
Diploma in Informatica - Ingegneria del Software - modulo B

Seminario: un approccio linguistico al controllo ... 1

The egg and the hen
Or,

Which comes first:
the problem or the solution?

Tulli o Vardanega

2001-2002

Outline of the talk

• Challenges of embedded real-time systems
�

Design for verifiability
�

Problem modell ing, expressive power of the solution
�

Determinism versus inflexibil ity

• Desirable characters of the solution
�

Expressiveness, scalabil ity, verifiabil ity,

• The Ravenscar profile
�

Motivation, features, coverage

Challenges (1/6)

• Embedded real-time systems control and
interact with a surr ounding physical
environment

� Their interactive nature demands accurate
modelli ng of the physical reali ty

� Their real-time nature demands timeliness and
responsiveness of control activities

Challenges (2/6)

• Timeliness
� Control (by avoidance or minimisation) of release

jitter
� Assurance of completion within specified time

bounds (deadline)

• Responsiveness
� Minimisation of activation latency

Recall of basics

Time

Activity becomes eligible for execution (ready)
Latest allowed completion (deadline)

Activity ready period

Ready period
Jitter

Activation request

Latency

1

Responsiveness

Timeliness

Impacted by activation latency
Impacted by release jitter

Recall of basics

• Requests for activation can be periodic
(regular ly repeated time event) or aperiodic
(irregular event)

� Periodic activities need a reliable and accurate time
reference

� Aperiodic activities need character isation of
maximum frequency of arr ival
upon which they become sporadic

� Both need low activation latency and controlled
release j itter

2

Diploma in Informatica - Ingegneria del Software - modulo B

Seminario: un approccio linguistico al controllo ... 2

Recall of basics

• The latency of activation is a function of the
performance of the runtime scheduling
mechanisms

� The more elaborate, the greater the latency
�

Hence we prefer simple but not simplistic schedulers

• The release j itter is a function of the
interference caused by other activities

� Execution pr ior ity is the key to j itter control

33 Recall of basics 4

Time

Util ity

Deadline

Hard

Firm

Soft

Deadline as factor of utili ty function

Challenges (3/6)

• Embedded real-time systems model
real-wor ld entities, which are inherently
concurrent

� Multiple activation requests
�

Some fully independent of one another
� Multiple sources

�
Time, external interrupts, software events

� Diverse processing needs
�

Some require collaboration
Typically in a producer-consumer fashion

Challenges (4/6)

• To build embedded real-time systems
we need:

� Expressive means to accurately model the physical
reali ty

� Runtime mechanisms to ensure eff icient and
predictable implementation of concurrency

� Analytical devices to assess the satisfaction of real-
time requirements

Challenges (5/6)

• Accurate modelli ng of physical reality
� We want a solution that f its the problem

�
Not a (degenerated) problem representation that fits a
prefabr icated solution

• Efficient and predictable runtime
� Not all problems allow all scheduling decisions to

be made off line without losing value
�

The solution must warr ant determinism
(i.e., predictable behaviour)�
The solution should not inflict inflexibili ty

Challenges (6/6)

• Static verification
� To accept an implementation (design + code) we

must be able to assess whether it meets the real-
time requirements of the problem

�
We seek correctness by construction

� We cannot afford to defer the assessment to the
operation phase

�
Dynamic testing is best suited for functional requirements

�
Static analysis is far more practical and superior for real-
time requirements

Diploma in Informatica - Ingegneria del Software - modulo B

Seminario: un approccio linguistico al controllo ... 3

Desirable characters (1/6)

• Expressive power (1/2)

�
We should be able to:

�
Model concurr ency with periodic and sporadic activities

�
Capture external (i.e.: interrupt) and internal (i.e.:
software) events in addition to the passage of time

�
Suppor t collaborative processing

Precedence of activation

(Data-or iented) synchronisation

Resource sharing�
Assign cohesive functions to activities

Desirable characters (2/6)

• Expressive power (2/2)

�
We must ensure that:

�
The design determines the implementation

�
The implementation corresponds to the design, so that they
can be consistently analysed

A powerful form of fault avoidance
� We must enable:

�
Feedback from design to specification

�
Feedback from implementation to design and specification

Understanding and requirements evolve during development

Design vs. Implementation

Design phase

• The concurrency of system components
must be an explicit dimension of design

• The design method must offer a coherent
set of abstractions and relations to
represent concurrency

• The implementation language must
offer a range of concurrency constructs
that correspond, semantically, to those
used for design

Determines
Corresponds

Implementation phase

Design feedback
1

Design feedback
2

Computational model

• The design and implementation dictionary,
which captures

� The real-time attributes and the activation characteristics
of the system components

E.g.: per iodic, interrupt / software sporadic� The runtime execution model that underpins the system
design

E.g.: with / without pre-emption, pr ior ity� The means of communication and synchronisation availed
to system components

E.g.: protected regions, signals, guards, wait queues

Diploma in Informatica - Ingegneria del Software - modulo B

Seminario: un approccio linguistico al controllo ... 4

Desirable characters (3/6)

• Flexibili ty
�

To tolerate development feedback
We must contemplate late design changes

Design can hardly be fixed at specification time
� To favour modularity and scalability of design

