post: bag2->forAll(elem |
result->count(elem) = bag->count(elem).min(bag2->count(elem)))

bag->intersection(set : Set(T)) : Set(T)

The intersection of bag and set.

post: result->forAll(elem |
result->count(elem) = bag->count(elem).min(set->count(elem)))

post: bag->forAll(elem |
result->count(elem) = bag->count(elem).min(set->count(elem)))

post: set->forAll(elem |
result->count(elem) = bag->count(elem).min(set->count(elem)))
September 2002 OMG-UML , v1.5 Predefined OCL Types 6-41

6 Object Constraint Language Specification
bag->including(object : T) : Bag(T)

The bag containing all elements of bag plus object.

post: result->forAll(elem |
if elem = object then
 result->count(elem) = bag->count(elem) + 1
 else
 result->count(elem) = bag->count(elem)
 endif)
post: bag->forAll(elem |
if elem = object then
 result->count(elem) = bag->count(elem) + 1
 else
 result->count(elem) = bag->count(elem)
 endif)

bag->excluding(object : T) : Bag(T)

The bag containing all elements of bag apart from all occurrences of object.

post: result->forAll(elem |
if elem = object then
 result->count(elem) = 0
 else
 result->count(elem) = bag->count(elem)
 endif)
post: bag->forAll(elem |
if elem = object then
 result->count(elem) = 0
 else
 result->count(elem) = bag->count(elem)
 endif)

bag->select(expr : OclExpression) : Bag(T)

The sub-bag of bag for which expr is true.

post: result = bag->iterate(elem; acc : Bag(T) = Bag{} |
 if expr then acc->including(elem) else acc endif)

bag->reject(expr : OclExpression) : Bag(T)

The sub-bag of bag for which expr is false.
post: result = bag->select(not expr)

bag->collect(expr: OclExpression) : Bag(expr.evaluationType())

The Bag of elements that results from applying expr to every member of bag.

post: result = bag->iterate(elem; acc : Bag(expr.evaluationType()) = Bag{} |
 acc->including(expr))
6-42 OMG-Unified Modeling Language, v1.5 September 2002

6 Object Constraint Language Specification
6.8.2.4 Sequence

A sequence is a collection where the elements are ordered. An element may be part of
a sequence more than once.

Properties of Sequence(T), where the instance of Sequence is called sequence.

bag->count(object : T) : Integer

The number of occurrences of object in bag.

bag->asSequence() : Sequence(T)

A Sequence that contains all the elements from bag, in undefined order.

post: result->forAll(elem | bag->count(elem) = result->count(elem))
post: bag->forAll(elem | bag->count(elem) = result->count(elem))

bag->asSet() : Set(T)

The Set containing all the elements from bag, with duplicates removed.

post: result->forAll(elem | bag->includes(elem))
post: bag->forAll(elem | result->includes(elem))

sequence->count(object : T) : Integer

The number of occurrences of object in sequence.

sequence = (sequence2 : Sequence(T)) : Boolean

True if sequence contains the same elements as sequence2 in the same order.

post: result = Sequence{1..sequence->size()}->forAll(index : Integer |
 sequence->at(index) = sequence2->at(index))
 and
 sequence->size() = sequence2->size()

sequence->union (sequence2 : Sequence(T)) : Sequence(T)

The sequence consisting of all elements in sequence, followed by all elements in
sequence2.

post: result->size() = sequence->size() + sequence2->size()
post: Sequence{1..sequence->size()}->forAll(index : Integer |
 sequence->at(index) = result->at(index))
post: Sequence{1..sequence2->size()}->forAll(index : Integer |
 sequence2->at(index) =
 result->at(index + sequence->size())))
September 2002 OMG-UML , v1.5 Predefined OCL Types 6-43

6 Object Constraint Language Specification
sequence->append (object: T) : Sequence(T)

The sequence of elements, consisting of all elements of sequence, followed by object.

post: result->size() = sequence->size() + 1
post: result->at(result->size()) = object
post: Sequence{1..sequence->size() }->forAll(index : Integer |
 result->at(index) = sequence ->at(index))

sequence->prepend(object : T) : Sequence(T)

The sequence consisting of object, followed by all elements in sequence.

post: result->size = sequence->size() + 1
post: result->at(1) = object
post: Sequence{1..sequence->size()}->forAll(index : Integer |
 sequence->at(index) = result->at(index + 1))

sequence->subSequence(lower : Integer, upper : Integer) : Sequence(T)

The sub-sequence of sequence starting at number lower, up to and including element
number upper.

pre : 1 <= lower
pre : lower <= upper
pre : upper <= sequence->size()
post: result->size() = upper -lower + 1
post: Sequence{lower..upper}->forAll(index |
 result->at(index - lower + 1) =
 sequence->at(index))
endif

sequence->at(i : Integer) : T

The i-th element of sequence.
pre : i >= 1 and i <= sequence->size()

sequence->first() : T

The first element in sequence.
post: result = sequence->at(1)

sequence->last() : T

The last element in sequence.
post: result = sequence->at(sequence->size())

sequence->including(object : T) : Sequence(T)

The sequence containing all elements of sequence plus object added as the last
element.
post: result = sequence.append(object)
6-44 OMG-Unified Modeling Language, v1.5 September 2002

6 Object Constraint Language Specification
6.9 Grammar

This section describes the grammar for OCL expressions. An executable LL(1) version
of this grammar is available on the OCL web site. (See
http://www.software.ibm.com/ad/ocl).

sequence->excluding(object : T) : Sequence(T)

The sequence containing all elements of sequence apart from all occurrences of object.
The order of the remaining elements is not changed.

post:result->includes(object) = false
post: result->size() = sequence->size() - sequence->count(object)
post: result = sequence->iterate(elem; acc : Sequence(T)
 = Sequence{}|
 if elem = object then acc else acc->append(elem) endif)

sequence->select(expression : OclExpression) : Sequence(T)

The subsequence of sequence for which expression is true.

post: result = sequence->iterate(elem; acc : Sequence(T) = Sequence{} |
 if expr then acc->including(elem) else acc endif)

sequence->reject(expression : OclExpression) : Sequence(T)

The subsequence of sequence for which expression is false.
post: result = sequence->select(not expr)

sequence->collect(expression : OclExpression) : Sequence(expression.evaluationType())

The Sequence of elements that results from applying expression to every member of
sequence.

sequence->iterate(expr : OclExpression) : expr.evaluationType()

Iterates over the sequence. Iteration will be done from element at position 1 up until
the element at the last position following the order of the sequence.

sequence->asBag() : Bag(T)

The Bag containing all the elements from sequence, including duplicates.

post: result->forAll(elem | sequence->count(elem) = result->count(elem))
post: sequence->forAll(elem | sequence->count(elem) = result->count(elem))

sequence->asSet() : Set(T)

The Set containing all the elements from sequence, with duplicated removed.

post: result->forAll(elem | sequence->includes(elem))
post: sequence->forAll(elem | result->includes(elem))
September 2002 OMG-UML , v1.5 Grammar 6-45

6 Object Constraint Language Specification
The grammar description uses the EBNF syntax, where “|” means a choice, “?”
optionality, and “*” means zero or more times, “+” means one or more times, and
expressions delimited with “/*” and “*/” are definitions described with English words
or sentences. In the description of string, the syntax for lexical tokens from the JavaCC
parser generator is used. The “~” symbol denotes that none of the symbols following
may be matched. It means “everything except the following.”

oclFile := ("package" packageName

oclExpressions

"endpackage"

)+

packageName := pathName

oclExpressions := (constraint)*

constraint := contextDeclaration

(("def" name? ":" letExpression*)

|

(stereotype name? ":" oclExpression)

)+

contextDeclaration := "context"

(operationContext | classifierContext)

classifierContext := (name ":" name)

| name

operationContext := name "::" operationName

"(" formalParameterList ")"

(":" returnType)?

stereotype := ("pre" | "post" | "inv")

operationName := name | "=" | "+" | "-" | "<" | "<=" |

">=" | ">" | "/" | "*" | "<>" |

"implies" | "not" | "or" | "xor" | "and"

formalParameterList := (name ":" typeSpecifier

("," name ":" typeSpecifier)*

)?

typeSpecifier := simpleTypeSpecifier

| collectionType

collectionType := collectionKind

"(" simpleTypeSpecifier ")"

oclExpression := (letExpression* "in")? expression

returnType := typeSpecifier

expression := logicalExpression

letExpression := "let" name

("(" formalParameterList ")")?

(":" typeSpecifier)?
6-46 OMG-Unified Modeling Language, v1.5 September 2002

6 Object Constraint Language Specification
"=" expression

ifExpression := "if" expression

"then" expression

"else" expression

"endif"

logicalExpression := relationalExpression

(logicalOperator

relationalExpression

)*

relationalExpression := additiveExpression

(relationalOperator

additiveExpression

)?

additiveExpression := multiplicativeExpression

(addOperator

multiplicativeExpression

)*

multiplicativeExpression:= unaryExpression

(multiplyOperator

unaryExpression

)*

unaryExpression := (unaryOperator

postfixExpression

)

| postfixExpression

postfixExpression := primaryExpression

(("." | "->")propertyCall)*

primaryExpression := literalCollection

| literal

| propertyCall

| "(" expression ")"

| ifExpression

propertyCallParameters := "(" (declarator)?

(actualParameterList)? ")"

literal := string

| number

| enumLiteral

enumLiteral := name "::" name ("::" name)*

simpleTypeSpecifier := pathName

literalCollection := collectionKind "{"

(collectionItem
September 2002 OMG-UML , v1.5 Grammar 6-47

6 Object Constraint Language Specification
("," collectionItem)*

)?

"}"

collectionItem := expression (".." expression)?

propertyCall := pathName

(timeExpression)?

(qualifiers)?

(propertyCallParameters)?

qualifiers := "[" actualParameterList "]"

declarator := name ("," name)*

(":" simpleTypeSpecifier)?

(";" name ":" typeSpecifier "="

expression

)?

"|"

pathName := name ("::" name)*

timeExpression := "@" "pre"

actualParameterList := expression ("," expression)*

logicalOperator := "and" | "or" | "xor" | "implies"

collectionKind := "Set" | "Bag" | "Sequence" | "Collection"

relationalOperator := "=" | ">" | "<" | ">=" | "<=" | "<>"

addOperator := "+" | "-"

multiplyOperator := "*" | "/"

unaryOperator := "-" | "not"

typeName :=charForNameTop charForName*

name := charForNameTop charForName*

charForNameTop := /* Characters except inhibitedChar

and ["0"-"9"]; the available

characters shall be determined by

the tool implementers ultimately.*/

charForName := /* Characters except inhibitedChar; the

available characters shall be determined

by the tool implementers ultimately.*/

inhibitedChar := " " | "\"" | "#" | "\'" | "(" | ")" |

"*" | "+" | "," | "-" | "." | "/" |

":" | ";" | "<" | "=" | ">" | "@" |

"[" | "\\" | "]" | "{" | "|" | "}"

number := ["0"-"9"] (["0"-"9"])*
("." ["0"-"9"] (["0"-"9"])*)?

(("e" | "E") ("+" | "-")? ["0"-"9"]

(["0"-"9"])*
6-48 OMG-Unified Modeling Language, v1.5 September 2002

6 Object Constraint Language Specification
)?

string := "'"

((~["’","\\","\n","\r"])

|("\\"

(["n","t","b","r","f","\\","’","\""]

| ["0"-"7"]

(["0"-"7"] (["0"-"7"])?)?

)

)

)*

"'"
September 2002 OMG-UML , v1.5 Grammar 6-49

6 Object Constraint Language Specification
6-50 OMG-Unified Modeling Language, v1.5 September 2002

UML Standard Elements A
This appendix contains a list of the predefined standard elements for UML. The
standard elements are stereotypes, constraints and tagged values. The names used for
UML predefined standard elements are considered reserved words; modelers should
not overload these names with different definitions. Each standard element is described
in the chapter containing its base element.

Standard Element Name Applies to Base Element Kind Page

Package Stereotype 2-188

Package Stereotype 2-188

Package Stereotype 2-188

Package Stereotype 2-188

«access» Permission Stereotype 2-52

«appliedProfile» Package Stereotype 2-185

association Association Constraint 2-104

«association» AssociationEnd Stereotype 2-24

«auxiliary» Class Stereotype 2-28

«become» Flow Stereotype 2-41

«call» Usage Stereotype 2-56

complete Generalization Constraint 2-45

«copy» Flow Stereotype 2-41

«create» BehavioralFeature Stereotype 2-26

«create» CallEvent Stereotype 2-147
September 2002 OMG-Unified Modeling Language, v1.5 A-1

Standard Element Name Applies to Base Element Kind Page

«create» Usage Stereotype 2-26

«derive» Abstraction Stereotype 2-18

derived ModelElement Tag 2-48

«destroy» BehavioralFeature Stereotype 2-26

«destroy» CallEvent Stereotype 2-147

destroyed Association Constraint 2-103

destroyed Association Constraint 2-103

disjoint Generalization Constraint 2-45

«document» Artifact Stereotype 2-19

documentation Element Tag 2-36

«executable» Artifact Stereotype 2-19

«facade» Package Stereotype 2-188

«file» Artifact Stereotype 2-19

«focus» Class Stereotype 2-29

«framework» Package Stereotype 2-188

«friend» Permission Stereotype 2-52

global Association Constraint 2-104

«global» AssociationEnd Stereotype 2-24

«implementation» Class Stereotype 2-29

«implementation» Generalization Stereotype 2-29

implicit Association Stereotype 2-20

«import» Permission Stereotype 2-52

incomplete Generalization Constraint 2-45

«instantiate» Usage Stereotype 2-56

«invariant» Constraint Stereotype 2-35

«library» Artifact Stereotype 2-19

local Association Constraint 2-104

«local» AssociationEnd Stereotype 2-24

«metaclass» Class Stereotype 2-31

«metamodel» Package Stereotype 2-187

«modelLibrary» Package Stereotype 2-185

«modelLibrary» Package Stereotype 2-188
A-2 OMG-UML , v1.5 September 2002

Standard Element Name Applies to Base Element Kind Page

new Association Constraint 2-103

new Association Constraint 2-104

overlapping Generalization Constraint 2-45

parameter Association Constraint 2-104

«parameter» AssociationEnd Stereotype 2-24

persistence Association Tag 2-103

persistence Attribute Tag 2-55

persistence Classifier Tag 2-31

persistent Association Tag 2-20

«postcondition» Constraint Stereotype 2-35

«powertype» Class Stereotype 2-31

«precondition» Constraint Stereotype 2-35

«process» Classifier Stereotype 2-31

«profile» Package Stereotype 2-188

«realize» Abstraction Stereotype 2-18

«refine» Abstraction Stereotype 2-18

«requirement» Comment Stereotype 2-33

«responsibility» Comment Stereotype 2-33

self Association Constraint 2-104

«self» AssociationEnd Stereotype 2-24

semantics Classifier Tag 2-31

semantics Operation Tag 2-50

«send» Usage Stereotype 2-56

«signalflow» ObjectFlowState Stereotype 2-177

«source» Artifact Stereotype 2-19

«stateInvariant» Constraint Stereotype 2-35

«stub» Package Stereotype 2-188

«systemModel» Package Stereotype 2-187

«table» Artifact Stereotype 2-19

«thread» Classifier Stereotype 2-31

«topLevel» Package Stereotype 2-188

«trace» Abstraction Stereotype 2-18
September 2002 OMG-UML , v1.5 A-3

Standard Element Name Applies to Base Element Kind Page

transient Association Constraint 2-103

transient Association Constraint 2-104

«type» Class Stereotype 2-29

usage Association Tag 2-178

«utility» Classifier Stereotype 2-31

xor Association Constraint 2-20
A-4 OMG-UML , v1.5 September 2002

Action Language Examples B
This appendix shows mappings from fragments of specifications in existing action
languages to UML Action Semantics models. The intent is to demonstrate by example
that the Action Semantics model contains concepts and has a structure required to
support real action languages.

The examples also aid the reader in understanding the models. By providing concrete
examples in the familiar form of a textual language the reader can more readily see
what some of the concepts actually mean. The reader should be aware that the
mappings are not definitive and that the Action Semantics specification is normative.

B.1 The Action Languages

The Action Languages used for this mapping have been in use in system development
for a number of years. All are Action Languages targeted at object modeling
techniques and have primitives built in to support, for example, the creation and
deletion of objects and links as well as the sending of signals and the invocation of
operations. The example languages are:

• The Action Specification Language (ASL). A public domain language of which
there have been several implementations. See “The Action Specification Language
Reference Manual” available at www.kc.com.

• The BridgePoint Action Language (AL). An action language supported by the
BridgePoint modelling tool. More information is available from www.projtech.com.

• The Kabira Action Semantics (Kabira AS). An action language for the
ObjectSwitch middle-tier server suite. More information is available at
www.kabira.com.

• The action language subset of SDL. An international standard widely used in the
telecom industry. More information is available in ITU-T Recommendations Z.100
(SDL) and Z.109 (SDL UML profile).
September 2002 OMG-Unified Modeling Language, v1.5 B-1

B Action Language Examples
The submission allows both for pure data and control flow oriented approaches and for
traditional imperative languages. The languages used in this appendix are all examples
of the latter style, but there are a number of features that map to individual actions
connected by data and control flow. The mappings thus also provide examples of flow
connections between actions.

The languages provide, neither individually nor collectively, constructs that make use
of all of the Actions described in this document. However, they do cover most of the
key features.

A mapping from the action language SDL to these action semantics is described in
OMG document http://cgi.omg.org/cgi-bin/doc?ad/00-08-01, which is on the OMG
web server.

B.2 Presentation of the Examples

This appendix starts with a series of examples, each usually of one source statement in
size, of the ASL, AL and Kabira AS languages and concludes with a complete example
of an SDL procedure.

The ASL, AL, and Kabira AS examples consist of:

• source text formulated in one (or more) of these languages exhibiting a fragment of
a specification,

• an object diagram showing an instance of the Action Semantics model.

Each object diagram gives the meaning of the corresponding specification fragment in
terms of the Action Semantics.

These object diagrams show M1 artifacts (i.e. actual user models) by displaying them
as instances of classes at the M2 level (the UML Metamodel level). These object
diagrams are not M0 objects.

These object diagrams may include model elements from the Core package of UML.
These are included to aid in understanding the connection between the diagrams and
the surface syntax. Where no confusion is likely to arise, model elements from the
Core package are omitted.

This first series of examples illustrates many of the individual model elements of the
Action Semantics: control structures (see Section B.3), object manipulation (see
Section B.4), and messaging actions (see Section B.5).

For some of the examples there may be no direct equivalent construct in one or two of
these languages. In such cases, this does not mean that the operation achieved by the
example cannot be achieved in the other language(s), rather it means that it must be
achieved by a more explicit and verbose model where the user strings several source
language statements together to achieve the desired effect. For example, some language
constructs can act directly on collections in some languages but not in others. In this
case, the language without the direct support must employ an explicit loop to achieve
the same effect. In such examples the resulting object diagram will look very different
and so separate examples have been created.
B-2 OMG-UML , v1.5 Presentation of the Examples

B Action Language Examples
Unlike ASL and AL that have implicit variable declarations and typing, Kabira AS
requires explicit declaration that is, for the most part, not shown in the examples here.
In the submission, local variables have an association with GroupAction providing for
scoping within an action language. The examples do not show this association. Unless
otherwise shown, all local variables in these example have a multiplicity of 1..1.

B.3 Control Structures

These examples are of the traditional control structures and sequential logic present in
the action languages. These map to the actions found in Section 2.18, “Composite
Actions”.

If-then-else Logic

This example shows a simple if-then-else involving a logical comparison. The
semantics of the action language construct is that if and only if the value of factor is
equal to (the integer) 2, then some action 1 will be executed. In all other cases,
some action 2 will be executed.

Figure C-1 If-then-else Logic

ASL:

if factor = 2 then

Some action 1

:ConditionalAction

AL:

if (factor == 2)

// Some action 1

Kabira AS:

if (factor == 2) {

// Some action 1

:Clause

:Clause

:Action

{Some action 1}

body

{then clause}

:ApplyFunction Action test

{else clause}

clause

clause

:Action

{Some action 2}

body

equals:PrimitiveFunction

function
:OutputPin

test
Outputresult

boolean:DataType

type

2:Integer

:LiteralValueAction

value

:OutputPin

output

integer:DataType

inputSpecPin

factor:Variable

:ReadVariableAction

variable

argument

:LiteralValueAction

:OutputPin
True:Boolean

test

output
Pin

test
Output

value

successor

predecessor

Clause

Clause

isDeterminate = true

:DataFlow

:InputPin

destination

source

:OutputPin

output
Pin

:DataFlow

:InputPin

source

destination

argument

:ArgumentSpecification
multiplicity = 1
ordering = unordered

:ArgumentSpecification
multiplicity = 1
ordering = unordered

inputSpec

type type

:ArgumentSpecification
multiplicity = 1
ordering = unordered

outputSpec
September 2002 OMG-UnifiedModelingLanguage, v1.5 B-3

B Action Language Examples
This maps to a general ConditionalAction within the action semantics. The conditional
action has two clauses corresponding to the “then” and “else” branches of the if. These
clauses are shown at the top right of the instance diagram. They have dummy actions
as bodies for the purposes of this example.

