
Applying New Scheduling Theory to

Static Priority Pre-emptive Scheduling

N. Audsley
A. Burns

M. Richardson
K. Tindell

A. J. Wellings

Department of Computer Science
University of York

England

ABSTRACT

The paper presents exact schedulability analyses for real-time systems scheduled
at run-time with a static priority pre-emptive dispatcher. The tasks to be scheduled
are allowed to experience internal blocking (from other tasks with which they
share resources) and (with certain restrictions) release jitter — such as waiting for
a message to arrive. The analysis presented is more general than that previously
published, and subsumes, for example, techniques based on the Rate Monotonic
approach. In addition to presenting the theory, an existing avionics case study is
described and analysed. The predictions that follow from this analysis are seen to
be in close agreement with the behaviour exhibited during simulation studies.

1. INTRODUCTION

One proposed method of building a hard real time system is from a number of periodic and
sporadic tasks, and a common way of scheduling such tasks is by using a static priority pre-
emptive scheduler — at run-time the highest priority runnable task is run, pre-empting other lower
priority tasks. This scheme was employed in the Rate Monotonic approach defined by Liu and
Layland12 where the (unique) static priority of a task is obtained from the period of that task —
for any two tasks L and M, period(L) > period(M) => priority(L) < priority(M). Liu and Layland
derived schedulability analysis which determines if a given task set will always meet all deadlines
under all possible release conditions. The schedulability test given is sufficient (i.e. all task sets
passing the test are guaranteed to be schedulable), but not necessary (i.e. a task set failing to pass
the test is not necessarily unschedulable). Sha, Ding, and Lehoczky provided an exact Rate
Monotonic test that is both sufficient and necessary8.

The original Rate Monotonic approach had a number of restrictions:

g all tasks are independent of each other (e.g. they do not interact)

g all tasks are periodic

g no task can block waiting for an external event

g all tasks share a common release time (called the critical instant)

g all tasks have a deadline equal to their period.

The restriction that tasks cannot interact has been removed by the Priority Ceiling protocol17 (and
other similar protocols such as the Stack Resource Protocol5 ). A method which allows sporadic
tasks to be accommodated using periodic servers has been proposed by Lehoczky et al9 (analysis
is provided which can guarantee the worst-case response time of a single sporadic task).
Rajkumar16 used external blocking (i.e. when a task is blocked awaiting an external event, such as



a delay expiry) with the Rate Monotonic approach to model the operation of a multi-processor
Priority Ceiling protocol, and provided schedulability analysis to bound its effects. The restriction
that tasks are assumed to share a critical instant has been relaxed by Audsley4.

The final restriction that the deadline of a task must be equal to the period has not been
relaxed for the Rate Monotonic approach. This is perhaps the most important restriction to lift:
requiring the deadline of a task to be less than the period of that task is essential if jitter
requirements are to be met (i.e. the result of a piece of computation must be produced within
precise intervals); furthermore, when building distributed systems the deadline of a task often
needs to be shortened to allow time for communication between tasks on different processors. In
general hard sporadic tasks have deadlines that are not related to their minimum inter-arrival time,
and hence they cannot be modelled as simple periodic tasks with period equal to deadline.

For tasks with deadlines less than (or equal) to periods, Leung and Whitehead 11 showed that
Deadline Monotonic priority assignment is optimal†. Task priorities are now assigned in inverse
order to task deadlines — a task with a short deadline (measured relative to the release time of the
task) should have a high priority. A task with a long period but short deadline would have a low
priority according to the Rate Monotonic priority assignment, but a high priority according to the
Deadline Monotonic priority assignment. Consequently, the Rate Monotonic assignment will be
sub-optimal for such task sets. If two or more tasks have the same deadline then they are assigned
an arbitrary priority order (amongst themselves).

To apply the Deadline Monotonic approach, scheduling tests must be available which will
allow deadlines to be guaranteed. Such analysis is provided by Joseph and Pandya6, Lehoczky10,
and Audsley et al1. All provide sufficient and necessary schedulability tests, differing only in the
complexity of their computations. The basic approach is expanded by Audsley et al to permit
sporadic task deadlines to be guaranteed without the use of the servers required by the Rate
Monotonic approach9. It should be pointed out that both Audsley et al, and Joseph and Pandya,
provide schedulability tests for a task set with any arbitrary priority ordering (i.e. they do not just
apply to task sets with priorities ordered by the Deadline Monotonic scheme). They also have the
useful property that they furnish estimations of the actual worst case response times for each task.
The actual schedulability test is then a trivial comparison of each task’s response time and
deadline. The calculation of response time is particularly important when deadline requirements
are assigned to the behaviour of a collection of tasks (in, for example, a distributed system). No
one task has a hard "deadline", but each task’s response time contributes to some system-wide
timing requirement that must be satisfied.