We want to enable loosely-coupled development of components
�

To achieve scalability of system
We need a system concept that scales to needs efficiently

Eff iciency is inversely proportional to the # of wasted cycles

Desirable characters (4/6)

• Runtime efficiency
� Deterministic behaviour

�
Predictabili ty�
Time-bounded services

�
Performance

�
Simple on-line scheduling decisions

�
Flexible scheduling criter ia

�
Fixed pr ior ity, permanent att r ibute to reflect urgency of
service�
Pre-emption, to reflect pr ior ity

Desirable characters (5/6)

Time

Priority level

Activity start

Activity end

New activation request New activation request

Activity resumption

Known-semantics and time-bounded runtime overhead

Interference effects

Predictable scheduling decisions

Desirable characters (6/6)

• Statically verifiable
�

The scheduling algor ithm and its effects must be
mathematically representable

Period of activation(, minimum inter-ar r ival time), T
Worst-case computation time, C
Worst-case blocking time, B
Deadline, D
Prior ity, P
Response time, R (R ≤≤ D)	

T,C,D are real-time attributes of the application	
R is a runtime function of P,C,B

Response Time Analysis

• Response time for thread i
Ri

n == Bi + Ci + I i
R

i
n−−1

+ K i
R

i
n−−1

• Interference from higher-pr ior ity threads
I i

t == ΣΣj∈∈HP(i)t/T jCj

• Interference from interval timer
K i

t == ΣΣj∈∈HP_Cyclic(i)t/T j(Clock_Int + Ready + Select)

• Worst-case blocking maximum == Bi ==
interference from lower-pr ior ity threads

The Ravenscar profile (1/10)

• A concurrent language runtime subset with

Adequate expressive power
Designed to meet the requirements of high-integrity embedded real-
time systems

Minimal footpr int
Str ips away all disallowed services

High eff iciency
Simple and predictable scheduling decisions

Statically verifiable behaviour
Based on sound scheduling theory

Certifiable runtime code

Diploma in Informatica - Ingegneria del Software - modulo B

Seminario: un approccio linguistico al controllo ... 5

The Ravenscar profile (2/10)

• Requires:
� Single activation event per thread of control

�
Time, external interrupt, software synchronisation

Rationale: to comply with the power of the associated scheduling
theory (e.g. Response Time Analysis)

� Non-suspending execution within activation
�

Only suspension for next activation event
Rationale: ditto

�
No termination, no dynamic creation

The Ravenscar profile (3/8)

• Requires (cont'd):
� Data-or iented synchronisation via protected objects

with priority ceiling emulation
�

To enable concurr ent collaborative processing
Rationale: to bound pr ior ity inversion while controll ing blocking
effects

�
Simple synchronisation via suspension objects

�
To enable very-l ow-overhead activation

Rationale: to give users access to low-level high-efficiency private-
semaphore P and V

The Ravenscar profile (4/10)

• Requires (cont'd):
�

Single-position entry queues
�

Fully deterministic synchronisation service
Rationale: to avoid non-deterministic waiting time upon task
queues forming on entry and to permit simpler and leaner runtime

�
At most one entry per protected object

�
No two barr iers simultaneously open

Rationale: to avoid non-determinism select policy and permit
simpler and leaner runtime

The Ravenscar profile (4/10)

• Requires (cont'd):
�

Absolute time delay
�

Exclusive use of high-precision time type package
Rationale: to attain monotonic, accurate, fined-grained time base

• Prohibits:
�

All other concurr ency features (a whole load of them!)

Sophistication that raises expressive power but detracts from
predictability and static ver ification�

Potentially blocking protected operations

The Ravenscar profile (6/10)

• Best placed in a concurrent language with
compile-time and run-time conformance
checks

� So much preferable to manual checks!
�

Facili tates enforcement of design and coding rules
� You code activities and not the scheduler
�

You tell the scheduler what you want by:
�

Defining the activation event of tasks�
Setting the pr ior ity level of tasks

The Ravenscar profile (7/10)

• Inherently avoids deadlock
�

On single CPU, pr ior ity ceili ng emulation prevents
circular ities in ownership of and contention for
locks

• Is in perfect match with HRT-HOOD
� Which provides specification-to-implementation

suppor t for the RP computational model

Diploma in Informatica - Ingegneria del Software - modulo B

Seminario: un approccio linguistico al controllo ... 6

Ravenscar example 1 Ravenscar example 2

task Regula r _Pr oducer is
pragma Priority(5);

end Regu l ar _Pro ducer;

task body Regul ar_ Prod ucer is
Perio d : constant Ada.R eal _Time.T im e_Span : = . . .;
Next_ Time : Ada. Real _Ti me. Time := Start _Time;

begin
delay until Nex t _Ti me;
loop

Next_ Time := Nex t _Ti me + Per io d;
Regul ar_P r oducer _Oper at i on(. ..);
delay until Next _Time;

end loop;
end Regu l ar _Pro ducer;

procedure Regul ar_ Prod ucer _Operat i on(. ..) is
begin

Pr oducer _Work lo ad.P r oducti on_Serv ic e(.. .);
end Regu l ar _Pro ducer_Opera t io n;

