
1

1/29 © Burns and Wellings, 2001

Simple Process Model

The application is assumed to consist of a fixed set of
processes (tasks)
All processes (tasks) are periodic with known periods
The processes are completely independent of each
other
All system overheads, context-switch times and so on
are ignored
– Assumed to have zero cost or otherwise negligible

All processes have a deadline equal to their period
– Each process must complete before it is next released

All processes have a fixed WCET

2/29 © Burns and Wellings, 2001

Standard Notation

B
C
D
I
J
N
P
R
T
U

a-z

Worst-case blocking time for the process (if applicable)
Worst-case computation time (WCET) of the process
Deadline of the process
The interference time of the process
Release jitter of the process
Number of processes in the system
Priority assigned to the process (if applicable)
Worst-case response time of the process
Minimum time between process releases (process period)
The utilization of each process (equal to C/T)
The name of a process

3/29 © Burns and Wellings, 2001

Fixed-Priority Scheduling (FPS)

This is the most widely used approach and is the main
focus of this course
Each process has a fixed, static, priority which is
computed off-line
The ready processes are executed in the order
determined by their priority
In real-time systems the “priority” of a process is derived
from its temporal requirements, not its importance to the
correct functioning of the system or its integrity

4/29 © Burns and Wellings, 2001

Preemption and Non-preemption – 1

With priority-based scheduling, a high-priority process
may be released during the execution of a lower priority
one
In a preemptive scheme, there will be an immediate
switch to the higher-priority process
With non-preemption, the lower-priority process will be
allowed to complete before the other executes
Preemptive schemes enable higher-priority processes to
be more reactive, and hence they are preferred

5/29 © Burns and Wellings, 2001

Preemption and Non-preemption – 2

Alternative strategies allow a lower priority process to
continue to execute for a bounded time
These schemes are known as deferred preemption or
cooperative dispatching
Schemes such as EDF and VBS (Value Based
Scheduling) can also take on a preemptive or non-
preemptive form
– VBS is useful when the system becomes overloaded and some

adaptive scheme of scheduling is needed
– VBS consists in assigning a value to each process and then

employing an on-line value-based scheduling algorithm to
decide which process to run next

6/29 © Burns and Wellings, 2001

FPS and Rate Monotonic Priority Assignment

Each process is assigned a (unique) priority based on
its period
– The shorter the period, the higher the priority

For any two processes i and j

This assignment is optimal in the sense that if any
process set can be scheduled (using preemptive
priority-based scheduling) with a fixed-priority
assignment scheme, then the given process set can
also be scheduled with a rate monotonic assignment
scheme
Note: priority 1 is the lowest (least) priority

P jPiT jT i >⇒<

2

7/29 © Burns and Wellings, 2001

Utilization-Based Analysis

A simple sufficient but not necessary schedulability
condition exists for rate monotonic scheduling
– But only for task sets with D=T

)12(/1

1

−≤≡ ∑
=

N
N

i i

i N
T
CU

∞→≤ NU as 69.0

8/29 © Burns and Wellings, 2001

Process Period Computation Time Priority Utilization
T C P U

a 50 12 1 0.24
b 40 10 2 0.25
c 30 10 3 0.33

Process Set A

The combined utilization is 0.82 (or 82%)
This is above the threshold for three processes (0.78)
and, hence, this process set fails the utilization test

9/29 © Burns and Wellings, 2001

Timeline for Process Set A

0 10 20 30 40 50 60

Time

Process

a

b

c

Process Release Time

Process Completion Time
Deadline Met
Process Completion Time
Deadline Missed

Executing

Preempted

10/29 © Burns and Wellings, 2001

Process Period Computation Time Priority Utilization
T C P U

a 80 32 1 0.400
b 40 5 2 0.125
c 16 4 3 0.250

Process Set B

The combined utilization is 0.775
This is below the threshold for three processes (0.78)
and, hence, this process set will meet all its deadlines

11/29 © Burns and Wellings, 2001

Process Period Computation Time Priority Utilization
T C P U

a 80 40 1 0.50
b 40 10 2 0.25
c 20 5 3 0.25

Process Set C

The combined utilization is 1.0
This is above the threshold for three processes (0.78)
but the process set will meet all its deadlines

12/29 © Burns and Wellings, 2001

Timeline for Process Set C

0 10 20 30 40 50 60

Process

a

b

c

70 80
Time

3

13/29 © Burns and Wellings, 2001

Criticism of Utilization-based Tests

Not exact
Not general
BUT it is O(N)

The test is said to be sufficient but not necessary

14/29 © Burns and Wellings, 2001

Response Time Analysis

The worst-case response time R of task i is calculated
first and then checked (trivially) with its deadline

Where I is the interference from higher priority tasks

iii ICR +=

R ≤ Dii

15/29 © Burns and Wellings, 2001

Calculating R

During R, each higher priority task j will execute a number of
times

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
=

j

i

T
R ReleasesofNumber

The total interference is given by:

j
j

i C
T
R
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡

The ceiling function gives the smallest integer greater than the fractional
number on which it acts. So the ceiling of 1/3 is 1, of 6/5 is 2, and of 6/3 is 2.

