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The egg and the hen
Or,

Which comes first:
the problem or the solution?

Tulli o Vardanega

2001-2002

Outline of the talk

• Challenges of embedded real-time systems 
�

Design for verifiability
�

Problem modell ing, expressive power of the solution
�

Determinism versus inflexibil ity

• Desirable characters of the solution
�

Expressiveness, scalabil ity, verifiabil ity,

• The Ravenscar profile
�

Motivation, features, coverage

Challenges (1/6)

• Embedded real-time systems control and 
interact with a surr ounding physical 
environment

� Their interactive nature demands accurate 
modelli ng of the physical reali ty

� Their real-time nature demands timeliness and 
responsiveness of control activities

Challenges (2/6)

• Timeliness
� Control (by avoidance or minimisation) of release 

jitter
� Assurance of completion within specified time 

bounds (deadline)

• Responsiveness
� Minimisation of activation latency

Recall of basics

Time

Activity becomes eligible for execution (ready)
Latest allowed completion (deadline)

Activity ready period

Ready period
Jitter

Activation request

Latency 

1

Responsiveness

Timeliness

Impacted by activation latency
Impacted by release jitter

Recall of basics

• Requests for activation can be periodic 
(regular ly repeated time event) or aperiodic
(irregular event)

� Periodic activities need a reliable and accurate time 
reference

� Aperiodic activities need character isation of 
maximum frequency of arr ival
upon which they become sporadic

� Both need low activation latency and controlled 
release j itter

2
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Recall of basics

• The latency of activation is a function of the 
performance of the runtime scheduling 
mechanisms

� The more elaborate, the greater the latency
�

Hence we prefer simple but not simplistic schedulers

• The release j itter is a function of the 
interference caused by other activities

� Execution pr ior ity is the key to j itter control

33 Recall of basics 4

Time

Util ity

Deadline

Hard

Firm

Soft

Deadline as factor of utili ty function

Challenges (3/6)

• Embedded real-time systems model 
real-wor ld entities, which are inherently 
concurrent

� Multiple activation requests
�

Some fully independent of one another
� Multiple sources

�
Time, external interrupts, software events

� Diverse processing needs
�

Some require collaboration
Typically in a producer-consumer fashion

Challenges (4/6)

• To build embedded real-time systems
we need:

� Expressive means to accurately model the physical 
reali ty

� Runtime mechanisms to ensure eff icient and 
predictable implementation of concurrency

� Analytical devices to assess the satisfaction of real-
time requirements

Challenges (5/6)

• Accurate modelli ng of physical reality
� We want a solution that f its the problem

�
Not a (degenerated) problem representation that fits a 
prefabr icated solution

• Efficient and predictable runtime
� Not all problems allow all scheduling decisions to 

be made off line without losing value
�

The solution must warr ant determinism
(i.e., predictable behaviour )�
The solution should not inflict inflexibili ty

Challenges (6/6)

• Static verification
� To accept an implementation (design + code) we 

must be able to assess whether it meets the real-
time requirements of the problem

�
We seek correctness by construction

� We cannot afford to defer the assessment to the 
operation phase

�
Dynamic testing is best suited for functional requirements

�
Static analysis is far more practical and superior for real-
time requirements
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Desirable characters (1/6)

• Expressive power (1/2)

�
We should be able to:

�
Model concurr ency with periodic and sporadic activities

�
Capture external (i.e.: interrupt) and internal (i.e.: 
software) events in addition to the passage of time

�
Suppor t collaborative processing

Precedence of activation

(Data-or iented) synchronisation

Resource sharing�
Assign cohesive functions to activities

Desirable characters (2/6)

• Expressive power (2/2)

�
We must ensure that:

�
The design determines the implementation

�
The implementation corresponds to the design, so that they 
can be consistently analysed

A powerful form of fault avoidance
� We must enable:

�
Feedback from design to specification

�
Feedback from implementation to design and specification

Understanding and requirements evolve during development

Design vs. Implementation

Design phase

• The concurrency of system components 
must be an explicit dimension of design

• The design method must offer a coherent
set of abstractions and relations to 
represent concurrency

• The implementation language must
offer a range of concurrency constructs
that correspond, semantically, to those
used for design

Determines
Corresponds

Implementation phase

Design feedback
1

Design feedback
2

Computational model

• The design and implementation dictionary,
which captures

� The real-time attributes and the activation characteristics 
of the system components

E.g.: per iodic, interrupt / software sporadic� The runtime execution model that underpins the system 
design

E.g.: with / without pre-emption, pr ior ity� The means of communication and synchronisation availed 
to system components

E.g.: protected regions, signals, guards, wait queues
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Desirable characters (3/6)

• Flexibili ty 
�

To tolerate development feedback
We must contemplate late design changes

Design can hardly be fixed at specification time
� To favour modularity and scalability of design

We want to enable loosely-coupled development of components
�

To achieve scalability of system
We need a system concept that scales to needs efficiently