The then clause has the actual logical comparison from the source action language
attached to it as a test. The test action is an ApplyFunctionAction that applies the
equals function to the two operands of the logical expression. The two operands come
from a constants (LiteralValueAction) and a local variable (ReadVariableAction).

The else clause has a test action (LiteralValueAction) that always returns the value
TRUE. The else clause is the “successor” of the then clause and so will be tested and
hence executed only if the then clause failed. This arrangement preserves the if-
then-else behavior of the source languages.

Multi-way Decision

All of the action languages support multi-way decisions in a single statement. ASL
supports this through the use of a switch statement where a variable is compared
against constant values whereas AL and the Kabira AS support the more general else-
if construct.
B-4 OMG-UML , v1.5 Control Structures

B Action Language Examples
The example shows a decision based on the value of a local variable realized both as a
switch statement and as a else-if statement.

Note – In ASL, the switch statement has an implicit “break” at the end of every clause
so that there is no “fall through” into the next clause. In addition, the execution of the
switch terminates once any clause has executed and so the example shown is
semantically identical to the else-if examples in AL and Kabira AS.

Figure C-2 Multi-way Decision

ASL:

switch factor

case 1

Some action 1

:ConditionalAction

AL:

if (factor == 1)

// Some action 1

elif (factor == 2)

Kabira AS:

if (factor == 1) {

// Some action 1

} else if (factor ==1) {

:Clause

:Clause

:Action

{Some action 1}

body

:ApplyFunction Action test

clause

clause

:Action

{Some action 3}

body

equals:PrimitiveFunction

function

:OutputPin

test
Outputresult

:LiteralValueAction test

successor

pre-

:Clause

:Action

{Some action 2}

body

:ApplyFunction Action test

clause

equals:PrimitiveFunction

function

:OutputPin

test
Outputresult

successor

decessor

pre-
decessor

Clause

Clause

Clause

Clause

isDeterminate = true

factor:Variable

:ReadVariableAction

variable

:OutputPin

output
Pin

:DataFlow

:InputPin

source

destination

argument

1:Integer

:LiteralValueAction

value

:OutputPin

output
Pin

:DataFlow

:InputPin

source

argu-

destination

:DataFlow

:InputPin
destination

argument

ment

source

2:Integer

:LiteralValueAction

value

:OutputPin

output
Pin

:DataFlow

:InputPin

source

argument

true:Boolean

value
September 2002 OMG-UnifiedModelingLanguage, v1.5 B-5

B Action Language Examples
The details of the sub-structure of the PrimitiveFunction (input and output types) have
been omitted to make the example clearer. The previous example shows what this
would have looked like.

Note – The predecessor-successor control flows between the clauses that provide the
correct semantics for both the ASL switch and the explicit if-then-else construct.
However, an alternative mapping could have been shown in which the test on the third
clause is replaced by a logical expression of the form “(factor != 1) && (factor !=2)”
in which case the predecessor-successor control flows could have been omitted. This
would have allowed all three test to execute concurrently. However, the logic of the test
specification would have meant that only one of the branches could ever execute. This
would provide the same semantics as the example as shown.

B.4 Object Manipulation

These examples show the basic creation and manipulation of objects. The actions used
by these language constructs are for the most part those described in the chapter on
Read and Write Actions. Being local variable oriented languages, all of these operation
use local variables of type object reference, or sometimes collections of object
references.
B-6 OMG-UML , v1.5 Object Manipulation

B Action Language Examples
Simple Object Creation

This shows an example of creating an object of the class Customer. The reference to
the newly created object is then assigned to the local variable new_customer.

Note – AL actually uses a second form of the class name (the “key letter” captured as
a UML tag) to identify the class. This is a minor syntactic detail and, avoid confusion,
the examples in this Appendix use the class name instead.

Figure C-3 Simple Object Creation

Customer

name:Text

ASL:

new_customer = create Customer

AL:

create object instance new_customer of Customer;

Kabira AS::CreateObjectAction

:OutputPin

:DataFlow

:InputPin

:AddVariableValueAction

new_customer:Variable

classifier

result

source destination value

variable

Customer:Class

isReplaceAll = true

multiplicity = 1..1
ordering = unordered
September 2002 OMG-UnifiedModelingLanguage, v1.5 B-7

B Action Language Examples
Object Creation with Attribute Assignment

This shows an example of creating an object of the class Customer with assignment of
the value of the attribute name from the local variable new_name.

Note – With the AL example, a strict interpretation would have the attribute
assignment via the reading of a local variable rather than through a data flow from the
CreateObjectAction as shown. The example is semantically identical to the AL

Object Destruction

This shows an example of destruction of an object. In the examples, the object is
identified by a reference my_customer.

Figure C-4 Object Creation with Attribute Assignment

Customer

name:Text

Customer:Class

ASL:

new_customer = create Customer with name = new_name

AL:

create object instance new_customer of Customer;

:CreateObjectAction

:OutputPin

:DataFlow

:InputPin

:AddVariableValueAction

new_customer:Variable

classifier

result

source destination value

variable

:InputPin

:AddAttributeValueAction
:InputPin

:DataFlow

new_name:Variable

:DataFlow

source

destination

object

value

source

destination

:ReadVariableAction
variable

name:Attribute

attribute

:OutputPin

:ControlFlow

successor

predecessor

isReplaceAll = true

isReplaceAll = true
B-8 OMG-UML , v1.5 Object Manipulation

B Action Language Examples
Writing of Attributes: Single Attribute, SIngle Object

In this example, a value is written to a single attribute of a single object instance. The
value comes from a local variable (new_balance), and the object is identified by a
object reference local variable (current_account).

Figure C-5 Object Destruction

Figure C-6 Writing of Attributes (Single Attribute, Single Object)

Customer

name:Text

ASL:

delete my_customer

AL:

:DestroyObjectAction

:DataFlow

:InputPin

:ReadVariableAction

my_customer:Variable

sourcedestination result

variable

:OutputPin

input

Account

no:Integer

ASL:

current_account.balance = new_balance

AL:

current_account.balance = new_balance;

balance:Attribute

:DataFlow

:ReadVariableAction

new_balance:Variable

source

destination

variable

:OutputPin

:InputPin

:AddAttributeValueAction

value

attribute

balance:FixedPoint

Account:Class

owner

:ReadVariableAction:OutputPin

:DataFlow

:InputPin

current_account:Variable

object

destination

source

result

result

variable

isReplaceAll = true
September 2002 OMG-UnifiedModelingLanguage, v1.5 B-9

B Action Language Examples
Writing of Attributes: Multiple Attributes, Single Object

In this example, a values are written to a multiple attributes of a single object instance.
The values come from local variables (new_balance, todays_date), and the object
is identified by a object reference local variable (current_account). In ASL this can
be achieved through a single language statement, but in AL and Kabira AS this must
be achieved through multiple statements, each operating from the same object instance.
This example shows ASL only.

.

Writing of Attributes: Single Attribute, Multiple Object

In this example, a value is written to an attribute of a multiple object instances. The
value comes from a local variable (todays_date), and the objects are identified by a
object reference collection local variable ({reviewed_accts}). In ASL this can be

Figure C-7 Writing of Attributes (Multiple Attributes, Single Object)

Account

no:Integer

ASL:

current_account.[balance,last_update] =

balance:Attribute

:DataFlow

:ReadVariableAction

new_balance:Variable

source

variable

:OutputPin

:InputPin

:AddAttributeValueAction

value

attribute

balance:FixedPoint

Account:Class

owner

:ReadVariableAction:OutputPin

current_account:Variable

object

source

result

result

variable

last_update:Date

last_update:Attribute

:DataFlow

:ReadVariableAction

todays_date:Variable

source

dest-

variable

:OutputPin

:InputPin

:AddAttributeValueAction

value

attribute

Account:Class

owner

:InputPin

object

result

ination

:DataFlow

dest-
ination

:InputPin

:DataFlow

dest-
ination

dest-
ination

source

isReplaceAll = true

isReplaceAll = true
B-10 OMG-UML , v1.5 Object Manipulation

B Action Language Examples
achieved through a single language statement, but in AL and Kabira AS, this must be
achieved through an explicit loop. The example shows ASL only and explicit loops are
shown in other examples

Obtaining a Selection of Objects

The ASL, AL and Kabira AS languages provide facilities to select the extent of a class
and store the result in a local variable that can then be used in other language
constructs. In ASL and AL, the local variables can be singletons or collections.

In the first example, a selection is made from the Account class through to a simple
logical condition. The condition results in a single object instance being selected and
the reference assigned to a local variable my_account.

The top part of the instance diagram concerns the reading of the extent of the Account
class and flowing the resulting collection into a filter action. The filter action produces
an output written to the my_account local variable, shown on the right hand middle of
the diagram. The remainder of the diagram concerns the subAction of the FilterAction.
This is an ApplyFunctionAction that invokes the logical comparison of the two items

Figure C-8 Writing of Attributes (Single Attribute, Multiple Objects)

:DataFlow

:ReadVariableAction

reviewed_accts:Variable

source

destination

variable

:OutputPin

:InputPin

:MapAction

argument:Collection

subAction

todays_date:Variable

:DataFlow

:ReadVariableAction

source

:OutputPin

:InputPin

:AddAttributeValueAction

value

variable

object

result

dest-
ination

last_review:Attribute

attribute

ASL:

{reviewed_accounts}.last_review = todays_date

variable

result

Account

no:Integer
last_review:Date

isReplaceAll = true

:DataFlowPin

:InputPin

:OutputPin

source

destination

subinput

multiplicity = 0..*
September 2002 OMG-UnifiedModelingLanguage, v1.5 B-11

B Action Language Examples
in the logical expression. One of the items is a constant (supplied by the
LiteralValueAction) and the other is obtained by reading the value of the attribute of
the instance being tested.

The second example shows a similar selection, but one that results in a collection that
is assigned to a local variable. In this case, because the Kabira AS does not support
local variables which are collections, we have not shown an example from this
language. In Kabira AS such selections can be used directly as the inputs to loops. In
that case the assignment to the output local variable would be replaced by a flow into
a LoopAction.
B-12 OMG-UML , v1.5 Object Manipulation

B Action Language Examples
Figure C-9 Single Object Selection

Account

no:Integer

ASL:

my_account = find-only Account where no = 42

AL:

select one my_account from instances of

Account where selected.no = 42;

:DataFlow

:ReadExtentActionAccount:Class

source

destination

classifier

:OutputPin

:InputPin:FilterAction

argument
result

balance:FixedPoint

source

:AddVariableValueAction

:DataFlow

:InputPin

my_account:Variable

destination

result

:OutputPin

value

variable
:ApplyFunctionAction

subAction

equals:PrimitiveFunction

function

:OutputPin

result

subtest

:OutputPin

:ReadAttributeAction

result

no:Attribute

attribute object

:InputPin

:OutputPin

:DataFlow

42:Integer

:LiteralValueAction

value

:OutputPin

argument

outputPin

isReplaceAll = true

subinput

:InputPin

:DataFlow

argument

:InputPin

:DataFlow

source

source

source

destination

destination

destination

boolean:DataType

type

integer:DataType

inputSpec

:ArgumentSpecification
multiplicity = 1
ordering = unordered

:ArgumentSpecification
multiplicity = 1
ordering = unordered

inputSpec

type type

:ArgumentSpecification
multiplicity = 1
ordering = unordered

outputSpec
September 2002 OMG-UnifiedModelingLanguage, v1.5 B-13

B Action Language Examples
Creating a Link

This example creates a link between two objects. The link is an instance of the binary
association shown between the Account class and the Customer class.The objects are
identified by the local variable object references (the_customer, the_account). In
ASL and AL the syntax of the language is such that users must give all associations a

Figure C-10 Obtaining a Collection of Objects

Account

no:Integer

ASL:

{neg_accts} = find-all Account where

balance < 0

balance:FixedPoint

:DataFlow

:ReadExtentActionAccount:Class

source

destination

classifier

:OutputPin

:InputPin:FilterAction

argument
result

source

:AddVariableValueAction

:DataFlow

:InputPin

neg_acctst:Variable

destination

result

:OutputPin

value

variable
:ApplyFunctionAction

subAction

less than:PrimitiveFunction

function

:OutputPin

result

subtest

:OutputPin

:ReadAttributeAction

result

balance:Attribute

attribute object

:InputPin

:OutputPin

:DataFlow

0:Integer

:LiteralValueAction

value

:OutputPinoutputPin

isReplaceAll = true

subinput

:InputPin

:DataFlow

{first}

:InputPin

:DataFlow

source

source

source

destination

destination

destination

multiplicity = 0..*{second}
argument

argument

boolean:DataType

type

integer:DataType

inputSpec

:ArgumentSpecification
multiplicity = 1
ordering = unordered

:ArgumentSpecification
multiplicity = 1
ordering = unordered

inputSpec

type type

:ArgumentSpecification
multiplicity = 1
ordering = unordered

outputSpec
B-14 OMG-UML , v1.5 Object Manipulation

B Action Language Examples
unique name (in this example, R1) to provide a unique reference to the association
being manipulated. Kabira AS uses the association role for this purpose. Semantically,
each of the three languages achieves the same effect.

In a reflexive association, it is necessary to know in which direction the link is
intended. All three languages use role names to clarify this.

Note – This example shows a 1:0..* association. This means that there can be only one
linked Customer for a given Account. In the Kabira AS, the semantics are such that if
a Customer object was previously linked when the “relate” statement was executed
then an implicit “unrelate” (DestroyLinkAction) is performed prior to the
CreateLinkAction. There can, however, be many Account objects for a given Customer
object. The pattern of “isReplaceAll” values in the two LinkEndCreationData objects
achieves this effect. In ASL, the semantics are slightly different. In that language, the
modeler must ensure that any existing instance of Customer is explicitly unlinked from
the instance of Account before the link is executed. Any failure to do this is regarded
as an exception condition due to the violation of the multiplicity of the association. For
ASL, therefore, a more accurate mapping of the semantics of “link” would have
“isReplaceAll” false in both the instances of LinkEndCreationData.

Figure C-11 Creating a Link

Account

no:Integer

ASL:

link the_customer R1 the_account

AL:

relate the_customer to the_account across R1;

:LinkEndCreationData

:CreateLinkAction

endData

:InputPin

:DataFlow

Customer

name:Text

ownedAccount0..*

1 R1

:LinkEndCreationData

endData

:AssociationEnd ownedAccount:AssociationEnd

end end

:OutputPin

:ReadVariableAction

the_customer:Variable

destination

source

variable

result

:InputPin

:DataFlow

:OutputPin

:ReadVariableAction

the_account:Variable

destination

source

variable

result

R1:Association

value value connectionconnection

isReplaceAll = true isReplaceAll = false
September 2002 OMG-UnifiedModelingLanguage, v1.5 B-15

B Action Language Examples
Destroying a Link

This example destroys a link between two objects. The link is an instance of the binary
association shown between the Account class and the Customer class. The link to be
deleted is identified by the objects at either end that are identified by local variable
object references (the_customer, the_account). In ASL and AL the syntax of the
language is such that users must give all associations a unique name (in this example,
R1) to provide a unique reference to the association being manipulated. Kabira AS uses
the association role for this purpose. Semantically, each of the three languages achieves
the same effect.

In a reflexive association, it is necessary to know in which direction the link is
intended. All three languages use role names to clarify this.

Navigating an Association to a SIngle Object

These action languages navigate an association to obtain the object references of linked
objects, which are then used to perform some manipulation on the linked objects, such
as calling an operation provided by the object.

Figure C-12 Destroying a Link

Account

no:Integer

ASL:

unlink the_customer R1 the_account

AL:

unrelate the_customer from the_account across R1;

:LinkEndData

:DestroyLinkAction

endData

:InputPin

:DataFlow

Customer

name:Text

ownedAccount0..*

0..1
R1

:LinkEndData

endData

:AssociationEnd ownedAccount:AssociationEnd

end end

:OutputPin

:ReadVariableAction

the_customer:Variable

destination

source

variable

result

:InputPin

:DataFlow

:OutputPin

:ReadVariableAction

the_account:Variable

destination

source

variable

result

R1:Association

value value connectionconnection
B-16 OMG-UML , v1.5 Object Manipulation

B Action Language Examples
In this example, a navigation starts from an instance of Account (specified by the
object reference the_account) to obtain a reference to the Customer that owns it. The
resulting reference is in a local variable called owner. Both ends of the association
involved in the navigation are specified, but only one of them has an input pin. This pin
takes the identity of the object at the starting end of the navigation.

In the model fragment shown, due to the multiplicity of the association, there will be
only one instance of Customer obtained by the navigation.

Navigating an Association to Multiple Objects

These action languages navigate an association to obtain the object references of linked
objects, which are then used to perform some manipulation on the linked objects, such
as calling an operation provided by the object.

In this example, a navigation starts from an instance of Customer (specified by the
object reference the_customer) to obtain references to all the Accounts owned by
Customer. Due to the multiplicity of the association in the example, the result will be a
collection.

In ASL and AL, local variables can be collections and so the example and mapping is
very similar to those in the previous example (of navigation to a single instance). In
Kabira AS, local variables cannot be collections and so the result of the navigation

Figure C-13 Navigating an Association

Account

no:Integer

ASL:

owner = the_account -> R1

AL:

select one owner related by

the_account -> Customer[R1];

:LinkEndData

:ReadLinkAction

endData

:InputPin

:DataFlow

Customer

name:Text

ownedAccount0..*

1 R1

ownedAccount:AssociationEnd

end

:OutputPin

:ReadVariableAction

the_account:Variable

destination

source

variable

result

R1:Association

value
connection

owner

:InputPin

:DataFlow

:OutputPin

:AddVariableValueAction

owner:Variable

destination

source

variable

value

result
:LinkEndData

owner:AssociationEnd

end

connection

endData

isReplaceAll = true
September 2002 OMG-UnifiedModelingLanguage, v1.5 B-17

B Action Language Examples
must be used directly in an explicit loop. However, the effect of this loop is exactly that
of a MapAction in the action semantics. The action enclosed in the Kabira AS loop is
repeatedly executed with the local variable (the_account) being successively given a
value corresponding to each instance in the collection of object references obtained by
the navigation. This mapping is shown in the second diagram.

Figure C-14 Obtaining a Collection by Navigation

Account

no:Integer

ASL:

{accounts} = the_customer -> R1

AL:

select many accounts related by

the_customer -> customer[R1];

:ReadLinkAction

endData

Customer

name:Text

ownedAccount0..*

1 R1
owner

:LinkEndData

:InputPin

:DataFlow

owner:AssociationEnd

end

:OutputPin

:ReadVariableAction

the_customer:Variable

destination

source

variable

result

R1:Association

value
connection

:InputPin

:DataFlow

:OutputPin

:AddVariableValueAction

accounts:Variable

destination

source

variable

value

result
:LinkEndData

ownedAcct:AssociationEnd

end

connection

endData

isReplaceAll = true

multiplicity = 0..*
B-18 OMG-UML , v1.5 Object Manipulation

B Action Language Examples
B.5 Messaging Actions

This section covers the invocation of operations and the sending of signal events.

Invocation of an Instance Operation with no Parameters

In this example, an operation (validate) provided by the Customer class is invoked.
The operation has no parameters, but applies to a specific instance of Customer
(identified by the object reference local variable my_customer).

Note – The ASL syntax supports a particular syntax for the names of operations that
makes their association with the class of the target object clear. This has not been used
here to make the example straight forward.

Figure C-15 Loop over a Navigation

Account

no:Integer

Kabira AS:

for the_account in the_customer ->

 Account[ownedAccout]

{

 // some action on the_account

:ReadLinkAction

endData

Customer

name:Text

ownedAccount0..*

1 R1
owner

:LinkEndData

:InputPin

:DataFlow

:AssociationEnd

end

:OutputPin

:ReadVariableAction

the_customer:Variable

destination

source

variable

result

R1:Association

value associationEnd

:InputPin

:DataFlow

:OutputPin

destination

source

result

:MapAction

inputPin

:OutputPin

:DataFlow

:InputPin

destination

source

:Action

{// some action

subaction

{the_account}

subinput

on the_account}
September 2002 OMG-UnifiedModelingLanguage, v1.5 B-19

B Action Language Examples
The example shows only the invocation actions and not the Effect Resolution.
However, in all three languages the resolution is a simple operation lookup.

Note – In this example, there are no return parameters from the validate operation and
so the output pin can be ignored, or it could be used as an input to a subsequent action
in lieu of a control link.

The above mapping uses the SynchronousInvocationAction. As is discussed in Section
2.22, “Messaging Actions”, however, an alternative action, the CallOperationAction is
also available. With this action, the semantics of marshalling data are implicit in the
action. This alternative mapping is shown in Figure C-17.

