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Process Interactions and Blocking

If a process is suspended waiting for a lower-priority 
process to complete some required computation then 
the priority model is, in some sense, being undermined

It is said to suffer priority inversion

If a process is waiting for a lower-priority process, it is 
said to be blocked
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Priority Inversion – 1

To illustrate an extreme example of priority inversion, 
consider the executions of four periodic processes: a, b, c
and d; and two resources: Q and V

Process      Priority            Execution Sequence         Release Time
a      1          EQQQQE           0 
b      2            EE             2 
c      3           EVVE            2 

d      4          EEQVE            4 
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Priority Inversion – 2
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Priority Inheritance – 3

If process p is blocking process q, then q runs with p's
priority
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Calculating Blocking

If a process has m critical sections that can lead to it 
being blocked then the maximum number of times it can 
be blocked is m
If B is the maximum blocking time and K is the number 
of critical sections, the process i has an upper bound 
on its blocking given by:

Where usage(k,i) = 1 if resource k is used by at 
least one process with priority less than Pi, otherwise it 
evaluates to 0
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Response Time and Blocking
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Priority Ceiling Protocols

It takes on two forms
– Original ceiling priority protocol
– Immediate ceiling priority protocol

Owing to them, on a single processor:
– A high-priority process can be blocked by lower-priority 

processes at most once during its execution
– Deadlocks are prevented
– Transitive blocking is prevented
– Mutual exclusive access to resources is ensured by the protocol 

itself
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Original Ceiling Priority Protocol

Each process has a static default priority assigned 
(perhaps by the deadline monotonic scheme)
Each resource has a static ceiling value defined, this is 
the maximum priority of the processes that use it
A process has a dynamic priority that is the maximum of 
its own static priority and any it inherits due to it blocking 
higher-priority processes
A process can only lock a resource if its dynamic priority 
is higher than the ceiling of any currently locked 
resource (excluding any that it has already locked itself)
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OCPP Inheritance
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Immediate Ceiling Priority Protocol

Each process has a static default priority assigned 
(perhaps by the deadline monotonic scheme)
Each resource has a static ceiling value defined, this is 
the maximum priority of the processes that use it
A process has a dynamic priority that is the maximum of 
its own static priority and the ceiling values of any 
resources it has locked
As a consequence, a process will only suffer a block at 
the very beginning of its execution
Once the process starts actually executing, all the 
resources it needs must be free; if they were not, then 
some process would have an equal or higher priority 
and the process' execution would be postponed
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ICPP Inheritance
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OCPP versus ICPP

Although the worst-case behaviour of the two ceiling 
schemes is identical (from a scheduling view point), 
there are some points of difference:
– ICPP is easier to implement than the original (OCPP) as 

blocking relationships need not be monitored
– ICPP leads to less context switches as blocking is prior to first 

execution
– ICPP requires more priority movements as this happens with all 

resource usage
– OCPP changes priority only if an actual block has occurred

Note that ICPP is called Priority Protect Protocol in 
POSIX and Priority Ceiling Emulation in Real-Time Java
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An Extendible Process Model

What the model allows so far:
– Deadlines can be less than period (D<T)
– Sporadic and aperiodic processes, as well as periodic 

processes, can be supported
– Process interactions are possible, with the resulting blocking 

being factored into the response time equations
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Extensions

Cooperative Scheduling
Release Jitter
Arbitrary Deadlines
Fault Tolerance
Offsets
Optimal Priority Assignment

15/27 © Burns and Wellings, 2001

Cooperative Scheduling – 1

True preemptive behaviour is not always acceptable for 
safety-critical systems
Cooperative or deferred preemption splits processes 
into slots
Mutual exclusion is via non-preemption
The use of deferred preemption has two important 
advantages
– It increases the schedulability of the system, and it can lead to 

lower values of C
– With deferred preemption, no interference can occur during the 

last slot of execution
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Cooperative Scheduling – 2

