Simple Process Model

- The application is assumed to consist of a fixed set of processes (tasks)
- All processes (tasks) are periodic with known periods
- The processes are completely independent of each other
- All system overheads, context-switch times and so on are ignored
 - Assumed to have zero cost or otherwise negligible
- All processes have a deadline equal to their period
 Each process must complete before it is next released
- All processes have a fixed WCET

Standard Notation

- Worst-case blocking time for the process (if applicable)
- C Worst-case computation time (WCET) of the process
- D Deadline of the process

в

- I The interference time of the process
- J Release jitter of the process
- \mathbb{N} Number of processes in the system
- P Priority assigned to the process (if applicable)
- R Worst-case response time of the process
- Minimum time between process releases (process period)
 The utilization of each process (equal to C/T)
- U The utilization of each process (equal to C/T)
- a-z The name of a process

Fixed-Priority Scheduling (FPS)

- This is the most widely used approach and is the main focus of this course
- Each process has a fixed, static, priority which is computed off-line
- The ready processes are executed in the order determined by their priority
- In real-time systems the "priority" of a process is derived from its temporal requirements, not its importance to the correct functioning of the system or its integrity

Preemption and Non-preemption – 1

- With priority-based scheduling, a high-priority process may be released during the execution of a lower priority one
- In a preemptive scheme, there will be an immediate switch to the higher-priority process
- With non-preemption, the lower-priority process will be allowed to complete before the other executes
- Preemptive schemes enable higher-priority processes to be more reactive, and hence they are preferred

Preemption and Non-preemption – 2

- Alternative strategies allow a lower priority process to continue to execute for a bounded time
- These schemes are known as deferred preemption or cooperative dispatching
- Schemes such as EDF and VBS (Value Based Scheduling) can also take on a preemptive or nonpreemptive form
 - VBS is useful when the system becomes overloaded and some adaptive scheme of scheduling is needed
 - VBS consists in assigning a value to each process and then employing an on-line value-based scheduling algorithm to decide which process to run next

FPS and Rate Monotonic Priority Assignment

 Each process is assigned a (unique) priority based on its period

The shorter the period, the higher the priority

- For any two processes i and j $T_i < T_j \Longrightarrow P_i > P_j$
- This assignment is optimal in the sense that if any process set can be scheduled (using preemptive priority-based scheduling) with a fixed-priority assignment scheme, then the given process set can also be scheduled with a rate monotonic assignment scheme
- Note: priority 1 is the lowest (least) priority

Utilization-Based Analysis
• A simple sufficient but not necessary schedulability condition exists for rate monotonic scheduling
- But only for task sets with D=T

$$U \equiv \sum_{i=1}^{N} \frac{C_i}{T_i} \le N (2^{1/N} - 1)$$

$$U \le 0.69 \text{ as } N \to \infty$$

Process Set A				
Process	Period T	Computation Time C	Priority P	Utilization U
a b	50 40	12 10	1 2	0.24
 c 30 10 3 0.33 The combined utilization is 0.82 (or 82%) This is above the threshold for three processes (0.78) and, hence, this process set fails the utilization test 				

Process Set B					
Process	Period T	Computation Time	Priority	Utilization	
a b c	80 40 16	32 5 4	1 2 3	0.400 0.125 0.250	
 The combined utilization is 0.775 This is below the threshold for three processes (0.78) and, hence, this process set will meet all its deadlines 					
10/29				© Burns and Wellings, 2001	

Process Set C					
Process	Period T	Computation Time C	Priority P	Utilization U	
a	80	40	1	0.50	
b	40	10	2	0.25	
С	20	5	3	0.25	
 The combined utilization is 1.0 This is above the threshold for three processes (0.78) but the process set will meet all its deadlines 					
29				O Barry and We	

Criticism of Utilization-based Tests

- Not exact
- Not general
- BUT it is O(N)

The test is said to be sufficient but not necessary

Response Time Analysis • The worst-case response time *R* of task *i* is calculated first and then checked (trivially) with its deadline $R_i \le D_i$ $R_i = C_i + I_i$ Where *I* is the interference from higher priority tasks

