

Calculating Blocking

- If a process has m critical sections that can lead to it being blocked then the maximum number of times it can be blocked is m
- If B is the maximum blocking time and K is the number of critical sections, the process i has an upper bound on its blocking given by:

$$
B_{i}=\sum_{k=1}^{K} \operatorname{usage}(k, i) C(k)
$$

- Where usage $(k, i)=1$ if resource k is used by at least one process with priority less than P_{i}, otherwise it evaluates to 0

5127

Priority Inversion - 1

- To illustrate an extreme example of priority inversion, consider the executions of four periodic processes: a, b, c and d; and two resources: Q and V

Process	Priority	Execution Sequence	Release Time
a	1	EQQQQE	0
b	2	EE	2
c	3	EVVE	2
d	4	EEQVE	4
2127			

Response Time and Blocking

$$
\begin{aligned}
& R_{i}=C_{i}+B_{i}+I_{i} \\
& R_{i}=C_{i}+B_{i}+\sum_{j \in h p(i)}\left\lceil\frac{R_{i}}{T_{j}} C_{j}\right. \\
& w_{i}^{n+1}=C_{i}+B_{i}+\sum_{j \in h p(i)}\left\lceil\frac{w_{i}^{n}}{T_{j}}\right\rceil C_{j}
\end{aligned}
$$

Priority Ceiling Protocols

- It takes on two forms
- Original ceiling priority protocol
- Immediate ceiling priority protocol
- Owing to them, on a single processor:
- A high-priority process can be blocked by lower-priority processes at most once during its execution
- Deadlocks are prevented
- Transitive blocking is prevented
- Mutual exclusive access to resources is ensured by the protocol itself

Original Ceiling Priority Protocol

- Each process has a static default priority assigned (perhaps by the deadline monotonic scheme)
- Each resource has a static ceiling value defined, this is the maximum priority of the processes that use it
- A process has a dynamic priority that is the maximum of its own static priority and any it inherits due to it blocking higher-priority processes
- A process can only lock a resource if its dynamic priority is higher than the ceiling of any currently locked resource (excluding any that it has already locked itself)

$$
B_{i}=\max _{k=1}^{k} u \operatorname{sage}(k, i) C(k)
$$

Immediate Ceiling Priority Protocol

- Each process has a static default priority assigned (perhaps by the deadline monotonic scheme)
- Each resource has a static ceiling value defined, this is the maximum priority of the processes that use it
- A process has a dynamic priority that is the maximum of its own static priority and the ceiling values of any resources it has locked
- As a consequence, a process will only suffer a block at the very beginning of its execution
- Once the process starts actually executing, all the resources it needs must be free; if they were not, then some process would have an equal or higher priority and the process' execution would be postponed
$10 / 27$

OCPP versus ICPP

- Although the worst-case behaviour of the two ceiling schemes is identical (from a scheduling view point), there are some points of difference:
- ICPP is easier to implement than the original (OCPP) as
blocking relationships need not be monitored
- ICPP leads to less context switches as blocking is prior to first execution
- ICPP requires more priority movements as this happens with all resource usage
- OCPP changes priority only if an actual block has occurred
- Note that ICPP is called Priority Protect Protocol in POSIX and Priority Ceiling Emulation in Real-Time Java

An Extendible Process Model

- What the model allows so far:
- Deadlines can be less than period ($D<T$)
- Sporadic and aperiodic processes, as well as periodic processes, can be supported
- Process interactions are possible, with the resulting blocking being factored into the response time equations

Cooperative Scheduling - 1

- True preemptive behaviour is not always acceptable for safety-critical systems
- Cooperative or deferred preemption splits processes into slots
- Mutual exclusion is via non-preemption
- The use of deferred preemption has two important advantages
- It increases the schedulability of the system, and it can lead to lower values of C
- With deferred preemption, no interference can occur during the last slot of execution
$15 / 27$

Release Jitter - 1

- A key issue for distributed systems
- Consider the release of a sporadic process on a different processor by a periodic process, 1 , with a period of 20

Cooperative Scheduling - 2

- Let the execution time of the final block (slot) be F_{i}

$$
w_{i}^{n+1}=B_{M A X}+C_{i}-F_{i}+\sum_{j \in h p(i)}\left\lceil\frac{w_{i}^{n}}{T_{j}}\right\rceil C_{j}
$$

- When this converges that is, $w_{i}^{n}=w_{i}^{n+1}$ the response time is given by:

$$
R_{i}=w_{i}^{n}+F_{i}
$$

- Cooperative Scheduling
- Release Jitter
- Arbitrary Deadlines
- Fault Tolerance
- Offsets
- Optimal Priority Assignment

Release Jitter - 2

- Sporadic process s released at 0, T-J, 2T-J, $3 \mathrm{~T}-\mathrm{J}$
- Examination of the derivation of the schedulability equation implies that process i will suffer
- one interference from process s if $R_{i} \in[0, T-J)$
- two interferences if $R_{i} \in[T-J, 2 T-J)$
- three interference if $R_{i} \in[2 T-J, 3 T-J)$
- This can be represented in the response time equations

$$
R_{i}=C_{i}+B_{i}+\sum_{j \in h p(i)}\left\lceil\frac{R_{i}+J_{j}}{T_{j}}\right\rceil C_{j}
$$