Let the execution time of the final block (slot) be

When this converges that is,               ,  the response 
time is given by:
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Release Jitter – 1

A key issue for distributed systems
Consider the release of a sporadic process on a 
different processor by a periodic process, l, with a 
period of 20

Time

l

t t+15 t+20

Rl=15

Sporadic release (t = 15)

Sporadic release (t = 21)

Rl’=Cl=1

Two sporadic releases
spaced by 21-15 = 6 !
Release jitter Js = Rl
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Release Jitter – 2

Sporadic process s released at 0, T-J, 2T-J, 3T-J
Examination of the derivation of the schedulability 
equation implies that process i will suffer 
– one interference from process s if
– two interferences if 
– three interference if 

This can be represented in the response time equations

If response time is to be measured relative to the real
release time then the jitter value must be added
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Arbitrary Deadlines

To cater for situations where D (and hence potentially 
R) > T

The number of releases is bounded by the lowest value 
of q for which the following relation is true:
The worst-case response time is then the maximum 
value found for each q:
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Arbitrary Deadlines

When formulation is combined with the effect of release 
jitter, two alterations to the above analysis must be 
made
First, the interference factor must be increased if any 
higher priority processes suffers release jitter:

The other change involves the process itself. If it can 
suffer release jitter then two consecutive windows could 
overlap if response time plus jitter is greater than period 
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Fault Tolerance

Fault tolerance via either forward or backward error 
recovery always results in extra computation
This could be an exception handler or a recovery block.  
In a real-time fault-tolerant system, deadlines should still 
be met even when a certain level of faults occur 
This level of fault tolerance is known as the fault model
If the extra computation time that results from an error in 
process i is 

where hep(i) is set of processes with priority equal to 
or higher than i
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Fault Tolerance

If F is the number of faults allowed

If there is a minimum arrival interval
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Offsets

So far assumed all processes share a common release 
time (critical instant)

Process   T    D    C    R     U=0.9
a      8    5    4    4
b     20   10    4    8
c     20   12    4   16

With offsets
Process   T    D    C   O   R

a      8    5    4   0   4
b     20   10    4   0   8

c     20   12    4   10  8

Arbitrary offsets 
are not amenable 
to analysis!

Deadline miss!
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Non-Optimal Analysis – 1

In most realistic systems, process periods are not 
arbitrary but are likely to be related to one another
As in the example just illustrated, two processes have a 
common period. In these situations it is ease to give one 
an offset (of T/2) and to analyze the resulting system 
using a transformation technique that removes the offset 
— and, hence, critical instant analysis applies
In the example, processes b and c (having the offset of 
10) are replaced by a single notional process with 
period 10, computation time 4, deadline 10 but no offset
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Non-Optimal Analysis – 2

This notional process has two important properties
– If it is schedulable (when sharing a critical instant with all other 

processes) then the two real processes will meet their deadlines
when one is given the half period offset

– If all lower priority processes are schedulable when suffering 
interference from the notional process (and all other high-priority 
processes) then they will remain schedulable when the notional 
process is replaced by the two real processes (one with the 
offset)

These properties follow from the observation that the 
notional process always has no less CPU utilization 
than the two real processes

Process   T    D    C   O   R  U=0.9
a      8    5    4   0   4
n     10   10    4   0   8
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Notional Process Parameters
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Can be extended to more than two processes
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Priority Assignment

Theorem: If process p is assigned the lowest priority 
and is feasible then, if a feasible priority ordering exists 
for the complete process set, an ordering exists with 
process p assigned the lowest priority

procedure Assign_Pri (Set : in out Process_Set; 
N   : Natural; -- number of processes
OK  : out Boolean) is

begin
for K in 1..N loop

for Next in K..N loop
Swap(Set, K, Next);
Process_Test(Set, K, OK); -- is process K feasible now?
exit when OK;

end loop;
exit when not OK; -- failed to find a schedulable process

end loop;
end Assign_Pri;