This paper is concerned with providing schedulability analysis to predict the worst-case
response times for a set of periodic and sporadic tasks under any given priority assignment, and
scheduled by a static priority pre-emptive scheduler. Section 2 describes the computation model
assumed by the analysis. Section 3 provides analysis for guaranteeing the worst-case response
times of periodic and sporadic tasks. This section also includes a glossary of notation. Section 4
modifies the analysis to take account of the so-called ‘release jitter’ problem (a special case of the
general external blocking problem). Section 5 shows how the general approach is easily extended
to more complex scenarios. Section 6 discusses the analysis and applies it to a small avionics
case-study. Conclusions are offered in Section 7.

hhhhhhhhhhhhhhh
† optimal is the sense that if a task set can be scheduled by any static priority algorithm it can also be
scheduled by the Deadline Monotonic algorithm.



2. COMPUTATIONAL MODEL

In this paper, unless explicitly mentioned, we consider the scheduling of tasks on a single
processor. The techniques can also be used in a distributed environment with static task
allocation18.

A task i is assumed to consist of an infinite number of invocation requests, each separated by
a minimum time Ti . Each invocation is a request to perform a bounded amount of computation
Ci , and to lock and unlock semaphores from a bounded set s (i ) according to the Priority Ceiling
Protocol17. Some tasks will have a deadline requirement such that all computation for an
invocation must take place before a certain time measured relative to the invocation request.
Deadlines, where required, are assumed to be constant and known a priori. The deadline
requirement of a task i is denoted Di .

The notional arrival of a task at time t will subsequently be recognised by the run-time
dispatcher and the task will be placed in a notional queue of runnable tasks. The task is then said
to be released. The time between a task’s arrival and its release is known as release jitter. In
Section 3 this will be assumed to be zero. This is the assumption normally applied in scheduling
theory (e.g. in the Rate Monotonic approach).

A task has a static base priority assigned to it a priori (using, for example, the Deadline
Monotonic priority assignment algorithm). It may also inherit a higher dynamic priority due to the
operation of the Priority Ceiling Protocol. The dispatcher chooses to run the highest dynamic
priority runnable task, pre-empting lower priority tasks when necessary.

3. FINDING WORST-CASE RESPONSE TIMES

Before proceeding further we introduce some simple notation in a glossary below. All internal
blocking is assumed to be the result of semaphore use (other synchronisation primitives also could
be used and analysed2 ).

Ci The worst-case computation time required by task i on each release. At run-time we
assume that any computation time from 0 to Ci could be required for a single
invocation of i

Ti The lower bound on the time between successive arrivals of i . If i is a periodic task
then this lower bound will also be the upper bound (i.e. the period is fixed and equal
to Ti )

Di The deadline requirement of task i , measured relative to a given release of i . Note
that we require Di ≤ Ti .

Bi The worst-case blocking time task i can experience due to the operation of the
priority ceiling protocol (or equivalent concurrency control protocol). Bi is normally
equal to the longest critical section of lower priority tasks accessing semaphores with
ceilings higher than (or equal to) the priority of i .

Ji The worst-case time task i can spend waiting to be released after arrival (the release
jitter time).

Ii The worst-case interference a task i can experience. Interference on i is defined as
the time higher priority tasks can pre-empt and execute, and hence prevent i from
executing.

ri The worst-case response time for a task i measured from the time the task is released.
For a schedulable task ri ≤ Di (if there was no deadline requirement for i we would
require that ri ≤ Ti ).



hp (i ) The set of tasks of higher base priority than the base priority of i (these tasks could
pre-empt i ).

We now turn to the problem of computing the worst-case response time for a task i , denoted ri .
Initially tasks are assumed to be released when they arrive. This time can be viewed as a
computational ‘window’: the release of i marks the start of the window, and the completion of i
marks the end of the window. The maximum width of the ‘window’ is ri . In this ‘window’ of
duration ri , task i must (at worst) complete an amount of computation equal to Ci , and be delayed
when locking semaphores by at most Bi . Additionally, task i could be pre-empted by at most Ii .
Therefore we can say that:

ri = Ci + Bi + Ii (1)

If a task i has a deadline then we must have ri ≤ Di .

The worst-case computation time Ci is constant and known a priori by some means14, 15.
The worst-case blocking time Bi is found according to the analysis given by Sha et al17, and is
equal to the longest critical section of any lower priority task accessing a semaphore with ceiling
of equal or higher priority than task i .

The rest of this section presents analysis to find Ii . Note that similar analysis, cast in a
different form, was first produced by Joseph and Pandya6, and later by Audsley et al1. The
method described below has the advantage that it is easily extended to cover situations such as
non-zero release jitter time. Note also that the analysis is not based on the notion of processor
utilisation. Although process sets with deadline equal to period can be assessed according to their
utilisation, such techniques are not general purpose. For example, two tasks with deadlines equal
to their computation time will never be schedulable, regardless of processor utilisation.