Figure C-16 Simple Operation Invocation using SynchronousInvocationAction

ASL:

[]= validate[] on the_customer

AL:

the_customer.validate();

:SynchronousInvocationAction

request

:InputPin
target

:DataFlow

:OutputPin

:ReadVariableAction

the_customer:Variable

destination

source

variable

result

:InputPin

:DataFlow

:OutputPin

destination

source

result

:marshalAction

marshal

CustomerValidateRequest:Class

:OutputPin

reply

Customer

name:Text

validate()

Type
B-20 OMG-UML , v1.5 Messaging Actions

B Action Language Examples
Figure C-17 Simple Operation Invocation using CallOperationAction

ASL:

[]= validate[] on the_customer

AL:

the_customer.validate();

:CallOperationAction :InputPin
target

:DataFlow

:OutputPin

:ReadVariableActionthe_customer:Variable

destination

source

variable

result

Customer

name:Text

validate()

validate:Operation

operation
September 2002 OMG-UnifiedModelingLanguage, v1.5 B-21

B Action Language Examples
Invocation of an Instance Operation with Parameters

This example shows the invocation of an operation that takes an input parameter
(amount) and updates the balance of an Account. The resulting balance is returned as
an output parameter. In Figure C-18this is shown using the
SynchronousInvocationAction with explicit marshalling and unmarshalling of
parameters. The equivalent mapping with CallOperationAction is shown in Figure
C-19.

Figure C-18 Operation with Parameters using SynchronousInvocationAction

ASL:

[new_balance]= update_balance[amount] on the_account

AL:

:SynchronousInvocationAction
:InputPintarget

:DataFlow

:OutputPin

:ReadVariableAction

the_account:Variable

destination

source

variable

result

Account

no:Integer
balance:FixedPoint

update_balance()

:OutputPin

:ReadVariableAction amount:Variable

argument

variable

result

:OutputPin

:DataFlow

:InputPin

:AddVariableValueAction

new_balance:Variable

destination

source

variable

value

result

isReplaceAll = true

reply

:InputPin

:DataFlow

:OutputPin

destination

source

result

:marshalAction

marshalType

AccountUpdateBalanceRequest:Class

:OutputPin

:UnmarshalAction

unmarshalType

object
:InputPin

:DataFlow

source

destination

AccountUpdateBalanceReply:Class

request
B-22 OMG-UML , v1.5 Messaging Actions

B Action Language Examples
Figure C-19 Operation with Parameters using CallOperationAction

Sending of a Signal Event with no Parameters

This example shows the dispatching of a Signal Event to an object of the Account
class.

ASL:

[new_balance]= update_balance[amount] on the_account

AL:

:CallOperationAction :InputPintarget

:DataFlow

:OutputPin

:ReadVariableAction

the_account:Variable

destination

source

variable

result

Account

no:Integer
balance:FixedPoint

update_balance()

:OutputPin

:ReadVariableAction

amount:Variable

source

variable

result

:InputPin

:AddVariableValueAction

new_balance:Variable

destination

variable

value

isReplaceAll = true

result

:InputPin

:DataFlow

destination

:OutputPin

:DataFlow

source

argument

update_balance:Operation

operation
September 2002 OMG-UnifiedModelingLanguage, v1.5 B-23

B Action Language Examples
Figure C-20 Sending of Signal with no parameter using AsynchronousInvocationAction

In a similar way to the mapping of operation invocations discussed in the previous
section, an alternative mapping for this uses the SendSignalAction, where the
marshalling of data is implicit. This mapping is show in Figure C-21.

Figure C-21 Sending of Signal with no parameter using SendSignalAction

ASL:

generate block_account() to the_account

AL:

:AsynchronousInvocationAction :InputPin
target

:DataFlow

:OutputPin

:ReadVariableAction

the_account:Variable

destination

source

variable

result

Account

no:Integer
balance:FixedPoint

request

:InputPin

:DataFlow

:OutputPin

destination

source

result

:marshalAction

marshal

CustomerBlockAccountRequest:Class
Type

ASL:

generate block_account() to the_account

AL:

:SendSignalAction :InputPin
target

:DataFlow

:OutputPin :ReadVariableAction

the_account:Variable

destination

source
variable

result

Account

no:Integer
balance:FixedPoint

block_account:Signal

signal
B-24 OMG-UML , v1.5 Messaging Actions

B Action Language Examples
Note – The ASL and AL syntax actually requires a particular syntax for the names of
signals that makes their association with the class of the target object clear. This syntax
has not been used here to make the example more straight forward.

Sending of a Signal Event with Parameters

In a similar way to the previous example, this sends a signal to an object. In this case
there is an additional parameter (period) that is sent with the signal.

Finally, the same example using the SendSignalAction is shown in Figure C-23.

Figure C-22 Sending of Signal with Parameters using AsynchronousInvocationAction

ASL:

generate update_interest(period) to the_account

AL:

:AsynchronousInvocationAction :InputPin
target

:DataFlow

:OutputPin

:ReadVariableAction

the_account:Variable

destination

source

variable

result

Account

no:Integer
balance:FixedPoint

:InputPin

:DataFlow

:OutputPin

:ReadVariableAction period:Variable

destination

source

variable

result

:InputPin

:DataFlow

:OutputPin

destination

source

result

:marshalAction

marshalType

AccountUpdateInteresteRequest:Class

request

argument
September 2002 OMG-UnifiedModelingLanguage, v1.5 B-25

B Action Language Examples
Figure C-23 Sending of Signal with Parameters using SendSignalAction

B.6 Complete Example: The FFT

This chapter shows a complete example of the specification of a procedure using
actions. The purpose is to show how the various actions fit together to carry out a
complete algorithm, as well as to illustrate some of the complicated actions through
actual use. An informal notation is used to illustrate the examples, emphasizing the
connectivity of the actions while suppressing minor mechanical details. This notation
is not complete and is not intended to be a normative syntax, but merely to help get an
intuitive feel for the action semantic constructs without becoming immersed in UML
minutiae.

The example describes the Fast Fourier Transform (FFT), one of the most important
algorithms discovered to date, both for its theoretical and practical consequences. This
algorithm has revolutionized signal processing applications, and it has consequences
for polynomial multiplication and other areas. Theoretically, its discovery showed that
many algorithms could be much more efficient than intuition would suggest and led to
major advances in complexity theory. The algorithm itself is also elegant both in theory
and in implementation, with extreme malleability that allows it to be adapted in many
different ways. In particular, it lends itself to a highly parallel implementation, which
can be captured using these action semantics. The ability to preserve inherent
concurrency is a major contribution of these actions semantics.

This chapter does not attempt to explain the theory or derivation of the FFT. The reader
is advised to consult a modern book on numerical algorithms for more information.
Note also that the form of the algorithm presented here is not the most efficient form

ASL:

generate update_interest(period) to the_account

AL:

:SendSignalAction :InputPin
target

:DataFlow

:OutputPin

:ReadVariableAction

the_account:Variable

destination

source

variable

result

Account

no:Integer
balance:FixedPoint

:OutputPin

:ReadVariableActionperiod:Variable

source

variable

result

:InputPin

:DataFlow

destination

request

update_interest:Signal

signal
B-26 OMG-UML , v1.5 Complete Example: The FFT

B Action Language Examples
used for computation. Even in algorithm books, the algorithm is usually presented in a
more transparent form first, because the highly optimized forms can be tricky to
understand. Such optimizations could, of course, be expressed in the action semantics.

B.6.1 The Fast Fourier Transform

The Discrete Fourier Transform (DFT) performs a complex-number transformation
from the time or spatial domain into the frequency domain, according to the following
formula:

(EQ 1)

where n is a power of 2 and Wn is the primary complex root of unity of order n:

(EQ 2)

Intuitively, this would seem to require O(n2) arithmetic operations (multiplications and
additions) to compute. Remarkably, the Fast Fourier Transform (FFT) algorithm can
perform this transformation in log2 n stages of O(n) operations, for a total complexity
of O(n log n). Among many forms, the algorithm can be expressed in the following
form:

(EQ 3)

(EQ 4)

(EQ 5)

(EQ 6)

where rev(j,n) is the integer obtained by reversing the log n-bit binary representation of
the integer j; for example, rev(6,8) is 3.

This formula can be understood as follows: There are log n stages, each of which
transforms a complex vector of n elements into another complex vector of n elements
(Equation 4). The starting vector is the original vector to be transformed (Equation 3).
During each stage, the pattern of computation is the same, except the multiplication
factors V are “thinned” by a factor of 2 on each successive stage (Equation 5). The
final complex vector is rearranged by swapping each element to its “bit-reversed”
position to obtain the final complex vector result (Equation 6). These log n stages must
be performed sequentially; there is no concurrency across them.

Looking within each stage, Equation 4 indicates that two elements from one stage are
used to compute two elements of the next stage. This pair of formulas is called a
butterfly operation, after the shape of its data flow graph, which uses two input values
to produce two output values. All n/2 butterfly operations can be performed in parallel,
because there is no interaction among the input or output values of different ones. The
FFT algorithm permits a high degree of concurrency. Examining the formula closely,

Bj AkWn
k

k 0=

n 1–

�= j 0 1 … n 1–, , ,=

Wn e 2πi n⁄–=

S0 j, Aj=

Sm 1 2 j,+ Sm j, Sm j n 2⁄+,+= Sm 1 2j 1+,+ Sm j, Sm j n 2⁄+,– Vm j,= j 0 1 2… n 2⁄ 1–, , ,=

Vm j, Wn
j 2m⁄ 2m

=

Bj S nlog rev j n,(),= j 0 1 2… n 1–, , ,=
September 2002 OMG-UnifiedModelingLanguage, v1.5 B-27

B Action Language Examples
we see that each butterfly operation takes an element from the first half of the input
vector and the corresponding element from the second half of the input vector,
producing two successive values in the output vector for the next stage. There is no
interaction between the n/2 butterfly operations in a stage, either on input values or
output values. A stage can be viewed in vector terms as follows: A vector of n
elements is cut in half (like a pack of cards) into two vectors of n/2 elements each. In
parallel, each element of one half is combined with the corresponding element of the
other half in a butterfly operation, yielding two values. If we form two half-vectors
from the results, they must be shuffled together by alternating elements from each of
the half-vectors (again, like a pack of cards) to form a full-size vector for the next
stage of the computation. To summarize a stage: cut a full vector into two half vectors,
map the butterfly operation concurrently onto each pair of half vectors to form a new
pair of half vectors, and shuffle the two half vectors together to produce a new full
vector.

There is one final detail. The multiplication factors change each stage. On the first
pass, they are the full set of roots of unity. After each pass, the number of distinct
values is reduced to form runs of length 2m, where m is the pass. We call this a vector
“thinning” operation, which forms runs by duplicating the first value of each sequence.

B.6.2 Illustrative Notation

Figure C-24 shows the action semantics constructs representing the FFT algorithm.

The notation represents an object diagram with some structural details suppressed or
expressed as text. Actions are shown as rectangles; the kind of action is shown by a
label (such as “LoopAction”), with an optional name and colon to label individual
action instances that are part of other actions (for example, the Clause contains a
GroupAction with the rolename “body”). Rectangles with names but no action names
are ApplyFunctionActions; the name is the name of the applied function. Rectangles
with values in them are LiteralValueActions. Nesting of actions indicates ownership of
the contents by the containing action. Small squares represent pins. An input pin is a
hollow square and an output pin is a filled square. Input and output pins of an action
are placed on its outer border. Argument and result pins of a procedure are placed on
its border (because they are viewed from the viewpoint of the procedure contents). Pins
that are lined up inside it are meant to be an array of pins; a text label applies to the
entire list. For example, “loopVariable” represents the array of 4 output pins near the
top of LoopAction; the array of pins is a part of LoopAction with the rolename
“loopVariable”. (This obviously would not be precise enough for a complete notation.)
Arrows from output pins to input pins represent data flow relationships.

There is one important action semantics construct that is not based on containment. A
clause references an output pin within its embedded test action and an array of output
pins within its embedded body action. These pins are owned by the embedded actions,
not the clause. This reference is shown in the diagram by a hashed square within the
clause connected by a solid line to the appropriate pins within the embedded actions.
The square is hashed to indicate that it is not an actual pin but merely a reference. For
example, the hashed pin in Clause labeled “testOutput” represents an association from
Clause to the test Action with the rolename “testOutput”. Clause does not duplicate the
pin or own it directly.
B-28 OMG-UML , v1.5 Complete Example: The FFT

B Action Language Examples

actio
Sm,0..n/2-1
Sm,n/2..n-1

Vm,0..n/2-1

Shuffle

Cut

Sm,0..n-1

Sm+1,0..n-1 Vm+1,0..n/2-1

m

m+1

+1

Thin

+ - *

Sm,i Sm,n/2+i Vm,i

Sm+1,2*i+1

greater

0

CallAction(roots_of_unity)log2

log n

Complex[0..*]{ordered}

bitreverse

LoopAction

FFT:Procedure

1

2m

*2

body:GroupAction

argument:

Clause

2m+1bodyOutput:

S0,0..n-1
V0,0..n/2-1 1

log n Sk,0..n-1 Vk,0..n/2-1 n=2k

Boolean

Wn,0..n/2-1

inputPin:

outputPin:

MapAction

subaction:GroupAction

suboutput:Sm+1,2*i

Sm+1,even Sm+1,odd

testOutput:

loopVariable:

Vm,0..n/2-1

n

A0..n-1

size

0

subinput:

n:GroupAction

test:

IntegerComplex[0..*] {ordered}

Integer

Integer

Integer

Complex[0..*]{ordered}

Integer
September 2002 OMG-UnifiedModelingLanguage, v1.5 B-29Complex [0..*]{ordered}
result: B0..n-1

Figure C-24 FFT algorithm

B Action Language Examples
The consequences of various elements in a construct is explained in informal text. For
a precise definition, consult the model and class descriptions. The purpose of this
section is to show how the constructs might be used to build larger structures. The
notation is suggestive, not precise, and is not meant to be normative.

Many pins have names in italics next to them, such as A0..n-1. These are not UML
constructs and do not appear in the model. They are merely labels corresponding to the
mathematical equations to permit describing the pins in this discussion.

B.6.3 Discussion

The overall construct in the diagram is the procedure FFT. In a UML model, this
procedure would be attached to an operation on a class as a method. This procedure
takes one argument, a complex vector, and produces one result, another complex
vector. The argument is modeled in the procedure as an output pin. This might seem
strange; after all, the value is an input to the procedure. The mystery is explained
because the argument is viewed from inside the procedure, where it appears as a value
available to be used. From the viewpoint of the outside of the procedure, the value is
an input, but from the inside, it is an output. Crossing the boundary changes the
polarity, and we describe procedures from the inside.

The size of the vector must be a power of two. This could be expressed as a UML
constraint, but it is not shown in the diagram. What if it is not a power of 2? Then the
model is in error, and its semantics are undefined. Eventually exceptions will be added
to the action semantics. When they are present, the procedure could contain a
conditional action that would raise an exception on failure of the condition. However,
it is permitted to have procedures that do not verify their preconditions, and such
verification would be the responsibility of the entire model.

The argument value is used in two ways, as shown by the two arrows leaving the
output pin A. Both arrows represent the same data value. One copy is used as an input
to the loop action (the initial value of the loop variable S). The other copy is an input
to the size PrimitiveFunction action. This action outputs the size of a collection. In
some implementations, collections may be resolvable into simpler objects, but the
implementations vary widely, and actions on collections can be mathematically
defined, so they can be treated as primitive functions.

The size of the array, n, is also used in two ways. It is an input to the log2 primitive
function that outputs the base-2 logarithm of the size (remember that n must be a
power of two). Why do we treat log2 as a primitive function and not as an operation?
It is easily defined mathematically. Moreover, it might well be directly implemented in
hardware (square root is a built-in instruction in most floating point chips today). In
any case, the algorithms to compute it are purely implementation and should not be
included in a semantic specification of behavior. The purpose of specifying a behavior
with action semantics is to understand its inherent constraints, not to make arbitrary
implementation decisions that overspecify the behavior.

The other copy of the integer n is an argument to a call to the operation
roots_of_unity. This operation returns the n complex roots of unity as a complex
vector. The specification of this operation is given by Equation 2.
B-30 OMG-UML , v1.5 Complete Example: The FFT

B Action Language Examples
The main work of the algorithm is performed by a LoopAction. Two of the inputs to
this action are the original argument vector and the vector of roots of unity. Within the
loop, these vectors are loop variables that are recomputed each iteration. The other two
inputs are the integers 0 and 1. These values initialize the loop variables m and 2m. The
loop variables are initialized by the inputs, but the loop variables are distinct from the
pins that initialize them. The values of the loop variables are recomputed each
iteration. If a value from outside the loop is used directly inside a loop, then its value
is fixed over all the iterations of the loop. For example, the test action within the loop
clause has log n and m as inputs. The former value is fixed during the loop. The latter
value is a loop variable and it changes during each iteration. Obviously, at least one
input to a loop test must be a loop variable or the loop will never terminate!

The test and body actions of a loop are sequential. The test must succeed before the
body can be executed, and the body must complete before the test can be performed
again on the updated loop variables. Within the loop body, however, there is a lot of
concurrency. The actions +1, thin, *2, and the cut-map-shuffle sequence
can all be performed concurrently. Expressing such concurrency is one of the main
purposes of the actions semantics. This does not mean that an implementation must
implement the concurrency using parallelism. It merely means that the implementation
does not contain arbitrary constraints.

The primitive actions +1 and *2 perform simple unary arithmetic operations. These
could be defined as primitive functions. The primitive action thin is a primitive
vector function. It takes a vector and an integer t and copies every t’th value from the
input array into a run of length t, so that the output vector is the same size as the input
vector but has fewer unique values in it. This action could obviously be defined as a
procedure, but any particular implementation is arbitrary.

Cut and shuffle are also operations on vectors. Cut takes a vector as input and
produces two vectors as output, one of them the first half and the other the record half
of the input vector. Shuffle takes two vectors as input and interleaves their values to
produce a single vector containing all the values. These operations could be defined as
loops, but by defining these operations as primitive functions we preserve the
possibility of a highly parallel implementation (which depends heavily on the exact
implementation).

The map action is probably the most complex action in the action semantics. In this
example, it takes 3 input vectors, each of size n/2 elements. All the vectors must be the
same size, but they could contain values of different types (in this case, however, they
all contain complex vectors). A tuple comprising one value from the same position in
each vector is called a slice. The input vectors contain n/2 slices (remember, they must
all be the same size). Each slice is the input to a separate execution of the subaction
GroupAction. The executions of the subaction are all concurrent. Note the 3 output
pins at the top of the subaction. On each execution, each pin gets a value from the
corresponding input vector. For example, Sm,i is a value from the vector Sm,0..n/2-1.
There is no explicit data flow from the inputs to the map variables. The connection is
implicit, part of the definition of the map action, and the pins are of different rank in
any case (one is a collection, the other a scalar). In any case, it does not represent a
September 2002 OMG-UnifiedModelingLanguage, v1.5 B-31

B Action Language Examples
single data flow. Rather, a loop represents an unbounded sequence of repetitions of its
contents, each implicitly connected to the previous repetition by data flows. A loop is
a finite representation of this infinite graph.

Each execution of the map subaction GroupAction performs 3 arithmetic operations to
yield two complex values as output. Note the two hatched pins within the MapAction
labeled suboutput. These are not actual pins owned by the MapAction. In the
notation, they represent associations from the MapAction to output pins owned by the
embedded subaction. They designate the outputs of the map action, but there is not
need to physically copy the values to new output pins.

Each execution of the map subaction yields a pair of output values, one for each slice
from the inputs. The output values are assembled concurrently into two output vectors,
equal in size to the input vectors. The map action applies a subaction concurrently to
each of the slices of the input to produce slices of the output. The output need not have
the same number of vectors as the input, but each vector must be the same size.

The two output vectors produced by the map action are then shuffled together to
produce a single vector of size n. This vector and the other three outputs of the loop
action update the loop variables for the next iteration.

When the loop variable m is finally equal to log n, the loop test fails and the values of
the loop variables are copied to the output pins of the loop action. Most of the output
pins of the loop are ignored (they have served their purpose inside the loop), but the
vector S serves as input to the bitreverse operation. This is another primitive
function on a vector, defined by Equation 6. The output of this action, a complex
vector of size n, becomes the result of the overall procedure.

Most published programs to compute FFT pay a lot of attention to rewriting vector
values in place. It is possible to compute the function using the space of the input
vector, but this requires some careful bookkeeping that obscures the basic algorithm
itself. The inherent concurrency of the algorithm is obscured once a particular scan
order is adopted. Specification of algorithms such as the FFT using the actions
semantics avoids making implementation decisions not inherent in the basic algorithm.
If parallel hardware is available (as in some signal processors), the specification can be
implemented in parallel. If a sequential implementation is necessary, the actions
semantics specification can be transformed in a straightforward manner to use read and
write actions, expand the primitive vector functions, and so on. The point is not to
perform such optimizations prematurely in the specification of the basic algorithm.