Eff iciency is inversely proportional to the # of wasted cycles

Desirable characters (4/6)

• Runtime efficiency
� Deterministic behaviour

�
Predictabili ty�
Time-bounded services

�
Performance

�
Simple on-line scheduling decisions

�
Flexible scheduling criter ia

�
Fixed pr ior ity, permanent att r ibute to reflect urgency of 
service�
Pre-emption, to reflect pr ior ity

Desirable characters (5/6)

Time

Priority level

Activity start

Activity end

New activation request New activation request

Activity resumption

Known-semantics and time-bounded runtime overhead

Interference effects

Predictable scheduling decisions

Desirable characters (6/6)

• Statically verifiable
�

The scheduling algor ithm and its effects must be 
mathematically representable

Period of activation(, minimum inter-ar r ival time), T
Worst-case computation time, C
Worst-case blocking time, B
Deadline, D
Prior ity, P
Response time, R (R ≤≤ D)	

T,C,D are real-time attributes of the application	
R is a runtime function of P,C,B

Response Time Analysis

• Response time for thread i
Ri

n == Bi + Ci + I i
R

i
n−−1

+ K i
R

i
n−−1

• Interference from higher-pr ior ity threads
I i

t == ΣΣj∈∈HP(i)t/T jCj

• Interference from interval timer
K i

t == ΣΣj∈∈HP_Cyclic(i)t/T j(Clock_Int + Ready + Select)

• Worst-case blocking maximum == Bi ==
interference from lower-pr ior ity threads

The Ravenscar profile (1/10)

• A concurrent language runtime subset with



Adequate expressive power
Designed to meet the requirements of high-integrity embedded real-
time systems


Minimal footpr int
Str ips away all disallowed services


High eff iciency
Simple and predictable scheduling decisions


Statically verifiable behaviour
Based on sound scheduling theory


Certifiable runtime code
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The Ravenscar profile (2/10)

• Requires:
� Single activation event per thread of control

�
Time, external interrupt, software synchronisation

Rationale: to comply with the power of the associated scheduling 
theory (e.g. Response Time Analysis)

� Non-suspending execution within activation
�

Only suspension for next activation event
Rationale: ditto

�
No termination, no dynamic creation

The Ravenscar profile (3/8)

• Requires (cont'd):
� Data-or iented synchronisation via protected objects

with priority ceiling emulation
�

To enable concurr ent collaborative processing 
Rationale: to bound pr ior ity inversion while controll ing blocking 
effects

�
Simple synchronisation via suspension objects

�
To enable very-l ow-overhead activation 

Rationale: to give users access to low-level high-efficiency private-
semaphore P and V

The Ravenscar profile (4/10)

• Requires (cont'd):
�

Single-position entry queues
�

Fully deterministic synchronisation service
Rationale: to avoid non-deterministic waiting time upon task 
queues forming on entry and to permit simpler and leaner runtime

�
At most one entry per protected object

�
No two barr iers simultaneously open

Rationale: to avoid non-determinism select policy and permit 
simpler and leaner runtime

The Ravenscar profile (4/10)

• Requires (cont'd):
�

Absolute time delay
�

Exclusive use of high-precision time type package
Rationale: to attain monotonic, accurate, fined-grained time base

• Prohibits:
�

All other concurr ency features (a whole load of them!)

Sophistication that raises expressive power but detracts from 
predictability and static ver ification�

Potentially blocking protected operations

The Ravenscar profile (6/10)

• Best placed in a concurrent language with 
compile-time and run-time conformance 
checks

� So much preferable to manual checks!
�

Facili tates enforcement of design and coding rules
� You code activities and not the scheduler
�

You tell the scheduler what you want by:
�

Defining the activation event of tasks�
Setting the pr ior ity level of tasks

The Ravenscar profile (7/10)

• Inherently avoids deadlock
�

On single CPU, pr ior ity ceili ng emulation prevents 
circular ities in ownership of and contention for 
locks

• Is in perfect match with HRT-HOOD
� Which provides specification-to-implementation 

suppor t for the RP computational model
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Ravenscar example 1 Ravenscar example 2

task Regula r _Pr oducer is
pragma Priority( 5);

end Regu l ar _Pro ducer;

task body Regul ar_ Prod ucer is
Perio d : constant Ada.R eal _Time.T im e_Span : = . . .;
Next_ Time : Ada. Real _Ti me. Time := Start _Time;

begin
delay until Nex t _Ti me;
loop

Next_ Time := Nex t _Ti me + Per io d;
Regul ar_P r oducer _Oper at i on( . .. );
delay until Next _Time;

end loop;
end Regu l ar _Pro ducer;

procedure Regul ar_ Prod ucer _Operat i on(. ..) is
begin

Pr oducer _Work lo ad.P r oducti on_Serv ic e(.. . );
end Regu l ar _Pro ducer_Opera t io n;

task On_Cal l _Pr oducer is
pragma Priority( 7);

end On_Call _Pro ducer;

task body On_Cal l_ Prod ucer is
Requi r ed_Work lo ad :  ...;
Next_ Time : Ada. Real _Ti me. Time := Start _Time;

begin
delay until Nex t _Ti me;
loop

Request_B uff er.E xtra c t( . .., Requi red_ Work l oad);
On_Cal l_P r oducer _Oper at i on( . .. );

end loop;
end On_Call _Pro ducer;

procedure On_Cal l_ Prod ucer _Operat i on(. ..) is
begin

Pr oducer _Work lo ad.P r oducti on_Serv ic e(.. . );
if Condi t ion then Activ ati on_Log_Reader . Sig nal ; end if;

end On_Call _Pro ducer_Opera t io n;