0 10

task_1

task_2

task_3

Figure 1

To find a formulae for the interference consider the sequence of computations illustrated in
Figure 1. The diagram was produced by a tool called STRESS3 written by the Real Time Systems
Research Group at York; Appendix 1 describes the notation used in these diagrams. The diagram
shows part of a schedule of a system consisting of three tasks, displayed in priority order. Task 1
is a task with worst-case computational requirement of C 1 = 1, a deadline of D 1 = 4, and a worst-



case inter-arrival time of T 1 = 50. Tasks 2 and 3 have their characteristics defined in Table 1.
Figure 1 shows the worst-case scheduling point described by Liu and Layland, where all tasks are
released simultaneously (at time 0).

iiiiiiiiiiiiiiiiiiiiii
Task C T Diiiiiiiiiiiiiiiiiiiiii

Task 1 1 50 4
Task 2 2 9 6
Task 3 5 20 12iiiiiiiiiiiiiiiiiiiiiic

c
c
c
c

c
c
c
c
c

c
c
c
c
c

c
c
c
c
c

c
c
c
c
c

Table 1

As can be seen from the diagram, task 3 is prevented from executing by task 1 for 1 tick and
task 2 for 2 ticks, completing by time 8, giving r 3 = 8. Task 2 can never pre-empt task 3 more than
once since task 3 finishes before task 2 can re-arrive (i.e. r 3 ≤ T 2).

If task 3 were to take a little longer to complete (because, say, task 1 executes for an extra
two ticks) then a first guess at r 3 would be 8 + 2 = 10. However, now that task 3 is a little longer,
task 2 can re-arrive and pre-empt task 3 a second time, giving a worst-case interference of 4 from
task 2. Figure 2 shows this situation.

0 10

task_1

task_2

task_3

Figure 2

As can be seen from Figure 2 the worst-case response time of task 3 is now 12, just meeting its
deadline.

In general, given prior knowledge of the worst-case response time ri , the interference on task
i from a task j is nCj where n has a value such that (n −1)Tj < ri ≤ nTj .

Since R x H = n when n −1 < R x H ≤ n we can say that the worst-case interference from a task j on
task i is given by:

R
J
J Tj

rihhh
H
J
J
Cj

Note that this value for the maximal interference holds regardless of whether j is periodic or



sporadic. This is an important result since it means that run-time techniques such as aperiodic
servers 9 are not needed. In fact, a periodic task can be regarded as a sporadic task, released by a
regular timing event.

The total interference Ii is given by:

Ii =
∀ j ∈ hp (i )

Σ
R
J
J Tj

rihhh
H
J
J
Cj (2)

where hp (i ) is the set of tasks with higher base priorities.

Unfortunately, when equations (1) and (2) are combined, the unknown term ri appears on both the
left and the right hand sides of the equation:

ri = Ci + Bi +
∀ j ∈ hp (i )

Σ
R
J
J Tj

rihhh
H
J
J
Cj

It is possible to solve this equation using an iterative technique. Let ri
n be the n th approximation

to the true value of ri . These approximations are generated from the above equation:

ri
n +1 = Ci + Bi +

∀ j ∈ hp (i )
Σ

R
J
J Tj

ri
n

hhh
H
J
J
Cj (3)

The iteration starts with ri
0 = 0, and terminates when ri

n +1 = ri
n. It can easily be shown that

ri
n +1 ≥ ri

n and so the iteration can be halted early if either ri
n +1 > Di or if ri

n +1 > Ti . It can also be
shown that the iteration is guaranteed to converge if the processor utilisation is ≤ 100%6.
Equation (3) can be embodied into a software tool that analyses a task set. Note that if the priority
of task a is greater than the priority of task b then rb > ra ; thus the task set should be analysed in
priority order, with the starting value rb

0 set to ra — this will enable the test to be evaluated more
quickly.

Note, in this analysis we have not made use of any information about priority assignment.
Both the Rate Monotonic policy and Deadline Monotonic policy could be used. In more complex
situations, for example in a distributed system with complex tradeoffs, finding an optimal priority
ordering may be NP-Hard, and other sub-optimal techniques such as Simulated Annealing7 are
appropriate18.

4. THE RELEASE JITTER PROBLEM

In this section we show how release jitter causes problems with the analysis presented so far. We
then show how the analysis presented can be extended to allow for such external blocking (and
indicate how this type of blocking is often encountered in real systems).

The release jitter problem arises when we change the assumption that a task is always
released as soon as it arrives. With release jitter, a task may be released at any time up to a
bounded time after it arrives, denoted Ji . This can occur if, for example, the scheduler mechanism
takes a bounded time to recognise the arrival of a task.

