
1

1/27 © Burns and Wellings, 2001

Process Interactions and Blocking

If a process is suspended waiting for a lower-priority
process to complete some required computation then
the priority model is, in some sense, being undermined

It is said to suffer priority inversion

If a process is waiting for a lower-priority process, it is
said to be blocked

2/27 © Burns and Wellings, 2001

Priority Inversion – 1

To illustrate an extreme example of priority inversion,
consider the executions of four periodic processes: a, b, c
and d; and two resources: Q and V

Process Priority Execution Sequence Release Time
a 1 EQQQQE 0
b 2 EE 2
c 3 EVVE 2

d 4 EEQVE 4

3/27 © Burns and Wellings, 2001

Priority Inversion – 2
Process

a

b

c

d

0 2 4 6 8 10 12 14 16

Executing
Executing with Q locked

Preempted

Executing with V locked
Blocked

4/27 © Burns and Wellings, 2001

Priority Inheritance – 3

If process p is blocking process q, then q runs with p's
priority

a

b

c

d

0 2 4 6 8 10 12 14 16

Process

5/27 © Burns and Wellings, 2001

Calculating Blocking

If a process has m critical sections that can lead to it
being blocked then the maximum number of times it can
be blocked is m
If B is the maximum blocking time and K is the number
of critical sections, the process i has an upper bound
on its blocking given by:

Where usage(k,i) = 1 if resource k is used by at
least one process with priority less than Pi, otherwise it
evaluates to 0

∑=
=

K

k
i kCikusageB

1
)(),(

6/27 © Burns and Wellings, 2001

Response Time and Blocking

iiii IBCR ++=

j
ihpj j

i
iii C

T
RBCR ∑

∈ ⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
++=

)(

j
ihpj

j

n
i

ii
n
i C

T
wBCw ∑ ⎥

⎥

⎤
⎢
⎢

⎡
++=

∈

+

)(

1

2

7/27 © Burns and Wellings, 2001

Priority Ceiling Protocols

It takes on two forms
– Original ceiling priority protocol
– Immediate ceiling priority protocol

Owing to them, on a single processor:
– A high-priority process can be blocked by lower-priority

processes at most once during its execution
– Deadlocks are prevented
– Transitive blocking is prevented
– Mutual exclusive access to resources is ensured by the protocol

itself

8/27 © Burns and Wellings, 2001

Original Ceiling Priority Protocol

Each process has a static default priority assigned
(perhaps by the deadline monotonic scheme)
Each resource has a static ceiling value defined, this is
the maximum priority of the processes that use it
A process has a dynamic priority that is the maximum of
its own static priority and any it inherits due to it blocking
higher-priority processes
A process can only lock a resource if its dynamic priority
is higher than the ceiling of any currently locked
resource (excluding any that it has already locked itself)

)(),(max
1

kCikusageB
k

ki =
=

9/27 © Burns and Wellings, 2001

OCPP Inheritance

a

b

c

d

0 2 4 6 8 10 12 14 16

Process

10/27 © Burns and Wellings, 2001

Immediate Ceiling Priority Protocol

Each process has a static default priority assigned
(perhaps by the deadline monotonic scheme)
Each resource has a static ceiling value defined, this is
the maximum priority of the processes that use it
A process has a dynamic priority that is the maximum of
its own static priority and the ceiling values of any
resources it has locked
As a consequence, a process will only suffer a block at
the very beginning of its execution
Once the process starts actually executing, all the
resources it needs must be free; if they were not, then
some process would have an equal or higher priority
and the process' execution would be postponed

11/27 © Burns and Wellings, 2001

ICPP Inheritance

a

b

c

d

0 2 4 6 8 10 12 14 16

Process

12/27 © Burns and Wellings, 2001

OCPP versus ICPP

Although the worst-case behaviour of the two ceiling
schemes is identical (from a scheduling view point),
there are some points of difference:
– ICPP is easier to implement than the original (OCPP) as

blocking relationships need not be monitored
– ICPP leads to less context switches as blocking is prior to first

execution
– ICPP requires more priority movements as this happens with all

resource usage
– OCPP changes priority only if an actual block has occurred

Note that ICPP is called Priority Protect Protocol in
POSIX and Priority Ceiling Emulation in Real-Time Java

3

13/27 © Burns and Wellings, 2001

An Extendible Process Model

What the model allows so far:
– Deadlines can be less than period (D<T)
– Sporadic and aperiodic processes, as well as periodic

processes, can be supported
– Process interactions are possible, with the resulting blocking

being factored into the response time equations

14/27 © Burns and Wellings, 2001

Extensions

Cooperative Scheduling
Release Jitter
Arbitrary Deadlines
Fault Tolerance
Offsets
Optimal Priority Assignment

15/27 © Burns and Wellings, 2001

Cooperative Scheduling – 1

True preemptive behaviour is not always acceptable for
safety-critical systems
Cooperative or deferred preemption splits processes
into slots
Mutual exclusion is via non-preemption
The use of deferred preemption has two important
advantages
– It increases the schedulability of the system, and it can lead to

lower values of C
– With deferred preemption, no interference can occur during the

last slot of execution

16/27 © Burns and Wellings, 2001

Cooperative Scheduling – 2

Let the execution time of the final block (slot) be

When this converges that is, , the response
time is given by:

iF

j
ihpj

j

n
i

iiMAX
n
i C

T
wFCBw ∑ ⎥

⎥

⎤
⎢
⎢

⎡
+−+=

∈

+

)(

1

1+= n
i

n
i ww

i
n
ii FwR +=

17/27 © Burns and Wellings, 2001

Release Jitter – 1

A key issue for distributed systems
Consider the release of a sporadic process on a
different processor by a periodic process, l, with a
period of 20