Ravenscar example 3

protected Request_ Buff er is
pragma Priority( 9);
procedure Depos i t(. . .);
entry Ext rac t (. . .);

private
Barri er : Boole an : = Fal se;

end Request _Buf f er;

protected body Request _Buf f er is
procedure Depos i t(. . .) i s
begin

.. . ; Barr i er :=  True;
end Deposit;
entry Ext rac t (. . .) when Bar rie r is
begin

.. . ; Barr i er :=  Fals e;
end Extr act;

end Request _Buf f er;

Ravenscar example
4

task Ext ern al_E vent _Ser ver is
pragma Priority( 11);

end Exte r nal _Event _Ser ver;

task body Exter nal _Event_S erv er is
Next_ Time : Ada. Real _Ti me. Time := . ..;

begin
delay until Nex t _Ti me;
loop

In t er r upt _Queue. Wait;
Act iv atio n_Log.Wr ite ( .. . );

end loop;
end Exte r nal _Event _Ser ver;

protected I nter r upt _Queue is
pragma Interrupt_Priority( I nte r ru pt _Pri orit y 'L ast ) ) ;
procedure Si gnal ;
entry Wai t;
pragma Attach_Handler(S i gnal, The_Exter nal_ Event);

private
Barri er : Boole an : = Fal se;

end I nte r ru pt_Q ueue;

Ravenscar example 5

The Ravenscar profile (8/10)

K I B C

Worst-case response time

Blocking from lower-priority threads
Run-time overhead

Interference from higher-priority threads Worst-case computation time

R



Diploma in Informatica - Ingegneria del Software - modulo B

Seminario: un approccio linguistico al controllo ... 7

The Ravenscar profile (9/10)

• With the Ravenscar profile we have:



The expressive power to represent the entities of the 
problem domain accurately


 A highly efficient and predictable runtime



A computational model directly amenable to static 
analysis



High-level means to control jitter and minimise 
latency


 Effective means for modular and scalable design

The Ravenscar profile (10/10)

Runtime structuresDefer_Preemption

Protected interrupt handlersHandle_External_Interrupt

Periodic threadsInsert_In_Ready_Queue

Periodic threadsHandle_Interval_Timer_Interrupt

Periodic threadsInsert_in_Delay_Queue

All threadsSwitch_Running_Context

All threadsSelect_from_Ready_Queue

Sporadic threadsHandle_Semaphore_Queue

Sporadic threads (enter Ready queue)Leave_Semaphore_Wait

Sporadic threadsEnter_Semaphore_Wait

Protected interrupt handlersLeave_Interrupt_Wait

Protected interrupt handlersEnter_Interrupt_Wait

All threadsLeave_Protected_Object

All threadsEnter_Protected_Object

Executed by r untime forRuntime Pr imitive

Conclusion (1/4)

• The Ravenscar profile happens to be a natural 
restriction of standard Ada tasking

• I t could equally well find a home in real-time 
Java

• The profile allows us to design solutions for 
embedded real-time system problems

• I t delivers us from finding problem 
representations that fit invar iant solutions

Conclusion (2/4)

• Standardisation status



Profile outline in
�

" Guide for the use of the Ada Language in High I ntegr ity 
Systems"�
ISO/IEC TR 15942:2000


 Profile rationale in
�

" Guide for the use of the Ada Ravenscar Profile in High 
I ntegr ity Systems"�
ISO/IEC TR being finalised

Conclusion (3/4)

• Standardisation status (cont'd)


 Profile definition in
�

Ada Issue 249�
Will become an off icial amendment in the for thcoming 
language revision



2 off icial implementations, more to come

�
Aonix/ObjectAda RAVEN

Proprietary, for PowerPC, Intel, ERC32 targets�
GNAT/ORK

Open source, for ERC32, Intel targets

Conclusion (4/4)

• Relation to Real-Time Java Specification



NIST requirements spec [www.nist.gov/rt-java]
�

Too open-ended, not tight enough, soft RT



J Consor tium [www.j-consortium.org]
�

Aims at an ISO PAS (no standard!) – declining interest � �
�

Captures the RP as a Real-Time Core Profile
Real time with Java flavour

� Sun's Real-Time Expert Group [www.rtj.org]
�

Values JVM compatibil ity more than meeting HRT
Java with real-time flavour