The analysis presented in the previous section is not sufficient when tasks can experience
release jitter. Consider the task set defined in Table 2.

iiiiiiiiiiiiiiiiiiiiiiiii
Task C T D Jiiiiiiiiiiiiiiiiiiiiiiiii
T1 3 12 8 4
T2 6 20 10 0iiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c

c
c
c
c

c
c
c
c

c
c
c
c

c
c
c
c

c
c
c
c

Table 2



Task T1 is of higher priority than task T2. In this example we are concerned with the
schedulability of T2. T1 experiences the external block because, say, it needs a message before it
can commence. The message is sent at the same time as T1 arrives (T1 could, for example, be a
sporadic task with the arrival triggered by some external event which also triggers the sending of a
message from another processor). The message is guaranteed to arrive no later than 4 ticks after
the arrival of T1, and hence we have a release jitter of J 1 = 4.

Using our current analysis we have (i.e. ignoring release jitter):

r 2
0 = 0

r 2
1 = C 2 +

R
J
J T 1

r 2
0

hhh
H
J
J
C 1 = 6

r 2
2 = C 2 +

R
J
J T 1

r 2
1

hhh
H
J
J
C 1 = 9

r 2
3 = C 2 +

R
J
J T 1

r 2
2

hhh
H
J
J
C 1 = 9

The equation has converged, and hence r 2 = 9.

Since r 2 ≤ D 2 T2 would be deemed schedulable. The following diagram shows a schedule for the
two tasks when both are released together (the Liu and Layland worst-case).

0 10 20 30

T1

T2

Figure 3

However, when release jitter is taken into account, there are situations when T2 will not always be
schedulable. The following diagram shows such a situation:



g

0 10 20 30

T1

T2

Figure 4

T1, although released at time zero, is suspended awaiting a message, which it receives at time 4
(this is also the time T2 arrives and is released). On the next release of T1, 12 ticks later, the next
message is already available (it could have arrived in effectively zero time) and so the task can be
released immediately. T2 misses a deadline (indicated by the large black ‘blob’ in the STRESS
diagram) because of the release jitter of T1. The reason is that the worst-case scheduling point no
longer occurs at the Liu and Layland critical instant (where all tasks are released together), but at
the point when T2 is released at the same time as T1 finishes waiting — T1 can then effectively
re-occur in a shorter time than the current analysis allows for, and so inflict a ‘back to back hit’.

This phenomenon is described by Rajkumar16 with reference to external blocking when
locking remote semaphores in a distributed system — Rajkumar refers to this as an invasive effect
due to deferred execution. This extra ‘hit’ can amount to at most an additional interference of C 1.
The reason the current analysis fails is because the interference factor Ii is not sufficient. An
upper bound on the interference to allow for the extra ‘hit’ might therefore be obtained by simple
adding in an extra computation time:

Ii =
∀ j ∈ hp (i )

Σ
I
J
L

R
J
J Tj

rihhh
H
J
J

+ 1
M
J
O
Cj

=
∀ j ∈ hp (i )

Σ
R
J
J Tj

ri + Tjhhhhhhh
H
J
J
Cj

In effect we are saying here that an extra ‘hit’ occurs if ri + Tj > Tj . This is pessimistic, since the
extra ‘hit’ is not bound to occur in all systems. Consider again Figure 4. If C 2 were 5 ticks then r 2
would be 8, and all computation for T2 would be complete before T1 re-arrived and pre-empted
T2. The extra ‘hit’ only occurs if ri + Jj > Tj , and hence:

Ii =
∀ j ∈ hp (i )

Σ
R
J
J Tj

ri + Jjhhhhhhh
H
J
J
Cj (4)

In Figure 4, r 2 would be 9, according to Equation (3). Since r 2 + J 1 > T 1 (or 9 + 4 > 12), T2 gets
an extra ‘hit’. But if C 2 = 5 then r 2 would be 8, and since 8 + 4 ≤12, no extra ‘hit’ occurs.

Equation (3) can thus be modified to allow for release jitter:



ri
n +1 = Ci + Bi +

∀ j ∈ hp (i )
Σ

R
J
J Tj

ri
n + Jjhhhhhhh

H
J
J
Cj (5)

Recall that ri is the worst-case response time measured from the point at which task i is released.
A more reasonable and useful measure might be from the time task i arrives, so that the worst-
case time from arrival to completion of task i is given by:

Ji + ri (6)

Note that Equation (5) still allows semaphores to be locked and unlocked according to the Priority
Ceiling Protocol.

Having extended the scheduling analysis to handle release jitter, we now indicate using two
examples how this can occur in a system.