- If response time is to be measured relative to the real release time then the jitter value must be added

$$
R_{i}^{\text {periodic }}=R_{i}+J_{i}
$$

Arbitrary Deadlines

- To cater for situations where D (and hence potentially R) $>\mathrm{T}$
$w_{i}^{n+1}(q)=B_{i}+(q+1) C_{i}+\sum_{j \in h p(i)}\left\lceil\frac{w_{i}^{n}(q)}{T_{j}}\right\rceil C_{j}$
$R_{i}(q)=w_{i}^{n}(q)-q T_{i}$
- The number of releases is bounded by the lowest value of q for which the following relation is true: $\quad R_{i}(q) \leq T_{i}$
- The worst-case response time is then the maximum value found for each q :

$$
R_{i}=\max _{q=0,1,2, \ldots} R_{i}(q)
$$

Fault Tolerance

- Fault tolerance via either forward or backward error recovery always results in extra computation
- This could be an exception handler or a recovery block.
- In a real-time fault-tolerant system, deadlines should still be met even when a certain level of faults occur
- This level of fault tolerance is known as the fault model
- If the extra computation time that results from an error in process i is C_{i}^{f}

$$
R_{i}=C_{i}+B_{i}+\sum_{j \in h p(i)}\left\lceil\frac{R_{i}}{T_{j}}\right\rceil C_{j}+\max _{k \in \operatorname{hep}(i)} C_{k}^{f}
$$

- where hep(i) is set of processes with priority equal to or higher than i

Arbitrary Deadlines

- When formulation is combined with the effect of release jitter, two alterations to the above analysis must be made
- First, the interference factor must be increased if any higher priority processes suffers release jitter:

$$
w_{i}^{n+1}(q)=B_{i}+(q+1) C_{i}+\sum_{j \in h p(i)}\left\lceil\frac{w_{i}^{n}(q)+J_{j}}{T_{j}}\right\rceil C_{j}
$$

- The other change involves the process itself. If it can suffer release jitter then two consecutive windows could overlap if response time plus jitter is greater than period

$$
R_{i}(q)=w_{i}^{n}(q)-q T_{i}+J_{i}
$$

2007

Fault Tolerance

- If F is the number of faults allowed
$R_{i}=C_{i}+B_{i}+\sum_{j \in h p(i)}\left\lceil\frac{R_{i}}{T_{j}}\right\rceil C_{j}+\max _{k \in \text { hep }(i)} F C_{k}^{f}$
- If there is a minimum arrival interval T_{f}

$$
R_{i}=C_{i}+B_{i}+\sum_{j \in h p(i)}\left\lceil\frac{R_{i}}{T_{j}}\right\rceil C_{j}+\max _{k \in \text { hep }(i)}\left(\left\lceil\frac{R_{i}}{T_{f}}\right\rceil C_{k}^{f}\right)
$$

Offsets

- So far assumed all processes share a common release time (critical instant)

Process	T	D	C	R		=0.9	
a	8	5	4	4			
b	20	10	4	8	Deadline miss!		
C	20	12	4	(16)			
- With offsets							
Process	T	D	C		0	R	
a	8	5	4	0	4	Arbitrary offsets	
b	20	10	4		8	are not amenable to analysis!	
c	20	12			8		

Non-Optimal Analysis - 1

- In most realistic systems, process periods are not arbitrary but are likely to be related to one another
- As in the example just illustrated, two processes have a common period. In these situations it is ease to give one an offset (of T/2) and to analyze the resulting system using a transformation technique that removes the offset - and, hence, critical instant analysis applies
- In the example, processes b and c (having the offset of 10) are replaced by a single notional process with period 10, computation time 4, deadline 10 but no offset

Non-Optimal Analysis - 2

- This notional process has two important properties
- If it is schedulable (when sharing a critical instant with all other processes) then the two real processes will meet their deadlines when one is given the half period offset
- If all lower priority processes are schedulable when suffering interference from the notional process (and all other high-priority processes) then they will remain schedulable when the notional process is replaced by the two real processes (one with the offset)
- These properties follow from the observation that the notional process always has no less CPU utilization than the two real processes

Process	T	D	C	$\mathbf{0}$	R	$\mathbf{U}=0.9$
a	8	5	4	0	4	
n	10	10	4	0	$\mathbf{8}$	

Notional Process Parameters
$T_{n}=\frac{T_{a}}{2}=\frac{T_{b}}{2}$
$C_{n}=\operatorname{Max}\left(C_{a}, C_{b}\right)$
$D_{n}=\operatorname{Min}\left(D_{a}, D_{b}\right)$
$P_{n}=\operatorname{Max}\left(P_{a}, P_{b}\right)$

Can be extended to more than two processes

Priority Assignment

- Theorem: If process p is assigned the lowest priority and is feasible then, if a feasible priority ordering exists for the complete process set, an ordering exists with process p assigned the lowest priority
procedure Assign_Pri (Set : in out Process_Set;
${ }^{\mathrm{N}}$ O : Natural; -- number of processes OK : out Boolean) is
begin
for K in 1.. N loop
for Next in K..N loop
Swap(Set, K, Next);
Process_Test(Set, K, OK); -- is process K feasible now? exit when 0 K ;
end loop;
exit when not OK; -- failed to find a schedulable process end loop;
end Assign_Pri;