This example did not touch on every kind of action (for example, the conditional action
did not occur, but it has many similarities to loop action), but it has illustrated how
actions are connected together to define algorithms. It also did not touch on read and
write actions and explicit control dependencies. These are more similar to traditional
forms, however, and so less in need of explanation.
B-32 OMG-UML , v1.5 Complete Example: The FFT

B Action Language Examples
B.6.4 Implementation Using Memory Writes

Figure C-25 shows a possible implementation of the bitreverse function on an
array in which the output values are written into the same array object, replacing the
input values. This is obviously not a data flow operation. It is one of many possible
implementations, although one that would often be used in an implementation of the
FFT, because it is simple to do and does not consume extra memory space.

This procedure would be a method on the class Array. It would work for an array
containing any kind of elements, including complex elements. Carray would be a
subclass of Array.

This procedure has one input pin and no output pin. There are no outputs, because the
operation does not generate a result. Rather, it operates on the existing array object
whose identity is passed as input. In contrast to Figure C-24 showing the FFT
algorithm in a fully data flow manner, the implementation of this procedure operates
by side effects, that is, by modifying the state of existing objects.

The input to the procedure is an array V, containing elements of arbitrary type. The
operation size obtains the size of the array, n. The primitive function indices generates
an array containing the indices of array V, in this case the integers from 0 to n-1. The
array of indices is the input to a map action. This means that the subaction within the
map action is executed n times, once for each integer from 0 to n-1. The value for each
execution of the subaction is available on the pin called subaction. Each execution is
concurrent with the others.

The subaction comprises the reversebits primitive function and an embedded
conditional action with a single clause. The reversebits primitive computes the function
rev(j,n), that is, it reverses the binary bits in an integer to obtain a new integer. One
input to the reversebits primitive is the value j, that is, a value from the array of indices
that was the input to the map action. This value is different for each concurrent
execution of the subaction. The other input to the reversebits primitive is the value n,
which is constant during all executions of the subaction, because it comes from outside
the map action.

The conditional action contains a single clause. Its test condition tests whether the map
variable j is less than its bit-reversed value. If so, the body is executed. If not, the
subaction execution is complete—otherwise the same value would be swapped twice.
This conditional action does not have clauses to cover every case. If the test fails, there
is no other clause that succeeds. If a conditional action produces a data flow output,
then at least one clause must be true in all circumstances, otherwise the data flow
output of the conditional would sometimes be undefined. However, in this case the
conditional action has no outputs, so it is allowable to not cover all possible situations.
In effect, the else clause is a null operation.

The body of the clause merely swaps the values in two cells of the array, those in
position j and rev(j,n). It does this by reading both values and then writing them back
into the opposite positions. An array read operation takes an array V and an index j and
extracts the value at the given position. This is very similar to a direct attribute read
action, although a read attribute action has a single input, the identity of the object; the
attribute designator is predefined as part of the action, not passed on an input pin. An
September 2002 OMG-UnifiedModelingLanguage, v1.5 B-33

B Action Language Examples
FIGURE 1.

Figure C-25 Implementation of bitreverse using read and write operations

CallAction(Array::read)

reversebits

CallAction(Array::write)

CallAction(Array::read)

CallAction(Array::write)

body:GroupAction
lessthan

Boolean

testOutput:

Clause

subaction:GroupAction

MapAction

j

Array::BitreverseInPlace:Procedure
V

j

Identity(Complex[0..*]{ordered})

indices

0..n-1
n

rev(j)

jV

V V

V
rev(j)

rev(j)

subinput:

ConditionalAction

j

test:

Integer[0..*]{ordered}

Integer

Integer

Complex
Complex

CallAction(size)
B-34 OMG-UML , v1.5 Complete Example: The FFT

B Action Language Examples
array write operation takes 3 input values: the array, the index, and the value to write.
It has no outputs. Write operations do not have results. They operate by side effects
and represent dead ends for data flow values.

The same value of V is used 6 times within the overall procedure. At different times,
the array may contain different element values, but it is the same array each time with
the same identity. It is the identity of an object that is needed for a read or write
operation. The identity is unaffected by the operations.

There is a complication. It is permissible to read or write two elements of an array
concurrently, but it is not acceptable to write a new value in a cell before the old value
has been read. Therefore it is necessary to add a control flow dependency between a
read operation and a write operation at the same position in the array, so that a value is
not overwritten prematurely. This is shown in Figure C-25 by dashed arrows from each
read operation to the write operation on the same index value. Algorithms that use read
and write operations often need explicit control flow dependencies, as opposed to
algorithms in which values pass by data flow only. Note that there is an implicit control
flow dependency from the contents of a procedure to the procedure itself—the
procedure will not return to the caller until all internal executions have completed.
September 2002 OMG-UnifiedModelingLanguage, v1.5 B-35

B Action Language Examples
B-36 OMG-UML , v1.5 Complete Example: The FFT

Glossary C
This glossary defines the terms that are used to describe the Unified Modeling
Language (UML) and the Meta Object Facility (MOF). In addition to UML and MOF
specific terminology, it includes related terms from OMG standards and object-
oriented analysis and design methods, as well as the domain of object repositories and
meta data managers. Glossary entries are organized alphabetically and MOF specific
entries are identified as ‘[MOF]’.

C.1 Notation Conventions

The entries in the glossary usually begin with a lowercase letter. An initial uppercase
letter is used when a word is usually capitalized in standard practice. Acronyms are all
capitalized, unless they traditionally appear in all lowercase.

When one or more words in a multi-word term is enclosed in brackets, it indicates that
those words are optional when referring to the term. For example, use case [class] may
be referred to as simply use case.

The following conventions are used in this glossary:

• Contrast: <term>
Refers to a term that has an opposed or substantively different meaning.

• See: <term>
Refers to a related term that has a similar, but not synonymous meaning.

• Synonym: <term>
Indicates that the term has the same meaning as another term, which is referenced.

• Acronym: <term>
Indicates that the term is an acronym. The reader is usually referred to the spelled-
out term for the definition, unless the spelled-out term is rarely used.
September 2002 OMG-Unified Modeling Language, v1.5 C-1

This glossary defines the terms that are used to describe the Unified Modeling
Language (UML) and the Meta Object Facility (MOF). In addition to UML and MOF
specific terminology, it includes related terms from OMG standards and object-
oriented analysis and design methods, as well as the domain of object repositories and
meta data managers. Glossary entries are organized alphabetically and MOF specific
entries are identified as ‘[MOF]’.

C.2 Glossary Terms

abstract class A class that cannot be directly instantiated. Contrast:
concrete class.

abstraction The essential characteristics of an entity that distinguish it
from all other kinds of entities. An abstraction defines a
boundary relative to the perspective of the viewer.

action The specification of an executable statement that is part of a
computational procedure. An action typically results in a
change in the state of the system, and can be realized by
sending a message to an object or modifying a link or a
value of an attribute. See: procedure.

action sequence An expression that resolves to a sequence of actions.

action state A state that represents the execution of an atomic action,
typically the invocation of an operation.

activation The execution of an action.

active class A class whose instances are active objects. See: active
object.

active object An object that owns a thread and can initiate control
activity. An instance of active class. See: active class,
thread.
C-2 OMG-UML , v1.5 Glossary Terms September 2002

activity graph A special case of a state machine that is used to model
processes involving one or more classifiers. Contrast:
statechart diagram.

actor [class] A coherent set of roles that users of use cases play when
interacting with these use cases. An actor has one role for
each use case with which it communicates.

actual parameter Synonym: argument.

aggregate [class] A class that represents the “whole” in an aggregation
(whole-part) relationship. See: aggregation.

aggregation A special form of association that specifies a whole-part
relationship between the aggregate (whole) and a
component part. See: composition.

analysis The part of the software development process whose
primary purpose is to formulate a model of the problem
domain. Analysis focuses what to do, design focuses on
how to do it. Contrast: design.

analysis time Refers to something that occurs during an analysis phase of
the software development process. See: design time,
modeling time.

architecture The organizational structure and associated behavior of a
system. An architecture can be recursively decomposed into
parts that interact through interfaces, relationships that
connect parts, and constraints for assembling parts. Parts
that interact through interfaces include classes, components
and subsystems.

argument A binding for a parameter that resolves to a run-time
instance. Synonym: actual parameter. Contrast: parameter.

artifact A physical piece of information that is used or produced by
a software development process. Examples of Artifacts
include models, source files, scripts, and binary executable
files. An artifact may constitute the implementation of a
deployable component. Synonym: product. Contrast:
component.

association The semantic relationship between two or more classifiers
that specifies connections among their instances.
September 2002 OMG-UML , v1.5 Glossary Terms C-3

association class A model element that has both association and class
properties. An association class can be seen as an
association that also has class properties, or as a class that
also has association properties.

association end The endpoint of an association, which connects the
association to a classifier.

attribute A feature within a classifier that describes a range of values
that instances of the classifier may hold.

auxiliary class A stereotyped class that supports another more central or
fundamental class, typically by implementing secondary
logic or control flow. Auxiliary classes are typically used
together with focus classes, and are particularly useful for
specifying the secondary business logic or control flow of
components during design. See also: focus.

behavior The observable effects of an operation or event, including
its results.

behavioral feature A dynamic feature of a model element, such as an operation
or method.

behavioral model
aspect

A model aspect that emphasizes the behavior of the
instances in a system, including their methods,
collaborations, and state histories.

binary association An association between two classes. A special case of an n-
ary association.

binding The creation of a model element from a template by
supplying arguments for the parameters of the template.

boolean An enumeration whose values are true and false.

boolean expression An expression that evaluates to a boolean value.

cardinality The number of elements in a set. Contrast: multiplicity.

child In a generalization relationship, the specialization of
another element, the parent. See: subclass, subtype.
Contrast: parent.

call state An action state that invokes an operation on a classifier.
C-4 OMG-UML , v1.5 Glossary Terms September 2002

class A description of a set of objects that share the same
attributes, operations, methods, relationships, and
semantics. A class may use a set of interfaces to specify
collections of operations it provides to its environment. See:
interface.

classifier A mechanism that describes behavioral and structural
features. Classifiers include interfaces, classes, datatypes,
and components.

classification The assignment of an object to a classifier. See dynamic
classification, multiple classification and static
classification.

class diagram A diagram that shows a collection of declarative (static)
model elements, such as classes, types, and their contents
and relationships.

client A classifier that requests a service from another classifier.
Contrast: supplier.

collaboration The specification of how an operation or classifier, such as
a use case, is realized by a set of classifiers and associations
playing specific roles used in a specific way. The
collaboration defines an interaction. See: interaction.

collaboration diagram A diagram that shows interactions organized around the
structure of a model, using either classifiers and
associations or instances and links. Unlike a sequence
diagram, a collaboration diagram shows the relationships
among the instances. Sequence diagrams and collaboration
diagrams express similar information, but show it in
different ways. See: sequence diagram.

comment An annotation attached to an element or a collection of
elements. A note has no semantics. Contrast: constraint.

compile time Refers to something that occurs during the compilation of a
software module. See: modeling time, run time.

component A modular, deployable, and replaceable part of a
system that encapsulates implementation and exposes
a set of interfaces. A component is typically specified by
one or more classifiers (e.g., implementation classes) that
reside on it, and may be implemented by one or more
artifacts (e.g., binary, executable, or script files). Contrast:
artifact.
September 2002 OMG-UML , v1.5 Glossary Terms C-5

component diagram A diagram that shows the organizations and dependencies
among components.

composite [class] A class that is related to one or more classes by a
composition relationship. See: composition.

composite aggregation Synonym: composition.

composite state A state that consists of either concurrent (orthogonal)
substates or sequential (disjoint) substates. See: substate.

composition A form of aggregation which requires that a part instance be
included in at most one composite at a time, and that the
composite object is responsible for the creation and
destruction of the parts. Composition may be recursive.
Synonym: composite aggregation.

concrete class A class that can be directly instantiated. Contrast: abstract
class.

concurrency The occurrence of two or more activities during the same
time interval. Concurrency can be achieved by interleaving
or simultaneously executing two or more threads. See:
thread.

concurrent substate A substate that can be held simultaneously with other
substates contained in the same composite state. See:
composite state. Contrast: disjoint substate.

constraint A semantic condition or restriction. Certain constraints are
predefined in the UML, others may be user defined.
Constraints are one of three extensibility mechanisms in
UML. See: tagged value, stereotype.

container 1. An instance that exists to contain other instances, and that
provides operations to access or iterate over its contents.
(for example, arrays, lists, sets).
2. A component that exists to contain other components.

containment hierarchy A namespace hierarchy consisting of model elements, and
the containment relationships that exist between them. A
containment hierarchy forms a graph.

context A view of a set of related modeling elements for a particular
purpose, such as specifying an operation.
C-6 OMG-UML , v1.5 Glossary Terms September 2002

datatype A descriptor of a set of values that lack identity and whose
operations do not have side effects. Datatypes include
primitive pre-defined types and user-definable types. Pre-
defined types include numbers, string and time. User-
definable types include enumerations.

defining model [MOF] The model on which a repository is based. Any number of
repositories can have the same defining model.

delegation The ability of an object to issue a message to another object
in response to a message. Delegation can be used as an
alternative to inheritance. Contrast: inheritance.

dependency A relationship between two modeling elements, in which a
change to one modeling element (the independent element)
will affect the other modeling element (the dependent
element).

deployment diagram A diagram that shows the configuration of run-time
processing nodes and the components, processes, and
objects that live on them. Components represent run-time
manifestations of code units. See: component diagrams.

derived element A model element that can be computed from another
element, but that is shown for clarity or that is included for
design purposes even though it adds no semantic
information.

design The part of the software development process whose
primary purpose is to decide how the system will be
implemented. During design strategic and tactical decisions
are made to meet the required functional and quality
requirements of a system.

design time Refers to something that occurs during a design phase of the
software development process. See: modeling time.
Contrast: analysis time.

development process A set of partially ordered steps performed for a given
purpose during software development, such as constructing
models or implementing models.
September 2002 OMG-UML , v1.5 Glossary Terms C-7

diagram A graphical presentation of a collection of model elements,
most often rendered as a connected graph of arcs
(relationships) and vertices (other model elements). UML
supports the following diagrams: class diagram, object
diagram, use case diagram, sequence diagram, collaboration
diagram, state diagram, activity diagram, component
diagram, and deployment diagram.

disjoint substate A substate that cannot be held simultaneously with other
substates contained in the same composite state. See:
composite state. Contrast: concurrent substate.

distribution unit A set of objects or components that are allocated to a
process or a processor as a group. A distribution unit can be
represented by a run-time composite or an aggregate.

domain An area of knowledge or activity characterized by a set of
concepts and terminology understood by practitioners in
that area.

dynamic classification A semantic variation of generalization in which an object
may change its classifier. Contrast: static classification.

element An atomic constituent of a model.

entry action A procedure executed upon entering a state in a state
machine regardless of the transition taken to reach that state.

enumeration A list of named values used as the range of a particular
attribute type. For example, RGBColor = {red, green, blue}.
Boolean is a predefined enumeration with values from the
set {false, true}.

event The specification of a significant occurrence that has a
location in time and space. In the context of state diagrams,
an event is an occurrence that can trigger a transition.

exit action A procedure executed upon exiting a state in a state
machine regardless of the transition taken to exit that state.

export In the context of packages, to make an element visible
outside its enclosing namespace. See: visibility. Contrast:
export [OMA], import.

expression A string that evaluates to a value of a particular type. For
example, the expression “(7 + 5 * 3)” evaluates to a value
of type number.
C-8 OMG-UML , v1.5 Glossary Terms September 2002

extend A relationship from an extension use case to a base use
case, specifying how the behavior defined for the extension
use case augments (subject to conditions specified in the
extension) the behavior defined for the base use case. The
behavior is inserted at the location defined by the extension
point in the base use case. The base use case does not
depend on performing the behavior of the extension use
case. See extension point, include.

facade A stereotyped package containing only references to model
elements owned by another package. It is used to provide a
‘public view’ of some of the contents of a package.

feature A property, like operation or attribute, which is
encapsulated within a classifier, such as an interface, a
class, or a datatype.

final state A special kind of state signifying that the enclosing
composite state or the entire state machine is completed.

fire To execute a state transition. See: transition.

focus class A stereotyped class that defines the core logic or control
flow for one or more auxiliary classes that support it. Focus
classes are typically used together with one or more
auxiliary classes, and are particularly useful for specifying
the core business logic or control flow of components
during design. See also: auxiliary.

focus of control A symbol on a sequence diagram that shows the period of
time during which an object is performing a procedure,
either directly or through a subordinate procedure.

formal parameter Synonym: parameter.

framework A stereotyped package that contains model elements which
specify a reusable architecture for all or part of a system.
Frameworks typically include classes, patterns or templates.
When frameworks are specialized for an application
domain, they are sometimes referred to as application
frameworks. See: pattern.

generalizable element A model element that may participate in a generalization
relationship. See: generalization.
September 2002 OMG-UML , v1.5 Glossary Terms C-9

generalization A taxonomic relationship between a more general element
and a more specific element. The more specific element is
fully consistent with the more general element and contains
additional information. An instance of the more specific
element may be used where the more general element is
allowed. See: inheritance.

guard condition A condition that must be satisfied in order to enable an
associated transition to fire.

implementation A definition of how something is constructed or computed.
For example, a class is an implementation of a type, a
method is an implementation of an operation.

implementation class A stereotyped class that specifies the implementation of a
class in some programming language (e.g., C++, Smalltalk,
Java) in which an instance may not have more than one
class. An Implementation class is said to realize a type if it
provides all of the operations defined for the type with the
same behavior as specified for the type's operations. See
also: type.

implementation
inheritance

The inheritance of the implementation of a more general
element. Includes inheritance of the interface. Contrast:
interface inheritance.

import In the context of packages, a dependency that shows the
packages whose classes may be referenced within a given
package (including packages recursively embedded within
it). Contrast: export.

include A relationship from a base use case to an inclusion use case,
specifying how the behavior for the base use case contains
the behavior of the inclusion use case. The behavior is
included at the location which is defined in the base use
case. The base use case depends on performing the behavior
of the inclusion use case, but not on its structure (i.e.,
attributes or operations). See extend.

inheritance The mechanism by which more specific elements
incorporate structure and behavior of more general elements
related by behavior. See generalization.

initial state A special kind of state signifying the source for a single
transition to the default state of the composite state.
C-10 OMG-UML , v1.5 Glossary Terms September 2002

instance An entity that has unique identity, a set of operations that
can be applied to it, and state that stores the effects of the
operations. See: object.

interaction A specification of how stimuli are sent between instances to
perform a specific task. The interaction is defined in the
context of a collaboration. See collaboration.

interaction diagram A generic term that applies to several types of diagrams that
emphasize object interactions. These include collaboration
diagrams and sequence diagrams.

interface A named set of operations that characterize the behavior of
an element.

interface inheritance The inheritance of the interface of a more general element.
Does not include inheritance of the implementation.
Contrast: implementation inheritance.

internal transition A transition signifying a response to an event without
changing the state of an object.

layer The organization of classifiers or packages at the same level
of abstraction. A layer represents a horizontal slice through
an architecture, whereas a partition represents a vertical
slice. Contrast: partition.

link A semantic connection among a tuple of objects. An
instance of an association. See: association.

link end An instance of an association end. See: association end.

message A specification of the conveyance of information from one
instance to another, with the expectation that activity will
ensue. A message may specify the raising of a signal or the
call of an operation.

metaclass A class whose instances are classes. Metaclasses are
typically used to construct metamodels.

meta-metamodel A model that defines the language for expressing a
metamodel. The relationship between a meta-metamodel
and a metamodel is analogous to the relationship between a
metamodel and a model.

metamodel A model that defines the language for expressing a model.
September 2002 OMG-UML , v1.5 Glossary Terms C-11

metaobject A generic term for all metaentities in a metamodeling
language. For example, metatypes, metaclasses,
metaattributes, and metaassociations.

method The implementation of an operation. It specifies the
algorithm or procedure associated with an operation.

model

[MOF]

An abstraction of a physical system with a certain purpose.
See: physical system.

Usage note: In the context of the MOF specification, which
describes a meta-metamodel, for brevity the meta-
metamodel is frequently to as simply the model.

model aspect A dimension of modeling that emphasizes particular
qualities of the metamodel. For example, the structural
model aspect emphasizes the structural qualities of the
metamodel.

model elaboration The process of generating a repository type from a
published model. Includes the generation of interfaces and
implementations which allows repositories to be instantiated
and populated based on, and in compliance with, the model
elaborated.

model element

[MOF]

An element that is an abstraction drawn from the system
being modeled. Contrast: view element.