task On_Cal l _Pr oducer is
pragma Priority(7);

end On_Call _Pro ducer;

task body On_Cal l_ Prod ucer is
Requi r ed_Work lo ad : ...;
Next_ Time : Ada. Real _Ti me. Time := Start _Time;

begin
delay until Nex t _Ti me;
loop

Request_B uff er.E xtra c t(. .., Requi red_ Work l oad);
On_Cal l_P r oducer _Oper at i on(. ..);

end loop;
end On_Call _Pro ducer;

procedure On_Cal l_ Prod ucer _Operat i on(. ..) is
begin

Pr oducer _Work lo ad.P r oducti on_Serv ic e(.. .);
if Condi t ion then Activ ati on_Log_Reader . Sig nal ; end if;

end On_Call _Pro ducer_Opera t io n;

Ravenscar example 3

protected Request_ Buff er is
pragma Priority(9);
procedure Depos i t(. . .);
entry Ext rac t (. . .);

private
Barri er : Boole an : = Fal se;

end Request _Buf f er;

protected body Request _Buf f er is
procedure Depos i t(. . .) i s
begin

.. . ; Barr i er := True;
end Deposit;
entry Ext rac t (. . .) when Bar rie r is
begin

.. . ; Barr i er := Fals e;
end Extr act;

end Request _Buf f er;

Ravenscar example
4

task Ext ern al_E vent _Ser ver is
pragma Priority(11);

end Exte r nal _Event _Ser ver;

task body Exter nal _Event_S erv er is
Next_ Time : Ada. Real _Ti me. Time := . ..;

begin
delay until Nex t _Ti me;
loop

In t er r upt _Queue. Wait;
Act iv atio n_Log.Wr ite (.. .);

end loop;
end Exte r nal _Event _Ser ver;

protected I nter r upt _Queue is
pragma Interrupt_Priority(I nte r ru pt _Pri orit y 'L ast)) ;
procedure Si gnal ;
entry Wai t;
pragma Attach_Handler(S i gnal, The_Exter nal_ Event);

private
Barri er : Boole an : = Fal se;

end I nte r ru pt_Q ueue;

Ravenscar example 5

The Ravenscar profile (8/10)

K I B C

Worst-case response time

Blocking from lower-priority threads
Run-time overhead

Interference from higher-priority threads Worst-case computation time

R

Diploma in Informatica - Ingegneria del Software - modulo B

Seminario: un approccio linguistico al controllo ... 7

The Ravenscar profile (9/10)

• With the Ravenscar profile we have:

The expressive power to represent the entities of the
problem domain accurately

 A highly efficient and predictable runtime

A computational model directly amenable to static
analysis

High-level means to control jitter and minimise
latency

 Effective means for modular and scalable design

The Ravenscar profile (10/10)

Runtime structuresDefer_Preemption

Protected interrupt handlersHandle_External_Interrupt

Periodic threadsInsert_In_Ready_Queue

Periodic threadsHandle_Interval_Timer_Interrupt

Periodic threadsInsert_in_Delay_Queue

All threadsSwitch_Running_Context

All threadsSelect_from_Ready_Queue

Sporadic threadsHandle_Semaphore_Queue

Sporadic threads (enter Ready queue)Leave_Semaphore_Wait

Sporadic threadsEnter_Semaphore_Wait

Protected interrupt handlersLeave_Interrupt_Wait

Protected interrupt handlersEnter_Interrupt_Wait

All threadsLeave_Protected_Object

All threadsEnter_Protected_Object

Executed by r untime forRuntime Pr imitive

Conclusion (1/4)

• The Ravenscar profile happens to be a natural
restriction of standard Ada tasking

• I t could equally well find a home in real-time
Java

• The profile allows us to design solutions for
embedded real-time system problems

• I t delivers us from finding problem
representations that fit invar iant solutions

Conclusion (2/4)

• Standardisation status

Profile outline in
�

" Guide for the use of the Ada Language in High I ntegr ity
Systems"�
ISO/IEC TR 15942:2000

 Profile rationale in
�

" Guide for the use of the Ada Ravenscar Profile in High
I ntegr ity Systems"�
ISO/IEC TR being finalised

Conclusion (3/4)

• Standardisation status (cont'd)

 Profile definition in
�

Ada Issue 249�
Will become an off icial amendment in the for thcoming
language revision

2 off icial implementations, more to come

�
Aonix/ObjectAda RAVEN

Proprietary, for PowerPC, Intel, ERC32 targets�
GNAT/ORK

Open source, for ERC32, Intel targets

Conclusion (4/4)

• Relation to Real-Time Java Specification

NIST requirements spec [www.nist.gov/rt-java]
�

Too open-ended, not tight enough, soft RT

J Consor tium [www.j-consortium.org]
�

Aims at an ISO PAS (no standard!) – declining interest � �
�

Captures the RP as a Real-Time Core Profile
Real time with Java flavour

� Sun's Real-Time Expert Group [www.rtj.org]
�

Values JVM compatibil ity more than meeting HRT
Java with real-time flavour