Precedence Constrained Distributed Tasks

A common method of representing computations in a distributed system is as a collection of
tasks with precedence relationships between their executions. Each task is statically allocated to a
single processor. Such task sets can be analysed with theory which assumes release jitter. All tasks
are defined to arrive at the same time, but a precedence constrained task on one processor can have
its release delayed awaiting an indication of termination of all direct predecessors on other
processors (perhaps by the arrival of a message, in a similar way to the earlier example). The
worst-case release jitter of such a subtask can be computed by knowing the worst-case response
times of predecessor subtasks located on other processors, and by knowing the worst-case
communications delay. By assuming a best-case response time of zero for the predecessors, and
that best-case message transit times are zero, the release jitter (i.e. the variability in release) can be
said to be the largest sum of the worst-case response time of each predecessor, computed by
Equation (6), plus the worst-case transit time of the message sent by that predecessor, i.e.:

Ji =
∀ k ∈ dpred (i )

max I
L Jk + rk + Mk ,i

M
O

where dpred (i ) is the set of all tasks which are direct predecessors of task i , and Mk ,i is the
worst-case transit time of a message sent from task k to task i .

Note that the above equation only holds if all the predecessors of task i are on a different
processor from task i ; to allow predecessors to be on the same processor other analysis must be
developed. For example, one approach is to assign a lower priority to task i than the local
predecessors to ensure that task i never runs before a predecessor, and assign a release jitter of
task i such that it is greater than or equal to the release jitter of local direct predecessors (so that
whenever a higher priority predecessor is deferred awaiting a message arrival, task i is also
deferred and hence prevented from running).

A more detailed analysis of distributed precedence constrained tasks is beyond the scope of
this paper, and is the subject of current research.

Tick Driven Scheduling

The implementation of a priority scheduler can also introduce release jitter. Consider a
single processor where periodic and sporadic tasks are scheduled by a scheduler which is invoked
by a periodic clock interrupt — the so called ‘tick driven scheduling’.

Assume the period of the scheduler is Ttick , and that the scheduler, once invoked, will take no
more than Ctick computation time. Consider the following sequence of events: the scheduler is
released at time t = 0 and looks to see if the sporadic task s is to be released (in a real tick-driven



system the scheduler might poll an I/O register for the condition for the release of s ). Assume the
condition for the arrival is not true and the scheduler continues executing (ultimately terminating
after taking time Ctick ). Just after the time the scheduler has polled, the sporadic s arrives (i.e. the
condition becomes true). However, s cannot be released until the scheduler is next invoked at
time t = Ttick . Hence the sporadic is deferred for a maximum time Ttick , awaiting the timer which
invokes the scheduler. The following STRESS diagram illustrates how a sporadic task is deferred
by a tick-driven scheduler.

0 10 20 30

scheduler

sporadic

Figure 5

The tick-driven scheduler executes for Ctick = 1, with Ttick = 7. The worst-case execution time of
the sporadic task is 3 time units. As can be seen, the sporadic task is deferred for 7 time units.

Tasks which always arrive as the scheduler is released do not experience external blocking
— in the case study described later all periodic tasks have periods which are exact multiples of
Ttick , with release times measured in scheduler ticks, and hence these tasks can be considered to
always arrive as the scheduler is released. However a periodic task will experience release jitter if
its period is not an integer multiple of the clock period.

5. SPORADICALLY PERIODIC TASKS

Another illustration of the strength of the analytical approach taken in this paper is to adapt the
scheduling analysis to more accurately describe the behaviour of so-called ‘sporadically periodic
tasks’. Very often a task will arrive at some time, execute, and then re-arrive periodically for a
number of times, and then not re-arrive for a longer time. This is illustrated by the following
STRESS diagram:

0 20 40

task_1

Figure 6

The task illustrated has an ‘inner’ period of 4 ticks, a minimum ‘outer’ period of 15 ticks, and a
worst-case execution time of 1 tick. The task arrives periodically 3 times for each outer arrival.
This behaviour is quite common in real systems — a task is initiated in response to some event,
and then for a short period of time periodically monitors or controls some part of the system.



The model also caters for bursty sporadics. An interrupt, that releases a sporadic, may be
defined to have a very short minimum arrival time but have the maximum number of arrivals over
some larger interval. The maximum being much lower than the minimum interval would dictate.
For example in a satellite control system (for which this scheduling model has been applied) bus
interrupts can occur every 960µs up to a maximum of four. There must then be a gap of 10ms.

If the analysis developed so far were to be applied to these situations, the predictions would
be pessimistic since the theory has to assume that the task executed continually. This might result
in a higher assumed interference than could actually occur. However, the general analytical
approach is well-suited to extending the current analysis to remove this pessimism.

Our general approach to ascertaining the schedulability of a task is to determine the
interference over a given window (usually the worst-case response time of a task). This
interference is summed, and the window widened if necessary. We require that a wider window
always leads to a higher interference. Hence to ascertain the schedulability of a task i in the
presence of higher priority sporadically periodic tasks we need to find an upper bound on the
interference over a window of size ri . We adopt the following additional notation:

nj The number of times task j executes for each ‘outer’ arrival (in Figure 6, n = 3).

tj The ‘inner’ period of task j (in Figure 6, t = 4).

