

Outline of the talk

- What are nonfunctional requirements (NFR)
 - ✓ How do they differ from functional requirements
- \checkmark Where do they originate from and when
- How do NFR impact the development process
 - ✓ What is the problem with them
- ✓ Definition, engineering and verification issues
- Strategies for incorporation
- ✓ Integration versus separation

What are NFR

- NFR concern such characteristics as:
- ✓ Safety
- ✓ Reliability
- ✓ Timeliness (predictability)
- ✓ Reusability
- ✓ Portability, etc.
- Functional requirements tell what the system has to do
- NFR tell how the system functions have to be achieved

What are NFR (cont'd)

- NFR originate at system and at software level, for example:
 - ✓ Safety and reliability are system-level NFR
 - ✓ Reusability and portability are software-level NFR
 - Predictability pertains to both levels
- NFR concern product and process aspects

NFR impact (cont'd)

- The root of the failure can often be found in mismanaged NFR, e.g.:
 - ✓ Lack of specification or misinterpretation
 - Incomplete or erroneous specification
 - ✓ Insufficient verification
- These deficiencies are less apparent than the violation of functional requirements

NFR impact (cont'd)

- NFR are more difficult to express than functional requirements
- NFR arise predominantly at project level
- Product requirements are typically functional and often arise earlier than NFR
- This independence of origin often makes them conflict in subtle ways

NFR impact (cont'd)

- Specification
 - ✓ Often poor
- ✓ Spiral / evolutionary process models help but they are not quite the solution
- They best at eliciting and coping with (late) functional requirements
- ✓ Less good for late or unclear or imprecise NFR
- ✓ Translation from system NFR to software NFR is far from obvious

NFR impact (cont'd)

- Specification (cont'd)
 - NFR are often expressed in forms that are hard to quantitatively or objectively verify
 - ✓ their verification is frequently qualitative and subjective
 - we lack standardised and well-understood techniques to reduce subjectivity
 - we have little support for the capture of NFR and poor means to raise them to proper design and / or process drivers

NFR impact (cont'd)

- Engineering
 - The NFR implementation strategies are inherently multidisciplinary (e.g.: procurement, quality, safety, reuse)
 - Some involve the deployment of specific implementation strategies (e.g.: assurance of design, coding rules)
 - Others require the use of compliant infrastructures (e.g.: procurement of certified compilers and runtimes)
 - Others demand the adoption of domain-specific architectures (e.g.: assurance of IMA and APEX compliance)

• Verification

- NFR are difficult to verify (at process level) and to validate (at product) level
- ✓ Difficulties are:
- Technical ('how to')
- Technological ('by what means')
- Programmatic ('when and to what extent')

NFR impact (cont'd)

- Verification (cont'd)
- ✓ Definitions
 - Verification: confirmation, by examination or provision of objective evidence, that specified requirements have been fulfilled
 - Verification concerns the process
- Validation: confirmation [...] that the product meets the specified requirements
- Validation concerns the product

Nominal process (cont'd)

- The purpose and order of execution of the nominal processes is determined by multiple factors, e.g.:
 - Application-domain specific constraints
 - Technical and organisational considerations
- These factors may change in weight and nature during the life cycle, e.g.:
 - Required team profile versus availability of personnel

(ommun pr	TOCESS (contra)	
	System development	
s	Subsystem development	
Hardware development	Software Human development procedures	
Concept	Operation	
Specifica	ation Validation	
Specifica	ation Validation Design Integration & test	

NFR management strategies (cont'd)

- Explicit characteristics
 - Should be fully defined at the 'concept' stage of the software development
 - Use of int'l standard checklists may help the capture
- Implict characteristics
 - ✓ May concern the software product as a whole, e.g.:
 - Completeness, verifiability, compatibility
 - May concern constructive aspects of the product (technology, architecture), e.g.:
 - Timeliness (predictability), resource-efficiency
 - Should be defined during the 'specification / design' stages

NFR management strategies (cont'd)

- Can we use the same processes used for the implementation of functional requirements?
- Should we perform them in parallel or in conjunction with the nominal processes
 - ✓ No general criteria prevent integration
- ✓ Separation allows independence of verification responsibility
- Integration is preferable (easier, cheaper) for most implicit characteristcs
- Separation is desirable for critical ones

Exam	ple 7				
Integrated pro (<i>implicit and i</i>	ocesses for the nherent to tech	e managemen hnical proces	nt of timeline (ses)	ess requirem	ents
	Software specification	Software design	Software coding	Software integration and test	Software verification
Software concept	Real-time specification	Real-time design	Real-time coding	Real-time testing	Real-time verification
	software logical model	software physical model	to fit software physical model	to support software physical model	to prove software physical model
		Scheduling analysis			