Process Set D – 2				
	$w_{c}^{0} = 5$			
	$w_{c}^{1} = 5 + \left[\frac{5}{7}\right]3 + \left[\frac{5}{12}\right]3 = 11$			
	$w_{c}^{2} = 5 + \left[\frac{11}{7}\right]3 + \left[\frac{11}{12}\right]3 = 14$			
	$w_{c}^{3} = 5 + \left\lceil \frac{14}{7} \right\rceil 3 + \left\lceil \frac{14}{12} \right\rceil 3 = 17$			
	$w_{c}^{4} = 5 + \left\lceil \frac{17}{7} \right\rceil 3 + \left\lceil \frac{17}{12} \right\rceil 3 = 20$			
	$w_{c}^{5} = 5 + \left[\frac{20}{7}\right]3 + \left[\frac{20}{12}\right]3 = 20$			
	$R_c = 20$			
19/29		0.0 J.W.W. 2004		

Revisit: Process Set C						
Process	Period	Computation Time	Priority	Response time		
	T	C	P	R		
a	80	40	1	80		
b	40	10	2	15		
c	20	5	3	5		
 The combined utilization is 1.0 This was above the utilization threshold for three processes (0.78) therefore it failed the test The response time analysis shows that the process set will meet all its deadlines 						

Response Time Analysis

- RTA is sufficient and necessary
- If the process set passes the test its processes will meet all their deadlines
- If it fails the test then, at run time, a process will miss its deadline
 - Unless the computation time estimations themselves turn out to be pessimistic

Sporadic Processes

- Sporadic processes have a minimum inter-arrival time
- They also require D<T</p>
- The response time algorithm for fixed-priority scheduling works perfectly for values of D less than T as long as the stopping criteria becomes W^{rit} > D.
- It also works perfectly well with any priority ordering
 hp(i) always gives the set of higher-priority processes

Hard and Soft Processes

- In many situations the WCET for sporadic processes are considerably higher than the average
- Interrupts often arrive in bursts and an abnormal sensor reading may lead to significant additional computation
- Measuring schedulability with WCET may lead to very low processor utilizations being observed in the actual running system

General Guidelines

Rule 1

All processes should be schedulable using average execution times and average arrival rates

- There may therefore be situations in which it is not possible to meet all current deadlines
- This condition is known as a transient overload
- Rule 2

All hard real-time processes should be schedulable using WCET and worst-case arrival rates of all processes (including soft)

 No hard real-time process will therefore miss its deadline
 If Rule 2 gives rise to unacceptably low utilizations for "normal execution" then action must be taken to reduce the WCET values or the arrival rates

24/29

Aperiodic Processes

- These do not have minimum inter-arrival times
- Can run aperiodic processes at a priority below the priorities assigned to hard processes
 In a preemptive system they therefore cannot steal resources
- from the hard processes This does not provide adequate support to soft
- processes which will often miss their deadlines
- To improve the situation for soft processes, a server can be employed
- Servers protect the processing resources needed by hard processes but otherwise allow soft processes to run as soon as possible
- POSIX supports Sporadic Servers

Process Sets with D < T

- For D = T, Rate Monotonic priority ordering is optimal
- For D < T, Deadline Monotonic priority ordering is optimal

$$D_i < D_j \Longrightarrow P_i > P_j$$

DMPO is Optimal – 1

Deadline monotonic priority ordering (DMPO) is optimal

if any process set Q that is schedulable by priority-driven scheme W is also schedulable by DMPO

- The proof of optimality of DMPO involves transforming the priorities of Q (as assigned by W) until the ordering is DMPO
- Each step of the transformation will preserve schedulability

DMPO is Optimal – 2

- Let i and j be two processes (with adjacent priorities) in Q such that under W $P_i > P_i \land D_i > D_i$
- Define scheme w' to be identical to w except that processes i and j are swapped
- Now consider the schedulability of Q under W'
 All processes with priorities greater than will be
- unaffected by this change to lower-priority processes All processes with priorities lower than will be
- unaffected; they will all experience the same interference from i and j
- Process j, which was schedulable under W, now has a higher priority, suffers less interference, and hence must be schedulable under W'

DMPO is Optimal – 3

- All that is left is the need to show that process i, which has had its priority lowered, is still schedulable
 Under w
 - $R_i < D_i, D_i < D_i \text{ and } D_i \leq T_i$
- Hence process j only interferes once during the execution of i
- It follows that:
 - $R'_i = R_j \le D_j < D_i$
- It can be concluded that process i is schedulable after the switch
- Priority scheme W' can now be transformed to W" by choosing two more processes that are in the wrong order for DMP and switching them