Tj The ‘outer’ period of task j (in Figure 6, T = 15).

Cj The worst case computation time required by the ‘inner’ task (in Figure 6, C = 1).

For the moment we assume that tasks do not experience release jitter. The number of full outer
periods completing within the window of size ri is bounded by:

J
J
Q Tj

rihhh
J
J
P

The total interference due to full outer arrivals is therefore bounded by:

nj

J
J
Q Tj

rihhh
J
J
P
Cj (7)

At most one partially complete outer arrival can interfere over the remaining part of the window
not already accounted for by whole arrivals. This remaining time amounts to:

ri − Tj

J
J
Q Tj

rihhh
J
J
P

and lies in the range (0 .. Tj ]. We shall denote this value by Qij . The interference over this
remaining time is bounded by:

R
J
J tj

Qijhhhh
H
J
J
Cj (8)

The above equation assumes that task j executes as a continual periodic task (with period tj ) over
the remaining interval. However, task j cannot execute for more than nj periods in this interval
(since the interval covers only a partially complete outer arrival), and another bound can be
obtained:

nj Cj (9)



The least upper bound can therefore be used, i.e.:

min
I
J
L

R
J
J tj

Qijhhhh
H
J
J
, nj

M
J
O
Cj (10)

Combining Equations (10) and (7) and summing over all higher priority tasks we obtain:

Ii =
∀ j ∈ hp (i )

Σ
R
J
Q
min

I
J
L

R
J
J tj

Qijhhhh
H
J
J

, nj

M
J
O

+ nj

J
J
Q Tj

rihhh
J
J
P

H
J
P
Cj (11)

If a task j is not sporadically periodic then we choose nj = 1 and tj = Tj . As a check for Equation
(11) we assume that all tasks are not sporadically periodic, and hence for all tasks j nj = 1 and
tj = Tj . From Equation (11) we have:

Ii =
∀ j ∈ hp (i )

Σ
R
J
J
J
Q

min

I
J
J
J
L

R
J
J
J
J

Tj

ri − Tj

J
J
Q Tj

rihhh
J
J
Phhhhhhhhhhhh

H
J
J
J
J

, 1

M
J
J
J
O

+
J
J
Q Tj

rihhh
J
J
P

H
J
J
J
P

Cj

=
∀ j ∈ hp (i )

Σ
R
J
J
J
Q

R
J
J
J
J

Tj

ri − Tj

J
J
Q Tj

rihhh
J
J
Phhhhhhhhhhhh

H
J
J
J
J

+
J
J
Q Tj

rihhh
J
J
P

H
J
J
J
P

Cj

=
∀ j ∈ hp (i )

Σ
R
J
Q

R
J
J Tj

rihhh −
J
J
Q Tj

rihhh
J
J
P

H
J
J

+
J
J
Q Tj

rihhh
J
J
P

H
J
P
Cj

=
∀ j ∈ hp (i )

Σ
R
J
Q

R
J
J Tj

rihhh
H
J
J

−
J
J
Q Tj

rihhh
J
J
P

+
J
J
Q Tj

rihhh
J
J
P

H
J
P
Cj

=
∀ j ∈ hp (i )

Σ
R
J
J Tj

rihhh
H
J
J
Cj

Which is equal to Equation (2). Hence Equation (11) is a generalisation of Equation (2).

We now return to the problem of release jitter. There are two potential places where release
jitter could occur: on an outer arrival (where the first arrival of a succession of nj inner arrivals of
a task j is deferred), and on an inner arrival (where each of the nj arrivals could experience
delay). For simplicity we assume that the outer arrival jitter and the inner arrival jitter are the
same. For a task j we assume that this jitter is denoted Jj . Following the same argument as for
the derivation of jitter in Equation (5) we can modify Equation (11) to include release jitter:

Ii =
∀ j ∈ hp (i )

Σ
R
J
J
J
Q

min

I
J
J
J
L

R
J
J
J
J

tj

Jj + ri − Tj

J
J
Q Tj

Jj + rihhhhhhh
J
J
Phhhhhhhhhhhhhhhhhhhh

H
J
J
J
J

, nj

M
J
J
J
O

+ nj

J
J
Q Tj

Jj + rihhhhhhh
J
J
P

H
J
J
J
P

Cj (12)



As with Equation (3) an iterative equation to find ri can be formulated. Again, the worst-case
response time of a task, measured from arrival to termination, is given by Ji + ri .

6. DISCUSSION AND CASE STUDY

In this section we analyse and discuss the task set of a small avionics case study undertaken by
Locke et al and described in detail in their paper13.