In the MOF specification model elements are considered to
be metaobjects.

model library A stereotyped package that contains model elements which
are intended to be reused by other packages. A model
library differs from a profile in that a model library does not
extend the metamodel using stereotypes and tagged
definitions. A model library is analogous to a class library
in some programming languages.

modeling time Refers to something that occurs during a modeling phase of
the software development process. It includes analysis time
and design time. Usage note: When discussing object
systems, it is often important to distinguish between
modeling-time and run-time concerns. See: analysis time,
design time. Contrast: run time.

module A software unit of storage and manipulation. Modules
include source code modules, binary code modules, and
executable code modules. See: component.
C-12 OMG-UML , v1.5 Glossary Terms September 2002

multiple classification A semantic variation of generalization in which an object
may belong directly to more than one classifier. See: static
classification, dynamic classification.

multiple inheritance A semantic variation of generalization in which a type may
have more than one supertype. Contrast: single inheritance.

multiplicity A specification of the range of allowable cardinalities that a
set may assume. Multiplicity specifications may be given
for roles within associations, parts within composites,
repetitions, and other purposes. Essentially a multiplicity is
a (possibly infinite) subset of the non-negative integers.
Contrast: cardinality.

multi-valued [MOF] A model element with multiplicity defined whose
Multiplicity Type:: upper attribute is set to a number greater
than one. The term multi-valued does not pertain to the
number of values held by an attribute, parameter, etc. at any
point in time. Contrast: single-valued.

n-ary association An association among three or more classes. Each instance
of the association is an n-tuple of values from the respective
classes. Contrast: binary association.

name A string used to identify a model element.

namespace A part of the model in which the names may be defined and
used. Within a namespace, each name has a unique
meaning. See: name.

node A node is classifier that represents a run-time computational
resource, which generally has at least a memory and often
processing capability. Run-time objects and components
may reside on nodes.

object An entity with a well-defined boundary and identity that
encapsulates state and behavior. State is represented by
attributes and relationships, behavior is represented by
operations, methods, and state machines. An object is an
instance of a class. See: class, instance.

object diagram A diagram that encompasses objects and their relationships
at a point in time. An object diagram may be considered a
special case of a class diagram or a collaboration diagram.
See: class diagram, collaboration diagram.
September 2002 OMG-UML , v1.5 Glossary Terms C-13

object flow state A state in an activity graph that represents the passing of an
object from the output of actions in one state to the input of
actions in another state.

object lifeline A line in a sequence diagram that represents the existence
of an object over a period of time. See: sequence diagram.

operation A service that can be requested from an object to effect
behavior. An operation has a signature, which may restrict
the actual parameters that are possible.

package A general purpose mechanism for organizing elements into
groups. Packages may be nested within other packages.

parameter The specification of a variable that can be changed, passed,
or returned. A parameter may include a name, type, and
direction. Parameters are used for operations, messages, and
events. Synonyms: formal parameter. Contrast: argument.

parameterized element The descriptor for a class with one or more unbound
parameters. Synonym: template.

parent In a generalization relationship, the generalization of
another element, the child. See: subclass, subtype. Contrast:
child.

participate The connection of a model element to a relationship or to a
reified relationship. For example, a class participates in an
association, an actor participates in a use case.

partition 1. activity graphs: A portion of an activity graphs that
organizes the responsibilities for actions. See: swimlane.
2. architecture: A set of related classifiers or packages at the
same level of abstraction or across layers in a layered
architecture. A partition represents a vertical slice through
an architecture, whereas a layer represents a horizontal
slice. Contrast: layer.

pattern A template collaboration.

persistent object An object that exists after the process or thread that created
it has ceased to exist.

postcondition A constraint that must be true at the completion of an
operation.

precondition A constraint that must be true when an operation is invoked.
C-14 OMG-UML , v1.5 Glossary Terms September 2002

primitive type A pre-defined basic datatype without any substructure, such
as an integer or a string.

procedure A procedure is a coordinated set of actions that models a
computation, such as an algorithm. See: action.

process 1. A heavyweight unit of concurrency and execution in an
operating system. Contrast: thread, which includes
heavyweight and lightweight processes. If necessary, an
implementation distinction can be made using stereotypes.
2. A software development process—the steps and
guidelines by which to develop a system.
3. To execute an algorithm or otherwise handle something
dynamically.

profile A profile is a stereotyped package that contains model
elements which have been customized for a specific domain
or purpose using extension mechanisms, such as
stereotypes, tagged definitions and constraints. A profile
may also specify model libraries on which it depends and
the metamodel subset that it extends.

projection A mapping from a set to a subset of it.

property A named value denoting a characteristic of an element. A
property has semantic impact. Certain properties are
predefined in the UML; others may be user defined. See:
tagged value.

pseudo-state A vertex in a state machine that has the form of a state, but
doesn’t behave as a state. Pseudo-states include initial and
history vertices.

physical system 1. The subject of a model.
2. A collection of connected physical units, which can
include software, hardware and people, that are organized to
accomplish a specific purpose. A physical system can be
described by one or more models, possibly from different
viewpoints. Contrast: system.

published model [MOF] A model that has been frozen, and becomes available for
instantiating repositories and for the support in defining
other models. A frozen model’s model elements cannot be
changed.

qualifier An association attribute or tuple of attributes whose values
partition the set of objects related to an object across an
association.
September 2002 OMG-UML , v1.5 Glossary Terms C-15

receive [a message] The handling of a stimulus passed from a sender instance.
See: sender, receiver.

receiver [object] The object handling a stimulus passed from a sender object.
Contrast: sender.

reception A declaration that a classifier is prepared to react to the
receipt of a signal.

reference 1. A denotation of a model element.
2. A named slot within a classifier that facilitates navigation
to other classifiers. Synonym: pointer.

refinement A relationship that represents a fuller specification of
something that has already been specified at a certain level
of detail. For example, a design class is a refinement of an
analysis class.

relationship A semantic connection among model elements. Examples of
relationships include associations and generalizations.

repository A facility for storing object models, interfaces, and
implementations.

requirement A desired feature, property, or behavior of a system.

responsibility A contract or obligation of a classifier.

reuse The use of a pre-existing artifact.

role The named specific behavior of an entity participating in a
particular context. A role may be static (e.g., an association
end) or dynamic (e.g., a collaboration role).

run time The period of time during which a computer program
executes. Contrast: modeling time.

scenario A specific sequence of actions that illustrates behaviors. A
scenario may be used to illustrate an interaction or the
execution of a use case instance. See: interaction.

schema [MOF] In the context of the MOF, a schema is analogous to a
package which is a container of model elements. Schema
corresponds to an MOF package. Contrast: metamodel,
package.
C-16 OMG-UML , v1.5 Glossary Terms September 2002

semantic variation point A point of variation in the semantics of a metamodel. It
provides an intentional degree of freedom for the
interpretation of the metamodel semantics.

send [a message] The passing of a stimulus from a sender instance to a
receiver instance. See: sender, receiver.

sender [object] The object passing a stimulus to a receiver object. Contrast:
receiver.

sequence diagram A diagram that shows object interactions arranged in time
sequence. In particular, it shows the objects participating in
the interaction and the sequence of messages exchanged.
Unlike a collaboration diagram, a sequence diagram
includes time sequences but does not include object
relationships. A sequence diagram can exist in a generic
form (describes all possible scenarios) and in an instance
form (describes one actual scenario). Sequence diagrams
and collaboration diagrams express similar information, but
show it in different ways. See: collaboration diagram.

signal The specification of an asynchronous stimulus
communicated between instances. Signals may have
parameters.

signature The name and parameters of a behavioral feature. A
signature may include an optional returned parameter.

single inheritance A semantic variation of generalization in which a type may
have only one supertype. Synonym: multiple inheritance
[OMA]. Contrast: multiple inheritance.

single valued [MOF] A model element with multiplicity defined is single valued
when its Multiplicity Type:: upper attribute is set to one.
The term single-valued does not pertain to the number of
values held by an attribute, parameter, etc., at any point in
time, since a single-valued attribute (for instance, with a
multiplicity lower bound of zero) may have no value.
Contrast: multi-valued.

specification A declarative description of what something is or does.
Contrast: implementation.

state A condition or situation during the life of an object during
which it satisfies some condition, performs some activity, or
waits for some event. Contrast: state [OMA].
September 2002 OMG-UML , v1.5 Glossary Terms C-17

statechart diagram A diagram that shows a state machine. See: state machine.

state machine A behavior that specifies the sequences of states that an
object or an interaction goes through during its life in
response to events, together with its responses and actions.

static classification A semantic variation of generalization in which an object
may not change classifier. Contrast: dynamic classification.

stereotype A new type of modeling element that extends the semantics
of the metamodel. Stereotypes must be based on certain
existing types or classes in the metamodel. Stereotypes may
extend the semantics, but not the structure of pre-existing
types and classes. Certain stereotypes are predefined in the
UML, others may be user defined. Stereotypes are one of
three extensibility mechanisms in UML. See: constraint,
tagged value.

stimulus The passing of information from one instance to another,
such as raising a signal or invoking an operation. The
receipt of a signal is normally considered an event. See:
message.

string A sequence of text characters. The details of string
representation depend on implementation, and may include
character sets that support international characters and
graphics.

structural feature A static feature of a model element, such as an attribute.

structural model aspect A model aspect that emphasizes the structure of the objects
in a system, including their types, classes, relationships,
attributes, and operations.

subactivity state A state in an activity graph that represents the execution of
a non-atomic sequence of steps that has some duration.

subclass In a generalization relationship, the specialization of
another class; the superclass. See: generalization. Contrast:
superclass.

submachine state A state in a state machine which is equivalent to a
composite state but its contents is described by another state
machine.

substate A state that is part of a composite state. See: concurrent
state, disjoint state.

subpackage A package that is contained in another package.
C-18 OMG-UML , v1.5 Glossary Terms September 2002

subsystem A grouping of model elements that represents a behavioral
unit in a physical system. A subsystem offers interfaces and
has operations. In addition, the model elements of a
subsystem can be partitioned into specification and
realization elements. See package. See: physical system.

subtype In a generalization relationship, the specialization of
another type; the supertype. See: generalization. Contrast:
supertype.

superclass In a generalization relationship, the generalization of
another class; the subclass. See: generalization. Contrast:
subclass.

supertype In a generalization relationship, the generalization of
another type; the subtype. See: generalization. Contrast:
subtype.

supplier A classifier that provides services that can be invoked by
others. Contrast: client.

swimlane A partition on a activity diagram for organizing the
responsibilities for actions. Swimlanes typically correspond
to organizational units in a business model. See: partition.

synch state A vertex in a state machine used for synchronizing the
concurrent regions of a state machine.

system A top-level subsystem in a model. Contrast: physical
system.

tagged value The explicit definition of a property as a name-value pair. In
a tagged value, the name is referred as the tag. Certain tags
are predefined in the UML; others may be user defined.
Tagged values are one of three extensibility mechanisms in
UML. See: constraint, stereotype.

template Synonym: parameterized element.

thread [of control] A single path of execution through a program, a dynamic
model, or some other representation of control flow. Also, a
stereotype for the implementation of an active object as
lightweight process. See process.

time event An event that denotes the time elapsed since the current
state was entered. See: event.
September 2002 OMG-UML , v1.5 Glossary Terms C-19

time expression An expression that resolves to an absolute or relative value
of time.

top level A stereotype of package denoting the top-most package in a
containment hierarchy. The topLevel stereotype defines the
outer limit for looking up names, as namespaces “see”
outwards. For example, opLevel subsystem represents the
top of the subsystem containment hierarchy.

trace A dependency that indicates a historical or process
relationship between two elements that represent the same
concept without specific rules for deriving one from the
other.

transient object An object that exists only during the execution of the
process or thread that created it.

transition A relationship between two states indicating that an object
in the first state will perform certain specified actions and
enter the second state when a specified event occurs and
specified conditions are satisfied. On such a change of state,
the transition is said to fire.

type A stereotyped class that specifies a domain of objects
together with the operations applicable to the objects,
without defining the physical implementation of those
objects. A type may not contain any methods, maintain its
own thread of control, or be nested. However, it may have
attributes and associations. Although an object may have at
most one implementation class, it may conform to multiple
different types. See also: implementation class Contrast:
interface.

type expression An expression that evaluates to a reference to one or more
types.

uninterpreted A placeholder for a type or types whose implementation is
not specified by the UML. Every uninterpreted value has a
corresponding string representation. See: any [CORBA].

usage A dependency in which one element (the client) requires the
presence of another element (the supplier) for its correct
functioning or implementation.
C-20 OMG-UML , v1.5 Glossary Terms September 2002

use case [class] The specification of a sequence of actions, including
variants, that a system (or other entity) can perform,
interacting with actors of the system. See: use case
instances.

use case diagram A diagram that shows the relationships among actors and
use cases within a system.

use case instance The performance of a sequence of actions being specified in
a use case. An instance of a use case. See: use case class.

use case model A model that describes a system’s functional requirements
in terms of use cases.

utility A stereotype that groups global variables and procedures in
the form of a class declaration. The utility attributes and
operations become global variables and global procedures,
respectively. A utility is not a fundamental modeling
construct, but a programming convenience.

value An element of a type domain.

vertex A source or a target for a transition in a state machine. A
vertex can be either a state or a pseudo-state. See: state,
pseudo-state.

view A projection of a model, which is seen from a given
perspective or vantage point and omits entities that are not
relevant to this perspective.

view element A view element is a textual and/or graphical projection of a
collection of model elements.

view projection A projection of model elements onto view elements. A view
projection provides a location and a style for each view
element.

visibility An enumeration whose value (public, protected, or private)
denotes how the model element to which it refers may be
seen outside its enclosing namespace.
September 2002 OMG-UML , v1.5 Glossary Terms C-21

C-22 OMG-UML , v1.5 Glossary Terms September 2002

Index D
A
abstract class 3-38
abstract operation 3-46
abstract syntax section 2-9
Abstraction 2-17, 2-18
access 3-63, 3-91
access (Permission) 2-52, 2-195, 2-200
accessing a package 3-63
accessing elements 2-51
Action 2-107
action

definition 2-214
specifying 2-214

action (Message) 2-122
action descriptions

conventions 2-210
action execution

status 2-217
action expression 3-145
action foundation 2-207, 2-214
action language mapping B-1
action state 3-158
action-object flow relationships 3-163
ActionSequence 2-107
ActionState 2-174, 2-178, 2-181
activation 3-108, 3-110
activator (Message) 2-122
active class 2-28
active object 3-128
active state 2-159
active state configuration 2-159
activity diagram 3-155
activity graph 3-155
Activity Graphs Package 2-172, 2-183
activity in a state 2-159
activity state 3-158, 3-159
ActivityGraph 2-175, 2-178, 2-181
Actor 2-133, 2-136, 2-138
actor 3-97

actor relationship 3-99
addition (Include) 2-135
addOnly (ChangeableKind) 2-22, 2-54, 2-91
addOnly (keyword) 3-73
adornment

on association 3-68
order 3-74

after (keyword) 3-143
aggregate (AggregationKind) 2-22, 2-90
aggregation 3-72
aggregation (AssociationEnd) 2-22, 2-70
AggregationKind 2-90
alias (ElementImport) 2-186
angle bracket

for binding argument 3-55
annotatedElement (Comment) 2-33
architecture of metamodel 2-4
ArgListsExpression 2-90
argument (Binding) 2-27
argument (Stimulus) 2-107
argument list 3-133
arrow

dashed
for constraint 3-27
for dependency 3-90
for extend 3-98
for flow relationship 3-65
for include 3-98
for instance of 3-93
for object flow 3-163
for realization 3-49
for return 3-112

solid
for call 3-112
for generalization 3-86
for message 3-111
for navigation 3-73
for transition 3-145

Artifacts 1-2
OMG-Unified Modeling Language, v1.5 Index-1

development project 1-2
UML-defining Artifacts 1-2

artifacts
UML-defining 1-2

Association 2-19, 2-56, 2-69
association 3-68

navigation 2-255
association (AssociationEnd) 2-24
association (Classifier) 2-31
association (keyword) 3-85
association (Link) 2-103
association (LinkEnd) 2-104
association class 3-69, 3-77
association end 3-68, 3-71
association name 3-68
association role 3-125
AssociationClass 2-21, 2-57, 2-71
AssociationEnd 2-21, 2-57, 2-69
associationEnd (Attribute) 2-25
associationEnd (LinkEnd) 2-104
AssociationEndRole 2-118, 2-122
AssociationRole 2-118, 2-123
Attribute 2-24, 2-58
attribute 3-38, 3-41

in object 3-65
attribute (AttributeLink) 2-101
attribute writing B-9, B-10
AttributeLink 2-101, 2-107
available input and output 2-229
availableContents (ClassifierRole) 2-119
availableFeature (ClassifierRole) 2-119
availableQualifier (AssociationEndRole) 2-118

B
Bag 6-40
bar

for stub state 3-152
for stubbed transition 3-148
for synchronization, fork, join 3-146

base (AssociationEndRole) 2-118
base (AssociationRole) 2-119
base (ClassifierRole) 2-119
base (Extend) 2-134
base (Include) 2-135
baseClass (Stereotype) 2-82
Basic Values and Types 6-7
become (Flow) 2-41
become (keyword) 3-65
before-after methods 2-313
behavior

of operation as note 3-46
Behavioral Elements Package 2-97
BehavioralFeature 2-25, 2-58
binary association 3-68
bind (keyword) 3-91
Binding 2-26, 2-47, 2-59, 2-77
binding 3-54
blocked 2-311
body (Comment) 2-33
body (Constraint) 2-35, 2-81
body (Expression) 2-92

body (Mapping) 2-93
body (Method) 2-46
boldface

for class name 3-36
for compartment name 3-39
for special list element 3-37

Boolean 2-90, 6-35
Boolean property 3-30
BooleanExpression 2-90
bound (SynchState) 2-153, 2-167
bound element 3-54
braces

for constraint 3-27, 3-28
for property string 3-29, 3-38, 3-42

branch 3-159, 3-160
branch point 3-150
break 2-328
bull’s eye

for final state 3-141

C
call 3-108
call (Usage) 2-56
call event 2-314, 3-143
CallAction 2-102, 2-107
CallConcurrencyKind 2-91
CallEvent 2-146
CallState 2-176, 2-179
chain of transitions 3-150
changeability 3-73
changeability (AssociationEnd) 2-22
changeability (Attribute) 2-54
changeable (ChangeableKind) 2-22, 2-54, 2-91
ChangeableKind 2-91
ChangeEvent 2-147
changeExpression (ChangeEvent) 2-147
child (Generalization) 2-44
choice (PseudostateKind) 2-95, 2-149
circle

bull’s eye
for final state 3-141

filled
for initial state 3-140

for history state 3-148
for interface 3-51
for junction 3-150
for synch state 3-154

Class 2-27, 2-59, 2-72
class 3-35

declared in another class 3-82
class description

conventions 2-211
class diagram 3-34
class in state 3-65
class scope

attribute 3-43
operation 3-45

Classifier 2-29, 2-60
classifier 3-35
classifier (Instance) 2-103
classifier (ScopeKind) 2-40, 2-54, 2-95
Index-2 OMG-Unified Modeling Language, v1.4 September 2002

classifier role 3-124
ClassifierInState 2-176
ClassifierRole 2-119, 2-123
clause 2-231

loop 2-232
client (Dependency) 2-36
clientDependency (ModelElement) 2-47
Collaboration 2-119, 2-120, 2-124, 2-125, 2-127
collaboration 3-114, 3-121
collaboration diagram 3-114, 3-116
collaboration role 3-124
collaborationMultiplicity (AssociationEndRole) 2-118
Collaborations Package 2-114
Collect Operation 6-24
Collection 6-36
collection action 2-209
Collection Operations 6-22
Collection Type Hierarchy and Type Conformance Rules 6-21
Collection-Related Typed 6-36
Collections 6-20
Collections of Collections 6-21
colon

for return type 3-44
for sequence expression 3-131
for type 3-42, 3-45, 3-53, 3-62, 3-65, 3-72, 3-81, 3-124, 3-173,