Time

l

t t+15 t+20

Rl=15

Sporadic release (t = 15)

Sporadic release (t = 21)

Rl’=Cl=1

Two sporadic releases
spaced by 21-15 = 6 !
Release jitter Js = Rl

18/27 © Burns and Wellings, 2001

Release Jitter – 2

Sporadic process s released at 0, T-J, 2T-J, 3T-J
Examination of the derivation of the schedulability
equation implies that process i will suffer
– one interference from process s if
– two interferences if
– three interference if

This can be represented in the response time equations

If response time is to be measured relative to the real
release time then the jitter value must be added

),0[JTRi −∈
)2,[JTJTRi −−∈

)3,2[JTJTRi −−∈

j
ihpj

j

ji
iii C

T
JR

BCR ∑ ⎥
⎥

⎤
⎢
⎢

⎡ +
++=

∈)(

ii
periodic

i JRR +=

4

19/27 © Burns and Wellings, 2001

Arbitrary Deadlines

To cater for situations where D (and hence potentially
R) > T

The number of releases is bounded by the lowest value
of q for which the following relation is true:
The worst-case response time is then the maximum
value found for each q:

j
ihpj j

n
i

ii
n
i C

T
qwCqBqw ∑

∈

+
⎥
⎥

⎤
⎢
⎢

⎡
+++=

)(

1)()1()(

i
n
ii qTqwqR −=)()(

ii TqR ≤)(

)(max
,...2,1,0

qRR iqi =
=

20/27 © Burns and Wellings, 2001

Arbitrary Deadlines

When formulation is combined with the effect of release
jitter, two alterations to the above analysis must be
made
First, the interference factor must be increased if any
higher priority processes suffers release jitter:

The other change involves the process itself. If it can
suffer release jitter then two consecutive windows could
overlap if response time plus jitter is greater than period

j
ihpj j

j
n
i

ii
n
i C

T
Jqw

CqBqw ∑
∈

+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ +
+++=

)(

1)(
)1()(

ii
n
ii JqTqwqR +−=)()(

21/27 © Burns and Wellings, 2001

Fault Tolerance

Fault tolerance via either forward or backward error
recovery always results in extra computation
This could be an exception handler or a recovery block.
In a real-time fault-tolerant system, deadlines should still
be met even when a certain level of faults occur
This level of fault tolerance is known as the fault model
If the extra computation time that results from an error in
process i is

where hep(i) is set of processes with priority equal to
or higher than i

f
iC

f
kihepkjihpj

j

i
iii CC

T
RBCR max

)()(∈∈
+⎥

⎥

⎤
⎢
⎢

⎡
++= ∑

22/27 © Burns and Wellings, 2001

Fault Tolerance

If F is the number of faults allowed

If there is a minimum arrival interval

f
kihepkjihpj

j

i
iii FCC

T
RBCR max

)()(∈∈
+⎥

⎥

⎤
⎢
⎢

⎡
++= ∑

fT

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
++=

∈∈
∑ f

k
f

i

ihepk
j

ihpj j

i
iii C

T
R

C
T
R

BCR max
)()(

23/27 © Burns and Wellings, 2001

Offsets

So far assumed all processes share a common release
time (critical instant)

Process T D C R U=0.9
a 8 5 4 4
b 20 10 4 8
c 20 12 4 16

With offsets
Process T D C O R

a 8 5 4 0 4
b 20 10 4 0 8

c 20 12 4 10 8

Arbitrary offsets
are not amenable
to analysis!

Deadline miss!

24/27 © Burns and Wellings, 2001

Non-Optimal Analysis – 1

In most realistic systems, process periods are not
arbitrary but are likely to be related to one another
As in the example just illustrated, two processes have a
common period. In these situations it is ease to give one
an offset (of T/2) and to analyze the resulting system
using a transformation technique that removes the offset
— and, hence, critical instant analysis applies
In the example, processes b and c (having the offset of
10) are replaced by a single notional process with
period 10, computation time 4, deadline 10 but no offset

5

25/27 © Burns and Wellings, 2001

Non-Optimal Analysis – 2

This notional process has two important properties
– If it is schedulable (when sharing a critical instant with all other

processes) then the two real processes will meet their deadlines
when one is given the half period offset

– If all lower priority processes are schedulable when suffering
interference from the notional process (and all other high-priority
processes) then they will remain schedulable when the notional
process is replaced by the two real processes (one with the
offset)

These properties follow from the observation that the
notional process always has no less CPU utilization
than the two real processes

Process T D C O R U=0.9
a 8 5 4 0 4
n 10 10 4 0 8

26/27 © Burns and Wellings, 2001

Notional Process Parameters

),(
),(
),(

22

ban

ban

ban

ba
n

PPMaxP
DDMinD
CCMaxC

TTT

=
=
=

==

Can be extended to more than two processes

27/27 © Burns and Wellings, 2001

Priority Assignment

Theorem: If process p is assigned the lowest priority
and is feasible then, if a feasible priority ordering exists
for the complete process set, an ordering exists with
process p assigned the lowest priority

procedure Assign_Pri (Set : in out Process_Set;
N : Natural; -- number of processes
OK : out Boolean) is

begin
for K in 1..N loop

for Next in K..N loop
Swap(Set, K, Next);
Process_Test(Set, K, OK); -- is process K feasible now?
exit when OK;

end loop;
exit when not OK; -- failed to find a schedulable process

end loop;
end Assign_Pri;