A number of mostly-periodic tasks implement an avionics weapons management subsystem.
There is a single sporadic task, and a single task where the deadline of the task is less than the
period (for reduced output ‘jitter’ requirements). Task priorities are assigned according to the
Deadline Monotonic policy. Originally, the tasks were analysed using the Rate Monotonic
schedulability analysis derived by Sha et al8. The study 13 reports that, using this analysis, out of
a set of 18 tasks only the 8 highest priority tasks could be guaranteed to meet their deadlines. In
simulations nearly all tasks were found to meet their timing requirements (two tasks are reported
as missing their deadlines).

Equation (5) was applied to the task set described by Locke et al13, using the given priority
assignment. For the single sporadic task a release jitter of 1000 µs was assumed (to account for
the worst-case delay due to the operation of the tick-driven scheduler — see earlier the discussion
of induced jitter from tick-driven scheduling). The other tasks are all periodic with periods which
are multiples of Ttick = 1000µs, and hence do not experience release jitter. Table 3 lists the tasks in
priority order (task 1, the tick-driven scheduler, is the highest priority task), and gives the
attributes and the derived response times, using Equation (5), of the tasks. All times given are in
µs.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
i Ci Ti Di ri Bi Ji

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 51 1000 1000 51 0 0
2 3000 200000 5000 3504 300 0
3 2000 25000 25000 5906 600 0
4 5000 25000 25000 11512 900 0
5 1000 40000 40000 13064 1350 0
6 3000 50000 50000 16217 1350 0
7 5000 50000 50000 20821 750 0
8 8000 59000 59000 36637 750 0
9 9000 80000 80000 47798 1350 0
10 2000 80000 80000 48949 450 0
11 5000 100000 100000 115966 1050 0
12 1000 200000 200000 137488 450 1000
13 3000 200000 200000 140641 450 0
14 1000 200000 200000 141692 450 0
15 1000 200000 200000 143694 1350 0
16 3000 200000 200000 145446 0 0
17 1000 1000000 1000000 146497 0 0
18 1000 1000000 1000000 147548 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 3

As can be seen from the table, our analysis expects that all deadlines can be met except for task
11. Locke et al found that task 11 did indeed miss its deadline occasionally. They also found that



task 16 missed a deadline once. This discrepancy can be explained if the scheduler
implementation does not exactly agree with the assumptions made in this paper.

The case study was implemented in Ada. Most Ada run-time systems make use of two
queues; a run-queue which holds all runnable tasks and a delay-queue which holds all (periodic)
task that are waiting for their next release. At any particular tick the number of tasks to be moved
from the delay queue to the run-queue will vary between none and sixteen. A standard run-time
system will not undertake this at a constant cost (in computation time); hence the value of C 1 of
51 µs is potentially an underestimation. Furthermore, the costs of context switches must be
accounted for accurately, along with any blocking factors due to the operation of the system (for
example, calls to the Ada run-time in most implementations are generally non-preemptable and
hence can induce a blocking factor on all tasks). It is therefore unlikely that B 16 is actually zero.
Equation (5) predicts a worst case response time for task 16 of 145446 µs which seems a long way
from its deadline of 200000 µs. However if the above factors could increase the responses time by
only 3.2% then this would push it over 150000 µs at which point it would suffer increased
interference from tasks 3, 4, 6 and 7; and subsequently tasks 5, 9 and 10. This is sufficient for it to
miss its deadline in the worst case. Without details of the exact implementation no fair
comparison of the results of experiments and analysis can be made. In general, however, our
analysis agrees with the observed behaviour. Moreover, it matches the observed behaviour more
closely that the original Rate Monotonic analysis.

7. SUMMARY AND CONCLUSIONS

We have presented results in this paper which provide simple exact analysis for systems scheduled
at run-time with a static priority pre-emptive dispatcher. The analysis has been extended to
include release jitter, allowing tasks to arrive and then be deferred for a bounded amount of time.
The analysis has been further extended to permit sporadically periodic tasks to be analysed
exactly. A case study already presented elsewhere and analysed according to Rate Monotonic
scheduling theory has been re-analysed using this theory. The basis of the analysis is the
development of formulae which predict the worst-case interference a task can suffer from higher
priority tasks; utilisation based analysis is not used as this cannot cater for systems which contain
tasks with deadlines less than periods.

The two most important aspects of the scheduling theory presented here are: that older
scheduling theory can be considered a special case of the analysis presented in this paper (systems
previously analysed by the Rate Monotonic approach can now be re-analysed using more powerful
techniques), and that the analysis presented here can be extended in a straightforward manner to
allow more complex and powerful systems to be investigated.

8. ACKNOWLEDGEMENTS

The authors would like to thank the authors of the case study for help with the analysis of the case
study and for comments on an earlier draft of this paper.

9. REFERENCES

1. N.C. Audsley, A. Burns, M.F. Richardson and A.J. Wellings, ‘‘Hard Real-Time
Scheduling: The Deadline Monotonic Approach’’, Proceedings 8th IEEE Workshop on
Real-Time Operating Systems and Software, Atlanta, GA, USA (15-17 May 1991).