3-175
Combining Properties 6-14
Comment 2-32, 2-62, 6-11
comment 3-26, 3-28
Common Behavior Package 2-97
communication association 3-97, 3-99
communication relationship 2-135, 2-140
communicationConnection (Message) 2-122
communicationLink (Stimulus) 2-107
compartment 3-38

name 3-39
special 3-36

complete
status 2-218

complete (Generalization) 2-45
complete (keyword) 3-87
completion event 2-162
completion transition 2-162
complex transition 3-146, 3-147
Component 2-33, 2-63
component 3-174

on node 3-174
component diagram 3-169
ComponentInstance 2-102, 2-107
composite (AggregationKind) 2-22, 2-70, 2-90
composite object 3-67
composite state 3-140, 3-154
CompositeState 2-147, 2-154, 2-159
composition 3-67, 3-81
Compound transition 2-161
computation action 2-209
computation actions 2-283
concurrency

in state machine 2-165
maximized 2-207
of operation 3-45

synchronizing 2-167
concurrency (Operation) 2-50
concurrent (CallConcurrencyKind) 2-50, 2-91
concurrent lifelines 3-109
concurrent substate 3-140
condition (Extend) 2-134
condition event 3-143
conditional fork 3-169
conflict 2-166
connection (Association) 2-20
connection (Link) 2-103
constant

enumeration 3-57
constrainedElement (Constraint) 2-35, 2-81
constrainedStereotype (Constraint) 2-81
Constraint 2-34, 2-63, 2-77, 2-84
constraint 3-26, 3-28

as list element 3-27
constraint (ModelElement) 2-47, 2-81
constraint language 2-10, 2-86, 3-27
container (StateVertex) 2-152
contents (Partition) 2-177
context 3-115
context (Exception) 2-102
context (Interaction) 2-121, 2-122
context (Signal) 2-106
context (StateMachine) 2-151
continue 2-328
control flow 2-208

on group action 2-231
control flow icon 3-130
control flow type 3-134
control icons 3-165
conventions

action descriptions 2-210
class description 2-211

copy (Flow) 2-41
copy (keyword) 3-65
copying composite 2-70
create (BehavioralFeature) 2-26
create (CallEvent) 2-147
create (Usage) 2-56
CreateAction 2-102, 2-108
creating a link B-14
creation 3-109, 3-115, 3-134
cross

for destruction 3-109
cube

for node 3-173

D
data flow 2-207
data flow relationship 2-181
Data Types Foundation Package 2-89
DataType 2-35, 2-63, 2-77, 2-89
DataValue 2-102, 2-108, 2-112
decision, See branch
deepHistory (PseudostateKind) 2-95, 2-149, 2-160
default entry 2-160
defaultElement (TemplateParameter) 2-55
defaultValue (Parameter) 2-51
September 2002 OMG-Unified Modeling Language, v1.4 Index-3

defer (keyword) 3-166
deferrableEvent (State) 2-150
deferred event 2-159, 2-161, 3-166
delegation 2-313
Dependency 2-35, 2-64, 2-77
dependency 3-90

subsystem 3-21
deployment diagram 3-171
deploymentLocation (Component) 2-34
Derivation 2-17
derivation 3-91
derive (Abstraction) 2-18
derive (keyword) 3-91
derived (ModelElement) 2-48
derived element 3-93
descriptor 2-74
design pattern 3-117
destination state 3-146
destroy (BehavioralFeature) 2-26
destroy (CallEvent) 2-147
DestroyAction 2-102
destroyed (Instance) 2-103
destroyed (keyword) 3-115
destroyed (Link) 2-104
destroying a link B-16
destroying composite 2-70
destruction 3-109, 3-115, 3-134
development project 1-2
diamond

filled
for composition 3-81

for aggregation 3-72
for branch or merge 3-160
for merge 3-150
for n-ary association 3-79

direct receive and reply 2-314
discriminator 2-45, 3-86, 3-87
discriminator (Generalization) 2-44, 2-45
disjoint (Generalization) 2-45
disjoint (keyword) 3-87
disjoint substate 3-140
dispatchAction (Stimulus) 2-107
do activity 2-159, 3-138
doActivity (State) 2-151
document (Component) 2-19
documentation (Element) 2-36
dog-eared rectangle

for note 3-13
dot

for navigation 3-13
for sequence expression 3-131

double colon
for pathname 3-36, 3-62

double dot
for integer range 3-75

dynamic choice point 3-151
dynamic concurrency 3-168
dynamicArguments (ActionState) 2-175
dynamicArguments (SubactivityState) 2-177
dynamicMultiplicity (ActionState) 2-175
dynamicMultiplicity (SubactivityState) 2-177

E
effect (Transition) 2-153
elapsed-time event 3-143
Element 2-36, 2-64
element property 3-29
ElementImport 2-186, 2-189
ElementOwnership 2-36, 2-64
ElementResidence 2-37, 2-64
ellipse

dashed
for collaboration 3-118

for use case 3-96
ellipsis

for generalization 3-86
for missing element 3-39

else (keyword) 3-151
enabled transition 2-162
entering a concurrent composite state 2-160
entry (ActionState) 2-175
entry (State) 2-150
entry action 2-159, 3-138
entry stub state 3-152
Enumeration 2-38, 2-64, 6-35
enumeration 3-57
enumeration (EnumerationLiteral) 2-39
enumeration literal 3-57
Enumeration Types 6-8
EnumerationLiteral 2-38, 2-64
equal sign

for attribute value 3-65
for default value 3-45, 3-53
for initial value 3-42
for tagged value 3-29

Event 2-148, 2-158
event 3-142
event processing 2-164
event signature 3-145
example

Fast Fourier Transform algorithm B-26
examples

use of action semantics B-1
examples section 3-5
Exception 2-102, 2-108, 2-113
exception

called procedure 2-310
executable (Component) 2-19, 2-34
executing

status 2-218
execution engine 2-207
Exists Operation 6-26
exit (State) 2-151
exit action 2-159, 3-138
exit stub state 3-152
exiting a concurrent state 2-161
exiting a non-concurrent state 2-160
Expression 2-91
expression 3-11
expression (Guard) 2-148
expression (ProgrammingLanguageDataType) 2-53
Extend 2-134, 2-136, 2-142
Index-4 OMG-Unified Modeling Language, v1.4 September 2002

extend 3-98
extend (UseCase) 2-136
extendedElement (Stereotype) 2-82
extensibility mechanism 3-29, 3-31
extension (Extend) 2-134
Extension Mechanisms Foundation Package 2-77
extension point 3-96
extension points compartment 3-96
ExtensionPoint 2-134, 2-137
extensionPoint (Extend) 2-134
extensionPoint (UseCase) 2-136
extent of classifier

reading 2-259

F
facade (Package) 2-188
facade (stereotype) 3-17
Facility Implementation Requirements 5-24
factored transition path 3-150
false (Boolean) 2-90
Fast Fourier transform (FFT) B-26
Feature 2-39, 2-64
feature 3-38
feature (Classifier) 2-31
Features on Types Themselves 6-19
FFT (fast Fourier transform) B-26
file (Component) 2-19
final state 3-141
FinalState 2-148, 2-154, 2-161
fire a transition 2-165
Flow 2-40
flow relationship 3-65
focus of control 3-108, 3-110
font usage 3-8
ForAll Operation 6-25
fork (PseudostateKind) 2-95, 2-149
fork of control 3-146
formalism 2-8
Foundation package 2-11
four-layer metamodel architecture 2-4
framework (Package) 2-188, 2-195
framework (stereotype) 3-17
friend (Permission) 2-52
frozen (ChangeableKind) 2-22, 2-54, 2-91
frozen (keyword) 3-43, 3-73
full descriptor 2-74

G
GeneralizableElement 2-41, 2-64, 2-74
Generalization 2-43, 2-65, 2-74

of package 2-195
of subsystem 2-198
of use case 2-141

generalization 3-86
constraints on 3-87
use case 3-98

generalization (GeneralizableElement) 2-42
Geometry 2-92
global (AssociationEnd) 2-24
global (keyword) 3-85

global (LinkEnd) 2-104
Goals 1-4
Grammar for OCL 6-45
graphic constructs 3-6
graphic marker 3-32
group action 2-208, 2-230
group property 3-39
Guard 2-148, 2-154, 2-163
guard (Transition) 2-153
guard condition 3-145
guarded (CallConcurrencyKind) 2-50, 2-91
guillemets

for keyword 3-11
for stereotype 3-31, 3-38

H
Harel statechart 2-172
hidden element 3-39
high-level transition 2-161
history

deep 2-160
shallow 2-160

history state 3-148
host

execution 2-219
hyperlink 3-7

I
icon

for stereotype 3-32, 3-38
icon (Stereotype) 2-82
icons 3-6
If-then-else logic B-3
implementation (Generalization) 2-44
implementation class

and type 3-49
implementation diagram 3-169
ImplementationClass 2-65
implementationClass (Class) 2-29, C-20
implementationLocation (ModelElement) 2-47
implicit (Association) 2-20
import 3-63, 3-91
import (Permission) 2-52, 2-195, 2-200
imported element 3-17
importedElement (Package) 2-187
importing a package 3-63
importing elements 2-51
in (ParameterDirectionKind) 2-51, 2-94
Include 2-135, 2-137, 2-141
include 3-139

a use case 3-98
include (keyword) 3-152
include (UseCase) 2-136
incoming (StateVertex) 2-152
incomplete (Generalization) 2-45
incomplete (keyword) 3-87
indeterminacy

conditional 2-232
Industry Trends 1-3
Inheritance 2-74
September 2002 OMG-Unified Modeling Language, v1.4 Index-5

inheritance
request resolution 2-313

inheritance relationship 2-43
initial (PseudostateKind) 2-95, 2-149
initial state 3-140
initial value

of attribute 3-42
initialValue (Attribute) 2-25
inout (ParameterDirectionKind) 2-51, 2-94
input

available 2-229
input event icon 3-165
input pin 2-215
input signature 2-325
Instance 2-102, 2-108
instance 3-14, 3-93

of classifier 3-93
instance (LinkEnd) 2-104
instance (ScopeKind) 2-40, 2-54, 2-95
instance level collaboration 3-115
instantiable subsystem 3-19
instantiate (Usage) 2-56
Instantiation 2-74
inState (ClassifierInState) 2-176
Integer 2-92, 6-33
Interaction 2-121, 2-126, 2-131
interaction 3-123
interaction (Collaboration) 2-120, 2-121
interaction (Message) 2-122
Interface 2-45, 2-65, 2-75

use case 2-140
interface 3-50

on subsystem 3-21
interface specifier 3-72
internal transition 2-162
internal transition compartment 3-138
internalTransition (State) 2-151
invariant (Constraint) 2-35
Invariants 6-5
invisible hyperlink 3-7
isAbstract (GeneralizableElement) 2-42
isAbstract (Operation) 2-50
isAbstract (Reception) 2-106
isActive (Class) 2-28
isConcurrent (CompositeState) 2-147
isDynamic (ActionState) 2-175
isDynamic (SubactivityState) 2-177
isInstantiable (Subsystem) 2-189
isLeaf (GeneralizableElement) 2-42
isLeaf (Operation) 2-50
isLeaf (Reception) 2-106
isList flag 2-216
isNavigable (AssociationEnd) 2-23
isQuery (BehavioralFeature) 2-26
isRegion (CompositeState) 2-148
isRoot (GeneralizableElement) 2-42
isRoot (Operation) 2-50
isRoot (Reception) 2-106
isSpecification (ElementOwnership) 2-37, 2-186
isSynch (ObjectFlowState) 2-176
italics

for abstract class 3-38
for abstract operation 3-46

Iterate Operation 6-27
iteration indicator 3-132

J
join (PseudostateKind) 2-95, 2-149
join of control 3-146
jump type 2-327
junction 3-150
junction (PseudostateKind) 2-95, 2-149

K
keyword 3-11
kind (Parameter) 2-51
kind (PseudoState) 2-150

L
label 3-10
language (Expression) 2-92
layer, metamodel 2-4
library (Component) 2-19
lifeline 3-102, 3-108
line 3-68

dashed
for association class 3-78
for lifeline 3-109

solid
for actor-use case 3-98
for association 3-68
for association class 3-78
for communication association 3-99

Link 2-103, 2-110, 2-113
link 3-84

creation B-14
destroying B-16
identity 2-254
reading 2-256
writing 2-257

LinkEnd 2-104, 2-110
linkEnd (Instance) 2-103
LinkObject 2-104, 2-110
list compartment 3-38
literal

of enumeration type 3-57
literal (Enumeration) 2-38
local (AssociationEnd) 2-24
local (keyword) 3-85
local (LinkEnd) 2-104
location (ExtensionPoint) 2-134
LocationReference 2-92

M
many 3-75
Mapping 2-92
mapping (Abstraction) 2-18
mapping of languages 2-206
mapping section 3-6
MappingExpression 2-93
marshalling 2-216
Index-6 OMG-Unified Modeling Language, v1.4 September 2002

Message 2-122, 2-126
message 3-111, 3-130
message (Interaction) 2-121, 2-122
message label 3-131
message name 3-133
Message Sequence Chart notation 3-102
messaging examples B-19
metaclass 3-57
metaclass (Classifier) 2-31
meta-metamodel layer 2-4
metamodel (Model) 2-185, 2-187
metamodel layer 2-5
Method 2-46, 2-65
method 3-47
minus sign

for private visibility 3-42
Missing Rolenames 6-14
Model 2-186, 2-189, 2-199
model 3-24
model layer 2-5
model management 3-16
Model Management Package 2-184
model organization 3-16
ModelElement 2-46, 2-66, 2-81, 2-84
multiobject 3-127
Multiplicity 2-93
multiplicity 3-75

of association end 3-71
of attribute 3-42
of qualified association 3-76
on dynamic concurrency 3-168

multiplicity (AssociationEnd) 2-23
multiplicity (AssociationRole) 2-119
multiplicity (Attribute) 2-54
multiplicity (ClassifierRole) 2-119
MultiplicityRange 2-94
multi-way decision B-4
mustIsolate flag 2-234

N
Name 2-94
name 3-9
name (Association) 2-20
name (AssociationEnd) 2-23
name (BehavioralFeature) 2-26
name (Feature) 2-40
name (ModelElement) 2-47
name (Parameter) 2-51
name compartment 3-38, 3-138
named compartment 3-39
Namespace 2-48, 2-67
namespace (ModelElement) 2-47
n-ary association 3-79
natural language 2-10, 2-86
navigability 2-69, 3-72
navigating an association B-17
navigation

across association 2-255
navigation arrow 3-73
Navigation from Association Classes 6-16
Navigation over Associations with Multiplicity Zero or One 6-14

Navigation through Qualified Associations 6-16
Navigation to Association Types 6-15
nested state 3-140
nesting

for composition 3-81
new (Instance) 2-103
new (keyword) 3-115
new (Link) 2-104
Node 2-49, 2-68
node 3-173, 3-174
NodeInstance 2-105, 2-110
none (AggregationKind) 2-22, 2-90
notation section 3-5
note 3-13, 3-28
Notes section 2-10

O
Object 2-105, 2-111, 2-112
object 3-64, 3-124, 3-163

lifeline 3-108
playing role 3-125

Object Constraint Language 6-1
object creation

with attribute assignment B-8
object destruction B-8
object diagram 3-35
object flow 3-163
object in state 3-163
Object Management Group iii-xxvii

address of iii-xxviii
Object Message Sequence Chart notation 3-102
ObjectFlowState 2-176, 2-179, 2-181
Objects and Properties 6-11
occurrence

jump 2-327
OCL 2-9, 2-86, 3-27
OCL - Legend 6-3
OCL (Language) 2-92
OCL expression 3-12
OCL Grammar 6-45
OCL Uses 6-3
OclAny 6-30, 6-31
OclExpression 6-31
OclType 6-29
Operation 2-49, 2-68, 2-76
operation 3-38, 3-44, 3-47

pointer to 2-315
operation (CallEvent) 2-146
operation lookup 2-313
ordered (keyword) 3-71
ordered (OrderingKind) 2-22, 2-54, 2-94
ordering 3-42, 3-71
ordering (AssociationEnd) 2-22, 2-54
OrderingKind 2-94
out (ParameterDirectionKind) 2-51, 2-94
outgoing (StateVertex) 2-152
output

available 2-229
output event icon 3-165
output pin 2-215
output signature 2-325
September 2002 OMG-Unified Modeling Language, v1.4 Index-7

overlapping (Generalization) 2-45
overlapping (keyword) 3-87
ownedElement (Collaboration) 2-120
ownedElement (Namespace) 2-49
ownedInstance (Instance) 2-103
ownedLink (Instance) 2-103
owner (Feature) 2-40
owner (Instance) 2-103
owner (Link) 2-103
ownerScope (Feature) 2-40
ownership of elements 2-194

P
Package 2-187, 2-189, 2-194
package 3-16
package (VisibilityKind) 2-23, 2-37, 2-38, 2-40, 2-96
package structure of UML 2-6
Parameter 2-50, 2-68
parameter (AssociationEnd) 2-24
parameter (BehavioralFeature) 2-26
parameter (Event) 2-148
parameter (keyword) 3-85
parameter (LinkEnd) 2-104
parameter (ObjectFlowState) 2-176
parameter list 3-45
ParameterDirectionKind 2-94
parameterized class 3-52
parent (Generalization) 2-44
parentheses

for argument list 3-13
for parameter list 3-44, 3-139, 3-145

participant (AssociationEnd) 2-24
participation (in a use case) 3-97, 3-99
Partition 2-177
partition (ActivityGraph) 2-175
passive class 2-28
path 3-7, 3-62

for association 3-68
path (symbol) 3-6, 3-7
pathname 3-62
Pathnames for Packages and Properties 6-17
Pattern 2-132
pattern 3-117
pentagon

for signal receipt 3-165
for signal sending 3-165

Permission 2-51
persistence (Association) 2-20
persistence (Attribute) 2-55
persistence (Classifier) 2-31
persistent (Instance) 2-103
pin value 2-217
plus sign

for containment tree 3-17
for public visibility 3-42

postcondition (Constraint) 2-35
pound sign

for protected visibility 3-42
powertype 3-61
powertype (Classifier) 2-31
powertype (Generalization) 2-44

powertypeRange (Classifier) 2-31
Pre and Postconditions 6-5
Precedence Rules 6-10
precondition (Constraint) 2-35
predecessor 3-108, 3-131
predecessor (Message) 2-122
Predefined Features on All Objects 6-18
Predefined OCL Types 6-29
presentation (ModelElement) 2-47
presentation options 3-5, 3-8
PresentationElement 2-52, 2-68, 2-76
Previous Values in Postconditions 6-21
Primitive 2-52, 2-68
priority of transition 2-166
private (keyword) 3-42
private (VisibilityKind) 2-23, 2-37, 2-38, 2-40, 2-96
procedural sequence diagram 3-108
procedure execution

status 2-218
ProcedureExpression 2-95
Process 1-8
process (Classifier) 2-31
Programming Languages 1-7
ProgrammingLanguageDataType 2-52
pronged rectangle

for component 3-175
propagation semantics 2-70
Properties 6-12

Association Ends and Navigation 6-13
Attributes 6-12
Operations 6-12

property 3-29
property string 3-29, 3-39
protected (keyword) 3-42
protected (VisibilityKind) 2-23, 2-37, 2-38, 2-40, 2-96
protocol state machine 2-167
PseudoState 2-149, 2-155, 2-180
PseudostateKind 2-95
public (keyword) 3-42
public (VisibilityKind) 2-23, 2-37, 2-38, 2-40, 2-96

Q
qualifier 2-71, 3-72, 3-76
qualifier (AssociationEnd) 2-24
qualifierValue (LinkEnd) 2-104
query 3-45

R
range 3-75
read action 2-208
read link actions 2-256
ready

status 2-218
Real 6-31
Realization 2-17
realization

of interface by classifier 3-51
realization element 3-19
realization relationship 3-49
realize (Abstraction) 2-18
Index-8 OMG-Unified Modeling Language, v1.4 September 2002

receive
direct 2-314
request 2-312

receiver (Message) 2-122
receiver (Stimulus) 2-107
Reception 2-106, 2-111
reception (Signal) 2-107
rectangle

dog-eared
for note 3-13

pronged
for component 3-175

rounded ends
for action state 3-158
for state 3-138
for subactivity state 3-159

solid
for active class 3-128
for association class 3-78
for class 3-36
for object 3-64
for qualifier 3-76

stacked
for multiobject 3-127

tabbed
for package 3-16

thin
for activation lifeline 3-110

recurrence 3-132
reference to another package 3-36
referenceState (StubState) 2-152
referencing elements 2-51
refine (Abstraction) 2-18
refine (keyword) 3-91
Refinement 2-17, 2-77
refinement 3-91
refinement of state machine 2-169
Relationship 2-35, 2-53
remote procedure call 2-310
reply 2-310

direct 2-314
representedClassifier (Collaboration) 2-120
representedOperation (Collaboration) 2-120
request

performing 2-311
request object 2-216, 2-311
requiredTag (Stereotype) 2-82
resident (Component) 2-34
resident (ComponentInstance) 2-102
resident (NodeInstance) 2-105
resolution