⎡ ⎤

16/29 © Burns and Wellings, 2001

Response Time Equation

j
ihpj

j

i
ii C

T
RCR ∑ ⎥
⎥

⎤
⎢
⎢

⎡
+=

∈)(

Where hp(i) is the set of tasks with priority higher than task i

Solve by forming a recurrence relationship:

j
ihpj

j

n
i

i
n
i C

T
wCw ∑ ⎥

⎥

⎤
⎢
⎢

⎡
+=

∈

+

)(

1

The set of values is monotonically non decreasing
When the solution to the equation has been found,
must not be greater that (e.g. 0 or)

1+= n
i

n
i ww

,..,...,,, 210 n
iiii wwww

0
iw

iR iC

17/29 © Burns and Wellings, 2001

Response Time Algorithm
for i in 1..N loop -- for each process in turn

n := 0

loop
calculate new
if then

exit value found
end if
if then

exit value not found
end if
n := n + 1

end loop
end loop

i
n
i Cw =:

1+n
iw

n
i

n
i ww =+1

n
ii wR =

i
n
i Tw >+1

18/29 © Burns and Wellings, 2001

Process Period Computation Time Priority
T C P

a 7 3 3
b 12 3 2
c 20 5 1

Process Set D – 1

3=aR

6

63
7
63

63
7
33

3

2

1

0

=

=⎥⎥
⎤

⎢⎢
⎡+=

=⎥⎥
⎤

⎢⎢
⎡+=

=

b

b

b

b

R

w

w

w

4

19/29 © Burns and Wellings, 2001

Process Set D – 2

173
12
143

7
145

143
12
113

7
115

113
12
53

7
55

5

3

2

1

0

=⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

=⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

=⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

=

c

c

c

c

w

w

w

w

20

203
12
203

7
205

203
12
173

7
175

5

4

=

=⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

=⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

c

c

c

R

w

w

20/29 © Burns and Wellings, 2001

Process Period Computation Time Priority Response time
T C P R

a 80 40 1 80
b 40 10 2 15
c 20 5 3 5

Revisit: Process Set C

The combined utilization is 1.0
This was above the utilization threshold for three
processes (0.78) therefore it failed the test
The response time analysis shows that the process set
will meet all its deadlines

21/29 © Burns and Wellings, 2001

Response Time Analysis

RTA is sufficient and necessary
If the process set passes the test its processes will meet
all their deadlines
If it fails the test then, at run time, a process will miss its
deadline
– Unless the computation time estimations themselves turn out to

be pessimistic

22/29 © Burns and Wellings, 2001

Sporadic Processes

Sporadic processes have a minimum inter-arrival time
They also require D<T

The response time algorithm for fixed-priority scheduling
works perfectly for values of D less than T as long as
the stopping criteria becomes
It also works perfectly well with any priority ordering
– hp(i) always gives the set of higher-priority processes

i
n

i DW >+1

23/29 © Burns and Wellings, 2001

Hard and Soft Processes

In many situations the WCET for sporadic processes are
considerably higher than the average
Interrupts often arrive in bursts and an abnormal sensor
reading may lead to significant additional computation
Measuring schedulability with WCET may lead to very
low processor utilizations being observed in the actual
running system

24/29 © Burns and Wellings, 2001

General Guidelines

Rule 1
All processes should be schedulable using average
execution times and average arrival rates
– There may therefore be situations in which it is not possible to

meet all current deadlines
– This condition is known as a transient overload

Rule 2
All hard real-time processes should be schedulable
using WCET and worst-case arrival rates of all
processes (including soft)
– No hard real-time process will therefore miss its deadline
– If Rule 2 gives rise to unacceptably low utilizations for “normal

execution” then action must be taken to reduce the WCET
values or the arrival rates

5

25/29 © Burns and Wellings, 2001

Aperiodic Processes

These do not have minimum inter-arrival times
Can run aperiodic processes at a priority below the
priorities assigned to hard processes
– In a preemptive system they therefore cannot steal resources

from the hard processes

This does not provide adequate support to soft
processes which will often miss their deadlines
To improve the situation for soft processes, a server can
be employed
Servers protect the processing resources needed by
hard processes but otherwise allow soft processes to
run as soon as possible
POSIX supports Sporadic Servers

26/29 © Burns and Wellings, 2001

Process Sets with D < T

For D = T, Rate Monotonic priority ordering is optimal
For D < T, Deadline Monotonic priority ordering is
optimal

jiji PPDD >⇒<

27/29 © Burns and Wellings, 2001

DMPO is Optimal – 1

Deadline monotonic priority ordering (DMPO) is optimal

if any process set Q that is schedulable by priority-driven
scheme W is also schedulable by DMPO

The proof of optimality of DMPO involves transforming
the priorities of Q (as assigned by W) until the ordering is
DMPO
Each step of the transformation will preserve
schedulability

28/29 © Burns and Wellings, 2001

DMPO is Optimal – 2

Let i and j be two processes (with adjacent priorities)
in Q such that under W

Define scheme W’ to be identical to W except that
processes i and j are swapped
Now consider the schedulability of Q under W’
All processes with priorities greater than will be
unaffected by this change to lower-priority processes
All processes with priorities lower than will be
unaffected; they will all experience the same
interference from i and j
Process j, which was schedulable under W, now has a
higher priority, suffers less interference, and hence must
be schedulable under W’

jiji DDPP >∧>

29/29 © Burns and Wellings, 2001

All that is left is the need to show that process i, which
has had its priority lowered, is still schedulable
Under W

Hence process j only interferes once during the
execution of i
It follows that:

It can be concluded that process i is schedulable after
the switch
Priority scheme W’ can now be transformed to W" by
choosing two more processes that are in the wrong
order for DMP and switching them

iiijjj TDandDDDR ≤<< ,

ijji DDRR <≤='

DMPO is Optimal – 3