2. N. C. Audsley, ‘‘Resource Control For Hard Real-Time Systems: A Review’’, YCS 159,
Department of Coputer Science, University of York (August 1991).

3. N. C. Audsley, A. Burns, M. F. Richardson and A. J. Wellings, ‘‘STRESS: A Simulator For



Hard Real-Time System’’, RTRG/91/106, Real-Time Research Group, Department of
Computer Science, University of York (October 1991).

4. N.C. Audsley, ‘‘Optimal Priority Assignment and Feasibility of Static Priority Tasks With
Arbitrary Start Times’’, YCS 164, Dept. Computer Science, University of York (December
1991).

5. T.P. Baker, ‘‘Stack-Based Scheduling of Realtime Processes’’, Real Time Systems 3(1)
(March 1991).

6. M. Joseph and P. Pandya, ‘‘Finding Response Times in a Real-Time System’’, BCS
Computer Journal, pp. 390-395 (Vol. 29, No. 5, Oct 86).

7. S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, ‘‘Optimisation by Simulated Annealing’’,
Science(220), pp. 671-680 (1983).

8. J.P. Lehoczky, L. Sha and V. Ding, ‘‘The Rate Monotonic Scheduling Algorithm: Exact
Characterization and Average Case Behavior’’, Tech Report, Department of Statistics,
Carnegie-Mellon (1987).

9. J.P. Lehoczky, L. Sha and J.K. Strosnider, ‘‘Enhancing Aperiodic Responsiveness in Hard
Real-Time Environment’’, in Proceedings 8th IEEE Real-Time Systems Symposium, San
Jose, California (December 1987).

10. J. P. Lehoczky, ‘‘Fixed Priority Scheduling of Periodic Task Sets With Arbitrary
Deadlines’’, Proceedings 11th IEEE Real-Time Systems Symposium, Lake Buena Vista, FL,
USA, pp. 201-209 (5-7 Decmeber 1990).

11. J.Y.T. Leung and J. Whitehead, ‘‘On the Complexity of Fixed-Priority Scheduling of
Periodic, Real-Time Tasks’’, Performance Evaluation (Netherlands) 2(4), pp. 237-250
(December 1982).

12. C.L. Liu and J.W. Layland, ‘‘Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environment’’, JACM 20(1), pp. 46-61 (1973).

13. C.D. Locke, D.R. Vogel and T.J. Mesler, Building a Predictable Avionics Platform in Ada:
A Case Study, Proceedings of the IEEE 12th Real Time Systems Symposium (December
1991).

14. C.Y. Park and A.C. Shaw, ‘‘Experiments with a program timing tool based on source-level
timing schema’’, Computer 24(5), pp. 48-57, Computer (USA) (May 1991).

15. P. Puschner and C. Koza, ‘‘Calculating The Maximum Execution Time Of Real-Time
Programs’’, The Journal of Real-Time Systems 1(2), pp. 159-176 (September 1989).

16. R. Rajkumar, ‘‘Real-Time Synchronisation Protocols for Shared Memory
Multiprocessors’’, Proceedings 10th IEEE International Conference on Distributed
Computing Systems, Paris, IEEE Computer Society Press (28 May - 1 June 1990).

17. L. Sha, R. Rajkumar and J. P. Lehoczky, ‘‘Priority Inheritance Protocols: An Approach to
Real-Time Synchronisation’’, IEEE Transactions on Computers 39(9), pp. 1175-1185
(September 1990).

18. K. Tindell, A. Burns and A. Wellings, ‘‘Allocating Real-Time Tasks (An NP-Hard Problem
made Easy)’’, Real Time Systems 4(2), pp. 145-165 (June 1992).



APPENDIX 1

A Brief Description of STRESS Diagrams

STRESS diagrams illustrate the execution of tasks under the STRESS simulator. In these diagrams,
time increases from left to right.

Task execution is represented by boxes. A task which is pre-empted is shown by a line at the
level of the bottom of the boxes; a task which is deferred by a line at the level of the top of the
boxes. These states are annotated by a variety of symbols.

Task release is marked by a low-level circle, and successful task completion by a high-level
circle. If a task fails to meet its deadline, or otherwise fails to complete, then a filled high-level
circle is used. Task deadlines are marked by a vertical line with a ∧ mark at the bottom.

An example is shown below. Tasks task_0 and task_1 are released at times 2 and 0
respectively, have deadlines at times 10 and 8 respectively, and require 6 and 3 computation ticks
respectively; task_1 is deferred for four ticks, executes for three further ticks and then completes.
task_0 executes for two ticks, before being pre-empted at tick 4 and resumed at tick 7; it fails to
meet its deadline and is killed.

0 5 10

task_1

task_0 g

Example Stress Diagram