OO traditional 2-324
responsibility (Comment) 2-33
return (ParameterDirectionKind) 2-51, 2-94
return type expression 3-45
return value 3-132
ReturnAction 2-106, 2-112
Re-typing or Casing 6-9
right arrow

for special operation 3-13
role 3-15

rolename 3-72
run to completion 2-164

S
Scope 1-6
ScopeKind 2-95
segment descriptor 2-74
Select and Reject Operations 6-23
selecting a subset of objects B-11
Self 6-4
self (AssociationEnd) 2-24
self (keyword) 3-85
self (LinkEnd) 2-104
Semantics 2-86, 2-194
semantics (Classifier) 2-31
semantics (Operation) 2-50
semantics of state machines 2-158
Semantics Package 2-194
semantics section 2-10, 3-5
semaphore 2-167
send (Usage) 2-56
SendAction 2-106, 2-112
sender (Message) 2-122
sender (Stimulus) 2-107
sending a signal B-23
Sequence 6-43
sequence diagram 3-102, 3-106
sequence expression 3-131
sequence number 3-115, 3-131
sequential (CallConcurrencyKind) 2-50, 2-91
sequential substate 3-140
Set 6-38
shallowHistory (PseudostateKind) 2-95, 2-149, 2-160
Shorthand for Collect 6-25
Signal 2-106, 2-112, 2-113
signal 3-143

declaration 3-143
signal (Reception) 2-106
signal (SignalEvent) 2-150
signal receipt icon 3-165
signal sending icon 3-165
SignalEvent 2-150
signalflow (ObjectFlowState) 2-177
signature 3-132

action 2-215
simple object creation B-7
simple transition 3-145
SimpleState 2-150
slash

for action expression 3-145
for derived element 3-93
for predecessor 3-131
for role 3-124

slot (Instance) 2-103
sorted (keyword) 3-71
sorted (OrderingKind) 2-22, 2-54, 2-94
source (Transition) 2-153
source state 3-146
specialization (GeneralizableElement) 2-42
specification (AssociationEnd) 2-24
specification (Method) 2-46
September 2002 OMG-Unified Modeling Language, v1.4 Index-9

specification (Reception) 2-106
specification element 3-19
specification level collaboration 3-115, 3-116
specifiedEnd (Classifier) 2-31
square brackets

for attribute multiplicity 3-42, 3-43
for condition clause 3-132
for guard condition 3-139, 3-145
for selection 3-13
for state 3-65, 3-163

standard elements section 2-10
star

for iteration indicator 3-132
for multiplicity 3-75

State 2-150, 2-159
state 3-137

composite 3-154
of object 3-65

state machine
request handling 2-312

state machine refinement 2-169
State Machines Package 2-143
statechart 2-172
statechart diagram 3-135
StateMachine 2-151, 2-155, 2-164

semantics 2-158
StateVertex 2-151
Stereotype 2-82, 2-85
stereotype 3-31, 3-57

class 3-38
object 3-65

stereotype (ModelElement) 2-81
stereotypeConstraint (Stereotype) 2-82
Stereotypes iii-xxix, 6-1
stick arrowhead

for control flow 3-112
stick man figure

for use case 3-97
Stimulus 2-107, 2-112, 2-113
stimulus 3-111, 3-130
String 2-96, 6-34
string 3-7, 3-8, 3-10
StructuralFeature 2-53, 2-68
stub (Package) 2-188
stub (stereotype) 3-17
stub state 3-152
stubbed transition 3-148
StubState 2-152, 2-167
style guidelines 3-5
subactivity state 3-159
SubactivityState 2-177, 2-178, 2-180, 2-182
submachine (SubactivityState) 2-178
submachine (SubmachineState) 2-152
submachine invocation 3-139
submachine state 3-152
SubmachineState 2-152, 2-157, 2-161
subordinate use case 2-140
substate 3-140
Subsystem 2-107, 2-112, 2-189, 2-193, 2-197
subsystem 3-19, 3-21
subtyping and state machine 2-170

subvertex (CompositeState) 2-147
superordinate use case 2-140
supplier (Dependency) 2-36
supplierDependency (ModelElement) 2-47
suppressed element 3-39
swimlane 3-161
synch state 3-154, 3-168
synchronization 3-154
synchronization bar 3-146
synchronization fork and join 2-167
synchronous request

state machine 2-314
SynchState 2-152, 2-156, 2-167
system boundary 3-94
systemModel (Model) 2-187
systemModel (stereotype) 3-24

T
tabbed rectangle

for package 3-16
table (Component) 2-19
tagged value 3-29
TaggedValue 2-83, 2-85, 2-86
taggedValue (ModelElement) 2-82
target (Transition) 2-153
targetScope (AssociationEnd) 2-23
targetScope (Attribute) 2-54
taxonomic relationship 2-43, 3-86
template 2-46, 2-47, 2-66, 2-76, 3-52

collaboration 2-132
TemplateParameter 2-55
templateParameter (ModelElement) 2-47
TerminateAction 2-107, 2-112
thread (Classifier) 2-31
tiling (a state) 3-140
time dimension 3-102
time event 3-143
time expression 3-113, 3-145
time interval 3-103
TimeEvent 2-153
TimeExpression 2-96
timing constraint 3-103, 3-113
Tools 1-7
tools, interactive 3-7
top (StateMachine) 2-151
topLevel (Package) 2-188
topLevel (stereotype) 3-17
Trace 2-17, 2-68, 2-77
trace (Abstraction) 2-18, 2-200
trace (keyword) 3-91
transient (Instance) 2-103
transient (keyword) 3-115
transient (Link) 2-104
Transition 2-153, 2-157, 2-161, 2-182

execution 2-163
firing rules 2-166

transition 3-145
chain 3-150
complex 3-146, 3-147
constraint 3-145
execution of requests 2-314
Index-10 OMG-Unified Modeling Language, v1.4 September 2002

name 3-113
simple 3-145
string 3-145
stubbed 3-148
time 3-113
to composite state 3-147

transition (StateMachine) 2-151
triangle

for generalization 3-86
for realization 3-49

trigger (Transition) 2-153
true (Boolean) 2-90
two-dimensional symbols 3-6
Type 2-69
type

and implementation class 3-49
type (Attribute) 2-54
type (Class) 2-28, 2-29, 3-173, C-4, C-9
type (ClassifierInState) 2-176
type (ObjectFlowState) 2-176
type (Parameter) 2-51
Type Conformance 6-8
TypeExpression 2-96
type-instance correspondence 3-14
Types 6-7

U
UML

relationship to 2-204
UML - defined 1-1
UML and other modeling languages 1-8
UML Extension for Business Modeling 4-9
UML Extension for Objectory Process for Software Engineering 4-

1
UML features 1-9
undefined semantics 2-205
Undefined Values 6-11
underlining

for class scope 3-43, 3-45
for instances 3-14
for object 3-64, 3-125

UninterpretedAction 2-107
unlimited multiplicity 3-75
UnlimitedInteger 2-96
unmarshalling 2-216
unordered (keyword) 3-71
unordered (OrderingKind) 2-22, 2-54, 2-94

unordered execution 2-297
Usage 2-55, 2-69, 2-77
usage dependency 3-91
use (keyword) 3-91
use case 3-96
use case diagram 3-94
use case relationship 3-97
Use Cases Package 2-132
UseCase 2-135, 2-137, 2-139

description 2-140
instance 2-140

UseCaseInstance 2-136, 2-138
user object layer 2-5
Using Pathnames for Packages and Properties 6-17
utility (Classifier) 2-31
utility (keyword) 3-56

V
value (AttributeLink) 2-101
variable manipulation actions 2-258
visibility

of association 3-73
of attribute 3-42
of operation 3-45
of package element 3-17

visibility (ElementImport) 2-186
visibility (ElementOwnership) 2-37
visibility (ElementResidence) 2-38
visibility (Feature) 2-40
VisibilityKind 2-96

W
waiting

status 2-218
well-formedness rules section 2-9
when (keyword) 3-143
when (TimeEvent) 2-153
write action 2-208
write link action 2-257
writing attributes B-9, B-10

X
X

for destruction 3-109
xor (Association) 2-20
xor association 3-69
September 2002 OMG-Unified Modeling Language, v1.4 Index-11

	OMG Unified Modeling Language Specification
	Contents
	Foreword
	Preface
	About the Object Management Group (OMG)
	Introduction to OMG Modeling
	Architectural Alignment of UML, MOF, and CORBA
	Document Summary
	Compliance to the UML
	Acknowledgements
	References

	UML Summary
	1.1 Overview
	1.2 Primary Artifacts of the UML
	1.2.1 UML-defining Artifacts
	1.2.2 Development Project Artifacts

	1.3 Motivation to Define the UML
	1.3.1 Why We Model
	1.3.2 Industry Trends in Software
	1.3.3 Prior to Industry Convergence

	1.4 Goals of the UML
	1.5 Scope of the UML
	1.5.1 Outside the Scope of the UML
	1.5.1.1 Programming Languages
	1.5.1.2 Tools
	1.5.1.3 Process

	1.5.2 Comparing UML to Other Modeling Languages
	1.5.3 Features of the UML

	1.6 UML - Past, Present, and Future
	1.6.1 UML 0.8 - 0.91
	1.6.1.1 Precursors to UML
	1.6.1.2 Booch, Rumbaugh, and Jacobson Join Forces

	1.6.2 UML Partners
	1.6.3 UML - Present and Future
	1.6.3.1 Standardization of the UML
	1.6.3.2 Revision of the UML
	1.6.3.3 Industrialization
	1.6.3.4 Future UML Evolution

	UML Semantics
	Part 1 - Background
	2.1 Introduction
	2.1.1 Purpose and Scope
	2.1.2 Approach

	2.2 Language Architecture
	2.2.1 Four-Layer Metamodel Architecture
	2.2.1.1 Architectural Alignment with the MOF Meta-Metamodel

	2.2.2 Package Structure

	2.3 Language Formalism
	2.3.1 Levels of Formalism
	2.3.2 Package Specification Structure
	2.3.2.1 Abstract Syntax
	2.3.2.2 Well-Formedness Rules
	2.3.2.3 Semantics
	2.3.2.4 Standard Elements
	2.3.2.5 Notes

	2.3.3 Use of a Constraint Language
	2.3.4 Use of Natural Language
	2.3.5 Naming Conventions and Typography

	Part 2 - Foundation
	2.4 Foundation Package
	2.5 Core
	2.5.1 Overview
	2.5.2 Abstract Syntax
	Abstraction
	Artifact
	Association
	AssociationClass
	AssociationEnd
	Attribute
	BehavioralFeature
	Binding
	Class
	Classifier
	Comment
	Component
	Constraint
	DataType
	Dependency
	Element
	ElementOwnership
	ElementResidence
	Enumeration
	EnumerationLiteral
	Feature
	Flow
	GeneralizableElement
	Generalization
	Interface
	Method
	ModelElement
	Namespace
	Node
	Operation
	Parameter
	Permission
	PresentationElement
	Primitive
	ProgrammingLanguageDataType
	Relationship
	StructuralFeature
	TemplateArgument
	TemplateParameter
	Usage

	2.5.3 Well-Formedness Rules
	Association
	AssociationClass
	AssociationEnd
	Attribute
	BehavioralFeature
	Binding
	Class
	Classifier
	Comment
	Component
	Constraint
	DataType
	Dependency
	Element
	ElementOwnership
	ElementResidence
	Enumeration
	EnumerationLiteral
	Feature
	GeneralizableElement
	Generalization
	ImplementationClass (stereotype of Class)
	Interface
	Method
	ModelElement
	Namespace
	Node
	Operation
	Parameter
	PresentationElement
	Primitive
	StructuralFeature
	Trace
	Type (stereotype of Class)
	Usage

	2.5.4 Detailed Semantics
	Association
	AssociationClass
	Class
	Inheritance
	Instantiation
	Interface
	Operation
	PresentationElement
	Template
	Miscellaneous

	2.6 Extension Mechanisms
	2.6.1 Overview
	2.6.2 Abstract Syntax
	2.6.2.1 Constraint (as extended)
	2.6.2.2 ModelElement (as extended)
	2.6.2.3 Stereotype
	2.6.2.4 TagDefinition
	2.6.2.5 TaggedValue

	2.6.3 Well-Formedness Rules
	2.6.3.1 Constraint
	2.6.3.2 ModelElement
	2.6.3.3 Stereotype
	2.6.3.4 TagDefinition
	2.6.3.5 TaggedValue

	2.6.4 Detailed Semantics
	2.6.5 Notes

	2.7 Data Types
	2.7.1 Overview
	2.7.2 Abstract Syntax
	AggregationKind
	ArgListsExpression
	Boolean
	BooleanExpression
	CallConcurrencyKind
	ChangeableKind
	Expression
	Geometry
	Integer
	LocationReference
	Mapping
	MappingExpression
	Multiplicity
	MultiplicityRange
	Name
	OrderingKind
	ParameterDirectionKind
	ProcedureExpression
	PseudostateKind
	ScopeKind
	String
	TimeExpression
	TypeExpression
	UnlimitedInteger
	VisibilityKind

	Part 3 - Behavioral Elements
	2.8 Behavioral Elements Package
	2.9 Common Behavior
	2.9.1 Overview
	2.9.2 Abstract Syntax
	AttributeLink
	ComponentInstance
	DataValue
	Exception
	Instance
	Link
	LinkEnd
	LinkObject
	NodeInstance
	Object
	Procedure
	Reception
	Signal
	Stimulus
	SubsystemInstance

	2.9.3 Well-Formedness Rules
	AttributeLink
	ComponentInstance
	DataValue
	Exception
	Instance
	Link
	LinkEnd
	LinkObject
	NodeInstance
	Object
	Procedure
	Reception
	Signal
	Stimulus
	SubsystemInstance

	2.9.4 Detailed Semantics
	Object and DataValue
	Link
	Signal, Exception and Stimulus

	2.10 Collaborations
	2.10.1 Overview
	2.10.2 Abstract Syntax
	2.10.2.1 AssociationEndRole
	2.10.2.2 AssociationRole
	2.10.2.3 ClassifierRole
	2.10.2.4 Collaboration
	2.10.2.5 CollaborationInstanceSet
	2.10.2.6 Interaction
	2.10.2.7 InteractionInstanceSet
	2.10.2.8 Message

	2.10.3 Well-Formedness Rules
	2.10.3.1 AssociationEndRole
	2.10.3.2 AssociationRole
	2.10.3.3 ClassifierRole
	2.10.3.4 Collaboration
	2.10.3.5 CollaborationInstanceSet
	2.10.3.6 Interaction
	2.10.3.7 InteractionInstanceSet
	2.10.3.8 Message

	2.10.4 Detailed Semantics
	2.10.4.1 Collaboration
	2.10.4.2 Interaction

	2.10.5 Notes

	2.11 Use Cases
	2.11.1 Overview
	2.11.2 Abstract Syntax
	2.11.2.1 Actor
	2.11.2.2 Extend
	2.11.2.3 ExtensionPoint
	2.11.2.4 Include
	2.11.2.5 Associations
	2.11.2.6 UseCase
	2.11.2.7 UseCaseInstance

	2.11.3 Well-FormednessRules
	2.11.3.1 Actor
	2.11.3.2 Extend
	2.11.3.3 ExtensionPoint
	2.11.3.4 Include
	2.11.3.5 UseCase
	2.11.3.6 UseCaseInstance

	2.11.4 Detailed Semantics
	2.11.4.1 Actor
	2.11.4.2 UseCase

	2.11.5 Notes

	2.12 State Machines
	2.12.1 Overview
	2.12.2 Abstract Syntax
	CallEvent
	ChangeEvent
	CompositeState
	Event
	FinalState
	Guard
	PseudoState
	SignalEvent
	SimpleState
	State
	StateMachine
	StateVertex
	StubState
	SubmachineState
	SynchState
	TimeEvent
	Transition

	2.12.3 Well-FormednessRules
	CompositeState
	FinalState
	Guard
	PseudoState
	StateMachine
	SynchState
	SubmachineState
	Transition

	2.12.4 Detailed Semantics
	Event
	State
	CompositeState
	FinalState
	SubmachineState
	Transitions
	StateMachine
	Synch States
	StubStates

	2.12.5 Notes
	Protocol State Machines
	Example: Modeling Class Behavior
	Example: State machine refinement
	Comparison to classical statecharts

	2.13 Activity Graphs
	2.13.1 Overview
	2.13.2 Abstract Syntax
	ActionState
	ActivityGraph
	CallState
	ClassifierInState
	ObjectFlowState
	Partition
	SubactivityState
	Transition

	2.13.3 Well-Formedness Rules
	ActivityGraph
	ActionState
	CallState
	ClassifierInState
	ObjectFlowState
	PseudoState
	SubactivityState

	2.13.4 Detailed Semantics
	ActivityGraph
	ActionState
	ObjectFlowState
	SubactivityState
	Transition

	2.13.5 Notes

	2.14 Actions

	Part 4 - General Mechanisms
	2.15 Model Management
	2.15.1 Overview
	2.15.2 Abstract Syntax
	2.15.2.1 Dependency (as extended)
	2.15.2.2 ElementImport
	2.15.2.3 Model
	2.15.2.4 Package
	2.15.2.5 Subsystem

	2.15.3 Well-Formedness Rules
	2.15.3.1 ElementImport
	2.15.3.2 Model
	2.15.3.3 Package
	2.15.3.4 Profile
	2.15.3.5 Subsystem

	2.15.4 Semantics
	2.15.4.1 Package
	2.15.4.2 Profile
	2.15.4.3 Subsystem
	2.15.4.4 Model

	2.15.5 Notes

	Part 5 - Actions
	2.16 Action Package
	2.17 Actions Overview
	2.17.1 Action Metamodel
	2.17.2 Design Principles and Rationale
	Interface to Other UML Packages
	Undefined Semantics
	Specification and Software Structure
	Mappings
	Primitives
	Execution Engines

	2.17.3 The Actions
	Foundation
	Composite Actions
	Read and Write Actions
	Computation Actions
	Collection Actions
	Messaging Actions
	Jump Actions

	2.16 Action Conventions
	2.16.1 Chapter Structure
	2.16.2 Description of a Class
	Attributes
	Associations
	Inputs
	Outputs
	Well-formedness Rules
	Additional Operations
	Semantics

	2.17 Action Foundation
	2.17.1 Action Specification
	Pins
	Data Flow
	Control Flow
	Primitive Actions
	Procedures

	2.17.2 Action Execution Model
	Pin Values
	Action Execution
	Procedure Execution

	2.17.3 Action Foundation Classes
	Action
	ControlFlow
	DataFlow
	InputPin
	OutputPin
	Pin
	PrimitiveAction
	Procedure

	2.18 Composite Actions
	2.18.1 Composite Action Specification
	Available Inputs and Outputs
	Group Action
	Conditional Action
	Loop Action
	Local Variables
	Isolation

	2.18.2 Composite Action Execution
	Clause Execution
	Conditional Action Execution
	Loop Action Execution

	2.18.3 Composite Action Classes
	Clause
	ConditionalAction
	GroupAction
	LoopAction
	Variable

	2.19 Read and Write Actions
	2.19.1 Object Actions
	2.19.2 Attribute Actions
	2.19.3 Association Actions
	Identifying a Link
	Navigating Across an Association
	Reading Link Objects
	Writing Links

	2.19.4 Variable Actions
	2.19.5 Other Actions
	2.19.6 Additional OCL Operations for Read and Write Actions
	2.19.7 Read and Write Action Classes
	AddAttributeValueAction
	AddVariableValueAction
	AttributeAction (abstract)
	CallProcedureAction
	ClearAssociationAction
	ClearAttributeAction
	ClearVariableAction
	CreateLinkAction
	CreateLinkObjectAction
	CreateObjectAction
	DestroyLinkAction
	DestroyObjectAction
	LinkAction (abstract)
	LinkEndCreationData
	LinkEndData
	QualifierValue
	ReadAttributeAction
	ReadExtentAction
	ReadIsClassifiedObjectAction
	ReadLinkAction
	ReadLinkObjectEndAction
	ReadLinkObjectQualifierAction
	ReadSelfAction
	ReadVariableAction
	ReclassifyObjectAction
	RemoveAttributeValueAction
	RemoveVariableValueAction
	StartObjectStateMachineAction
	VariableAction (abstract)
	WriteAttributeAction (abstract)
	WriteLinkAction (abstract)
	WriteVariableAction (abstract)

	2.20 Computation Actions
	2.20.1 Computation actions
	2.20.2 Computation Classes
	ApplyFunctionAction
	ArgumentSpecification
	CodeAction
	LiteralValueAction
	MarshalAction
	NullAction
	PrimitiveFunction
	TestIdentityAction
	UnmarshalAction

	2.21 Collection Actions
	2.21.1 General Rules for Collection Actions
	2.21.2 Collection Action Classes
	CollectionAction (abstract)
	FilterAction
	IterateAction
	MapAction
	ReduceAction

	2.22 Messaging Actions
	2.22.1 Request
	2.22.2 Asynchronous Invocation
	2.22.3 Synchronous invocation
	2.22.4 Request Handling
	2.22.5 Reply Handling
	2.22.6 Procedures
	2.22.7 Performing requests
	2.22.8 Effect Resolution
	2.22.9 Operation Lookup
	2.22.10 Transition Triggering
	2.22.11 Direct Communication among Executions
	2.22.12 Strong Typing
	2.22.13 Transmitting messages
	2.22.14 Return information
	2.22.15 Messaging Classes
	AsynchronousInvocationAction
	BroadcastSignalAction
	CallOperationAction
	ExplicitInvocationAction (abstract)
	InvocationAction (abstract)
	SendSignalAction
	SynchronousInvocationAction

	2.22.16 Optional Profile for Resolution of Operations and Signals

	2.23 Jump Actions
	2.23.1 Jumps
	2.23.2 Break and Continue Statements
	2.23.3 Exceptions
	2.23.4 Jumps with Concurrent Executions
	2.23.5 Jump Classes
	Action
	HandlerAction
	JumpAction
	JumpHandler

	2.23.6 Additional Jump Semantics for Actions Defined Elsewhere
	ConditionalAction
	FilterAction
	GroupAction
	IterateAction
	LoopAction
	MapAction
	Procedure
	ReduceAction

	2.23.7 Jump Value Classes
	BreakJump
	ContinueJump

	UML Notation Guide
	Part 1 - Background
	3.1 Introduction

	Part 2 - Diagram Elements
	3.2 Graphs and Their Contents
	3.3 Drawing Paths
	3.4 Invisible Hyperlinks and the Role of Tools
	3.5 Background Information
	3.5.1 Presentation Options

	3.6 String
	3.6.1 Semantics
	3.6.2 Notation
	3.6.3 Presentation Options
	3.6.4 Examples
	3.6.5 Mapping

	3.7 Name
	3.7.1 Semantics
	3.7.2 Notation
	3.7.3 Example
	3.7.4 Mapping

	3.8 Label
	3.8.1 Semantics
	3.8.2 Notation
	3.8.3 Presentation Options
	3.8.4 Example

	3.9 Keywords
	3.10 Expression
	3.10.1 Semantics
	3.10.2 Notation
	3.10.3 Examples
	3.10.4 Mapping
	3.10.5 OCL Expressions
	3.10.6 Selected OCL Notation
	3.10.7 Examples

	3.11 Note
	3.11.1 Semantics
	3.11.2 Notation
	3.11.3 Presentation Options
	3.11.4 Example
	3.11.5 Mapping

	3.12 Type-Instance Correspondence

	Part 3 - Model Management
	3.13 Package
	3.13.1 Semantics
	3.13.2 Notation
	3.13.3 Presentation Options
	3.13.4 Style Guidelines
	3.13.5 Example
	3.13.6 Mapping

	3.14 Subsystem
	3.14.1 Semantics
	3.14.2 Notation
	3.14.3 Presentation Options
	3.14.4 Example
	3.14.5 Mapping

	3.15 Model
	3.15.1 Semantics
	3.15.2 Notation
	3.15.3 Presentation Options
	3.15.4 Example
	3.15.5 Mapping

	Part 4 - General Extension Mechanisms
	3.16 Constraint and Comment
	3.16.1 Semantics
	3.16.2 Notation
	3.16.3 Example
	3.16.4 Mapping

	3.17 Element Properties
	3.17.1 Semantics
	3.17.2 Notation
	3.17.3 Presentation Options
	3.17.4 Style Guidelines
	3.17.5 Example
	3.17.6 Mapping

	3.18 Stereotypes
	3.18.1 Semantics
	3.18.2 Notation
	3.18.3 Examples
	3.18.4 Mapping

	Part 5 - Static Structure Diagrams
	3.19 Class Diagram
	3.19.1 Semantics
	3.19.2 Notation
	3.19.3 Mapping

	3.20 Object Diagram
	3.21 Classifier
	3.22 Class
	3.22.1 Semantics
	3.22.2 Basic Notation
	3.22.2.1 References

	3.22.3 Presentation Options
	3.22.4 Style Guidelines
	3.22.5 Example
	3.22.6 Mapping

	3.23 Name Compartment
	3.23.1 Notation
	3.23.2 Mapping

	3.24 List Compartment
	3.24.1 Notation
	3.24.1.1 Group properties
	3.24.1.2 Compartment name

	3.24.2 Presentation Options
	3.24.3 Example
	3.24.4 Mapping

	3.25 Attribute
	3.25.1 Semantics
	3.25.2 Notation
	3.25.3 Presentation Options
	3.25.4 Style Guidelines
	3.25.5 Example
	3.25.6 Mapping

	3.26 Operation
	3.26.1 Semantics
	3.26.2 Notation
	3.26.3 Presentation Options
	3.26.4 Style Guidelines
	3.26.5 Example
	3.26.6 Mapping

	3.27 Nested Class Declarations
	3.27.1 Semantics
	3.27.2 Notation
	3.27.3 Mapping

	3.28 Type and Implementation Class
	3.28.1 Semantics
	3.28.2 Notation
	3.28.3 Example
	3.28.4 Mapping

	3.29 Interfaces
	3.29.1 Semantics
	3.29.2 Notation
	3.29.3 Example
	3.29.4 Mapping

	3.30 Parameterized Class (Template)
	3.30.1 Semantics
	3.30.2 Notation
	3.30.3 Presentation Options
	3.30.4 Example
	3.30.5 Mapping

	3.31 Bound Element
	3.31.1 Semantics
	3.31.2 Notation
	3.31.3 Style Guidelines
	3.31.4 Example
	3.31.5 Mapping

	3.32 Utility
	3.32.1 Semantics
	3.32.2 Notation
	3.32.3 Example
	3.32.4 Mapping

	3.33 Metaclass
	3.33.1 Semantics
	3.33.2 Notation
	3.33.3 Mapping

	3.34 Enumeration
	3.34.1 Semantics
	3.34.2 Notation
	3.34.3 Mapping

	3.35 Stereotype Declaration
	3.35.1 Semantics
	3.35.2 Notation
	3.35.3 Mapping

	3.36 Powertype
	3.36.1 Semantics
	3.36.2 Notation
	3.36.3 Mapping

	3.37 Class Pathnames
	3.37.1 Notation
	3.37.2 Example
	3.37.3 Mapping

	3.38 Accessing or Importing a Package
	3.38.1 Semantics
	3.38.2 Notation
	3.38.3 Example
	3.38.4 Mapping

	3.39 Object
	3.39.1 Semantics
	3.39.2 Notation
	3.39.3 Presentation Options
	3.39.4 Style Guidelines
	3.39.5 Variations
	3.39.6 Example
	3.39.7 Mapping

	3.40 Composite Object
	3.40.1 Semantics
	3.40.2 Notation
	3.40.3 Example
	3.40.4 Mapping

	3.41 Association
	3.42 Binary Association
	3.42.1 Semantics
	3.42.2 Notation
	3.42.2.1 association name
	3.42.2.2 association class symbol

	3.42.3 Presentation Options
	3.42.4 Style Guidelines
	3.42.5 Options
	3.42.5.1 Xor-association

	3.42.6 Example
	3.42.7 Mapping

	3.43 Association End
	3.43.1 Semantics
	3.43.2 Notation
	3.43.2.1 multiplicity
	3.43.2.2 ordering
	3.43.2.3 qualifier
	3.43.2.4 navigability
	3.43.2.5 aggregation indicator
	3.43.2.6 rolename
	3.43.2.7 interface specifier
	3.43.2.8 changeability
	3.43.2.9 visibility

	3.43.3 Presentation Options
	3.43.4 Style Guidelines
	3.43.5 Example
	3.43.6 Mapping

	3.44 Multiplicity
	3.44.1 Semantics
	3.44.2 Notation
	3.44.3 Style Guidelines
	3.44.4 Example
	3.44.5 Mapping

	3.45 Qualifier
	3.45.1 Semantics
	3.45.2 Notation
	3.45.3 Presentation Options
	3.45.4 Style Guidelines
	3.45.5 Example
	3.45.6 Mapping

	3.46 Association Class
	3.46.1 Semantics
	3.46.2 Notation
	3.46.3 Presentation Options
	3.46.4 Style Guidelines
	3.46.5 Example
	3.46.6 Mapping

	3.47 N-ary Association
	3.47.1 Semantics
	3.47.2 Notation
	3.47.3 Style Guidelines
	3.47.4 Example
	3.47.5 Mapping

	3.48 Composition
	3.48.1 Semantics
	3.48.2 Notation
	3.48.3 Design Guidelines
	3.48.4 Example
	3.48.5 Mapping

	3.49 Link
	3.49.1 Semantics
	3.49.2 Notation
	3.49.2.1 Implementation stereotypes
	3.49.2.2 N-ary link

	3.49.3 Example
	3.49.4 Mapping

	3.50 Generalization
	3.50.1 Semantics
	3.50.2 Notation
	3.50.3 Presentation Options
	3.50.4 Example
	3.50.5 Mapping

	3.51 Dependency
	3.51.1 Semantics
	3.51.2 Notation
	3.51.3 Presentation Options
	3.51.4 Example
	3.51.5 Mapping

	3.52 Derived Element
	3.52.1 Semantics
	3.52.2 Notation
	3.52.3 Style Guidelines

	3.53 InstanceOf
	3.53.1 Semantics
	3.53.2 Notation
	3.53.3 Mapping

	Part 6 - Use Case Diagrams
	3.54 Use Case Diagram
	3.54.1 Semantics
	3.54.2 Notation
	3.54.3 Example
	3.54.4 Mapping

	3.55 Use Case
	3.55.1 Semantics
	3.55.2 Notation
	3.55.3 Presentation Options
	3.55.4 Style Guidelines
	3.55.5 Mapping

	3.56 Actor
	3.56.1 Semantics
	3.56.2 Notation
	3.56.3 Presentation Options
	3.56.4 Style Guidelines
	3.56.5 Mapping

	3.57 Use Case Relationships
	3.57.1 Semantics
	3.57.2 Notation
	3.57.3 Example
	3.57.4 Mapping

	3.58 Actor Relationships
	3.58.1 Semantics
	3.58.2 Notation
	3.58.3 Example
	3.58.4 Mapping

	Part 7 - Interaction Diagrams
	3.59 Collaboration
	3.59.1 Semantics

	3.60 Sequence Diagram
	3.60.1 Semantics
	3.60.2 Notation
	3.60.3 Presentation Options
	3.60.4 Example
	3.60.5 Mapping
	3.60.5.1 Sequence diagram

	3.61 Object Lifeline
	3.61.1 Semantics
	3.61.2 Notation
	3.61.3 Presentation Options
	3.61.4 Example
	3.61.5 Mapping

	3.62 Activation
	3.62.1 Semantics
	3.62.2 Notation
	3.62.3 Example
	3.62.4 Mapping

	3.63 Message and Stimulus
	3.63.1 Semantics
	3.63.2 Notation
	3.63.3 Presentation options
	3.63.4 Example
	3.63.5 Mapping

	3.64 Transition Times
	3.64.1 Semantics
	3.64.2 Notation
	3.64.3 Presentation Options
	3.64.4 Example
	3.64.5 Mapping

	Part 8 - Collaboration Diagrams
	3.65 Collaboration Diagram
	3.65.1 Semantics
	3.65.2 Notation
	3.65.2.1 Collaboration Instance
	3.65.2.2 Collaboration

	3.65.3 Example
	3.65.4 Mapping

	3.66 Pattern Structure
	3.66.1 Semantics
	3.66.2 Notation
	3.66.3 Mapping

	3.67 Collaboration Contents
	3.67.1 Semantics
	3.67.2 Notation
	3.67.3 Mapping

	3.68 Interactions
	3.68.1 Semantics
	3.68.2 Notation
	3.68.3 Mapping
	3.68.4 Example

	3.69 Collaboration Roles
	3.69.1 Semantics
	3.69.2 Notation
	3.69.3 Presentation options
	3.69.4 Example
	3.69.5 Mapping

	3.70 Multiobject
	3.70.1 Semantics
	3.70.2 Notation
	3.70.3 Example
	3.70.4 Mapping

	3.71 Active object
	3.71.1 Semantics
	3.71.2 Notation
	3.71.3 Example
	3.71.4 Mapping

	3.72 Message and Stimulus
	3.72.1 Semantics
	3.72.2 Notation
	3.72.2.1 Control flow type
	3.72.2.2 Arrow label
	3.72.2.3 Predecessor
	3.72.2.4 Sequence expression
	3.72.2.5 Signature

	3.72.3 Presentation Options
	3.72.4 Example
	3.72.5 Mapping

	3.73 Creation/Destruction Markers
	3.73.1 Semantics
	3.73.2 Notation
	3.73.3 Presentation options
	3.73.4 Example
	3.73.5 Mapping

	Part 9 - Statechart Diagrams
	3.74 Statechart Diagram
	3.74.1 Semantics
	3.74.2 Notation
	3.74.3 Mapping

	3.75 State
	3.75.1 Semantics
	3.75.2 Notation
	3.75.3 Example
	3.75.4 Mapping

	3.76 Composite States
	3.76.1 Semantics
	3.76.2 Notation
	3.76.3 Examples
	3.76.4 Mapping

	3.77 Events
	3.77.1 Semantics
	3.77.2 Notation
	3.77.3 Example
	3.77.4 Mapping

	3.78 Simple Transitions
	3.78.1 Semantics
	3.78.2 Notation
	3.78.2.1 Transition times

	3.78.3 Example
	3.78.4 Mapping

	3.79 Transitions to and from Concurrent States
	3.79.1 Semantics
	3.79.2 Notation
	3.79.3 Example
	3.79.4 Mapping

	3.80 Transitions to and from Composite States
	3.80.1 Semantics
	3.80.2 Notation
	3.80.3 Presentation Options
	3.80.3.1 Stubbed transitions

	3.80.4 Example
	3.80.5 Mapping

	3.81 Factored Transition Paths
	3.81.1 Semantics
	3.81.2 Notation
	3.81.3 Examples

	3.82 Submachine States
	3.82.1 Semantics
	3.82.2 Notation
	3.82.3 Example
	3.82.4 Mapping

	3.83 Synch States
	3.83.1 Semantics
	3.83.2 Notation
	3.83.3 Example
	3.83.4 Mapping

	Part 10 - Activity Diagrams
	3.84 Activity Diagram
	3.84.1 Semantics
	3.84.2 Notation
	3.84.3 Example
	3.84.4 Mapping

	3.85 Action state
	3.85.1 Semantics
	3.85.2 Notation
	3.85.3 Presentation options
	3.85.4 Example
	3.85.5 Mapping

	3.86 Subactivity state
	3.86.1 Semantics
	3.86.2 Notation
	3.86.3 Example
	3.86.4 Mapping

	3.87 Decisions
	3.87.1 Semantics
	3.87.2 Notation
	3.87.3 Example
	3.87.4 Mapping

	3.88 Call States
	3.88.1 Semantics
	3.88.2 Notation
	3.88.3 Example
	3.88.4 Mapping

	3.89 Swimlanes
	3.89.1 Semantics
	3.89.2 Notation
	3.89.3 Example
	3.89.4 Mapping

	3.90 Action-Object Flow Relationships
	3.90.1 Semantics
	3.90.2 Notation
	Object responsible for an action
	Object flow
	Object in state

	3.90.3 Example
	3.90.4 Mapping

	3.91 Control Icons
	3.91.1 Notation
	Signal receipt
	Signal sending
	Deferred events

	3.91.2 Mapping

	3.92 Synch States
	3.93 Dynamic Invocation
	3.93.1 Semantics
	3.93.2 Notation
	3.93.3 Mapping

	3.94 Conditional Forks

	Part 11 - Implementation Diagrams
	3.95 Component Diagram
	3.95.1 Semantics
	3.95.2 Notation
	3.95.3 Example
	3.95.4 Mapping

	3.96 Deployment Diagram
	3.96.1 Semantics
	3.96.2 Notation
	3.96.3 Example
	3.96.4 Mapping

	3.97 Node
	3.97.1 Semantics
	3.97.2 Notation
	3.97.3 Example
	3.97.4 Mapping

	3.98 Component
	3.98.1 Semantics
	3.98.2 Notation
	3.98.3 Example
	3.98.4 Mapping

	UML Example Profiles
	Example 1 - UML Profile for Software Development Processes
	4.1 Introduction
	4.2 Summary of Profile
	4.3 Stereotypes and Notation
	4.3.1 Use Case Stereotypes
	4.3.1.1 UseCaseModel
	4.3.1.2 UseCaseSystem
	4.3.1.3 UseCasePackage

	4.3.2 Analysis Stereotypes
	4.3.2.1 AnalysisModel
	4.3.2.2 AnalysisSystem
	4.3.2.3 AnalysisPackage
	4.3.2.4 AnalysisServicePackage

	4.3.3 Design Stereotypes
	4.3.3.1 DesignModel
	4.3.3.2 DesignSystem
	4.3.3.3 DesignSubsystem
	4.3.3.4 DesignServiceSubsystem

	4.3.4 Implementation Stereotypes
	4.3.4.1 ImplementationModel
	4.3.4.2 ImplementationSystem
	4.3.4.3 ImplementationSubsystem

	4.3.5 Class Stereotypes
	4.3.5.1 Entity
	4.3.5.2 Control
	4.3.5.3 Boundary
	4.3.5.4 Notation

	4.3.6 Association Stereotypes
	4.3.6.1 Communicate
	4.3.6.2 Subscribe

	4.4 Well-Formedness Rules
	4.4.1 Generalization
	4.4.2 Containment

	Example 2 - UML Profile for Business Modeling
	4.5 Introduction
	4.6 Summary of Profile
	4.7 Stereotypes and Notation
	4.7.1 Use Case Stereotypes
	4.7.1.1 Use Case Model
	4.7.1.2 UseCaseSystem
	4.7.1.3 UseCasePackage

	4.7.2 Organization Stereotypes
	4.7.2.1 ObjectModel
	4.7.2.2 ObjectSystem
	4.7.2.3 OrganizationUnit
	4.7.2.4 WorkUnit

	4.7.3 Class Stereotypes
	4.7.3.1 Worker
	4.7.3.2 CaseWorker
	4.7.3.3 InternalWorker
	4.7.3.4 Entity
	4.7.3.5 Notation

	4.7.4 Association Stereotypes
	4.7.4.1 Communicate
	4.7.4.2 Subscribe

	4.8 Well-Formedness Rules
	4.8.1 Generalization

	UML Model Interchange
	5.1 Overview
	5.2 Model Interchange Using XMI
	5.3 Model Interchange Using CORBA IDL

	Object Constraint Language Specification
	6.1 Overview
	6.1.1 Why OCL?
	6.1.2 Where to Use OCL

	6.2 Introduction
	6.2.1 Legend
	6.2.2 Example Class Diagram

	6.3 Relation to the UML Metamodel
	6.3.1 Self
	6.3.2 Specifying the UML context
	6.3.3 Invariants
	6.3.4 Pre- and Postconditions
	6.3.5 Package context
	6.3.6 General Expressions

	6.4 Basic Values and Types
	6.4.1 Types from the UML Model
	6.4.2 Enumeration Types
	6.4.3 Let Expressions and «definition» Constraints
	6.4.4 Type Conformance
	6.4.5 Re-typing or Casting
	6.4.6 Precedence Rules
	6.4.7 Use of Infix Operators
	6.4.8 Keywords
	6.4.9 Comment
	6.4.10 Undefined Values

	6.5 Objects and Properties
	6.5.1 Properties
	6.5.2 Properties: Attributes
	6.5.3 Properties: Operations
	6.5.4 Properties: Association Ends and Navigation
	6.5.4.1 Missing Rolenames
	6.5.4.2 Navigation over Associations with Multiplicity Zero or One
	6.5.4.3 Combining Properties

	6.5.5 Navigation to Association Classes
	6.5.6 Navigation from Association Classes
	6.5.7 Navigation through Qualified Associations
	6.5.8 Using Pathnames for Packages
	6.5.9 Accessing overridden properties of supertypes
	6.5.10 Predefined properties on All Objects
	6.5.11 Features on Classes Themselves
	6.5.12 Collections
	6.5.13 Collections of Collections
	6.5.14 Collection Type Hierarchy and Type Conformance Rules
	6.5.15 Previous Values in Postconditions

	6.6 Collection Operations
	6.6.1 Select and Reject Operations
	6.6.2 Collect Operation
	6.6.2.1 Shorthand for Collect

	6.6.3 ForAll Operation
	6.6.4 Exists Operation
	6.6.5 Iterate Operation
	6.6.6 Iterators in Collection Operations
	6.6.7 Resolving Properties

	6.7 The Standard OCL Package
	6.8 Predefined OCL Types
	6.8.1 Basic Types
	6.8.1.1 OclType
	6.8.1.2 OclAny
	6.8.1.3
	6.8.1.4
	6.8.1.5 OclState
	6.8.1.6 OclExpression
	6.8.1.7 Real
	6.8.1.8 Integer
	6.8.1.9 String
	6.8.1.10 Boolean
	6.8.1.11 Enumeration

	6.8.2 Collection-Related Types
	6.8.2.1 Collection
	6.8.2.2 Set
	6.8.2.3 Bag
	6.8.2.4 Sequence

	6.9 Grammar

	UML Standard Elements A
	Action Language Examples B
	B.1 The Action Languages
	B.2 Presentation of the Examples
	B.3 Control Structures
	If-then-else Logic
	Multi-way Decision

	B.4 Object Manipulation
	Simple Object Creation
	Object Creation with Attribute Assignment
	Object Destruction
	Writing of Attributes: Single Attribute, SIngle Object
	Writing of Attributes: Multiple Attributes, Single Object
	Writing of Attributes: Single Attribute, Multiple Object
	Obtaining a Selection of Objects
	Creating a Link
	Destroying a Link
	Navigating an Association to a SIngle Object
	Navigating an Association to Multiple Objects

	B.5 Messaging Actions
	Invocation of an Instance Operation with no Parameters
	Invocation of an Instance Operation with Parameters
	Sending of a Signal Event with no Parameters
	Sending of a Signal Event with Parameters

	B.6 Complete Example: The FFT
	B.6.1 The Fast Fourier Transform
	B.6.2 Illustrative Notation
	B.6.3 Discussion
	B.6.4 Implementation Using Memory Writes

	Glossary C
	C.1 Notation Conventions
	C.2 Glossary Terms

	Index D

