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Task model summary – 1
• Static set of tasks

– Ada: all tasks at library level
• Tasks issue jobs repeatedly

– Task cycle: activation, execution, suspension
• Single activation point, no blocking

• Real-time attributes
– Activation

• Periodic or cyclic: every T time units
• Sporadic: at least T time units between consecutive events

– Execution
• Worst case execution time (WCET) assumed to be known
• Deadline: D time units after activation
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Task model summary – 2
• Task communication

– Shared variables with mutually exclusive access
• Ada: protected objects with procedures and functions

– No conditional synchronization
• Except for sporadic task activation
• Ada: PO with a single entry

• Scheduling model
– Fixed-priority pre-emptive

• Ada: FIFO within priorities
• Access protocol for shared objects

– Immediate priority ceiling
• Ada: Ceiling_Locking policy
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Profile definition
• The profile is enforced by means of a 

configuration pragma
pragma Profile (Ravenscar);

which is equivalent to a set of Ada restrictions 
and three additional configuration pragmas:
pragma Task_Dispatching_Policy (FIFO_Within_Priorities);

pragma Locking_Policy (Ceiling_Locking);

pragma Detect_Blocking;
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Ravenscar restrictions
No_Abort_Statements,
No_Dynamic_Attachment,
No_Dynamic_Priorities,
No_Implicit_Heap_Allocations,
No_Local_Protected_Objects,
No_Local_Timing_Events,
No_Protected_Type_Allocators,
No_Relative_Delay,
No_Requeue_Statements,
No_Select_Statements,
No_Specific_Termination_Handlers,
No_Task_Allocators,
No_Task_Hierarchy,
No_Task_Termination,
Simple_Barriers,
Max_Entry_Queue_Length => 1,
Max_Protected_Entries => 1,
Max_Task_Entries => 0,
No_Dependence => Ada.Asynchronous_Task_Control,
No_Dependence => Ada.Calendar,
No_Dependence => Ada.Execution_Time.Group_Budget,
No_Dependence => Ada.Execution_Time.Timers,

No_Dependence => Ada.Task_Attributes
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Restriction checking
• Almost all of the restrictions can be checked at 

compile time
• A few restrictions can only be checked at run 

time
– Potentially blocking operations in protected operation 

bodies
– Priority ceiling violation
– More than one call queued on a protected entry or a 

suspension object
– Task termination
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Potentially blocking operations
• Potentially blocking operations

– Protected entry call statement
– Delay until statement
– Call on a subprogram whose body contains a 

potentially blocking operation
• Pragma Detect_Blocking requires detection of 

potentially blocking operations
– Exception Program_Error must be raised if detected 

at run-time
– Blocking need not be detected if it occurs in the 

domain of a foreign language (e.g. C)
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Other run-time checks
• Priority ceiling violation
• More than one call waiting on a protected entry 

or a suspension object
– Program_Error must be raised in both cases

• Task termination
– Program behaviour must be documented
– Possible effects include

• Silent termination
• Holding the task in a pre-terminated state
• Execution on an application-defined termination handler

– Use of the new Ada.Task_Termination package (C.7.3)
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Other restrictions
• Some restrictions on the sequential part of the 

language may be useful in conjunction with the 
Ravenscar profile
– No_Dispatch
– No_IO
– No_Recursion
– No_Unchecked_Access
– No_Allocators
– No_Local_Allocators

• See ISO/IEC TR 15942, Guide for the use of the 
Ada Programming Language in High Integrity 
Systems for the details
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Execution-time measurement
• The CPU time consumed by tasks can be 

monitored
• Per-task CPU clocks can be defined

– Set at 0 before task activation
– The clock value increases as the task 

executes
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Ada.Execution_Time
with Ada.Task_Identification;

with Ada.Real_Time; use Ada.Real_Time;

package Ada.Execution_Time is

type CPU_Time is private;

CPU_Time_First : constant CPU_Time;

CPU_Time_Last : constant CPU_Time;

CPU_Time_Unit : constant := implementation-defined-real-number;

CPU_Tick : constant Time_Span;

function Clock

(T : Ada.Task_Identification.Task_Id

:= Ada.Task_Identification.Current_Task)

return CPU_Time;

...

end Ada.Execution_Time;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

12 of 119

Execution-time timers
• A user-defined event can be fired when a 

CPU clock reaches a specified value
– An event handler is automatically invoked by 

the runtime
– The handler is an (access to) a protected 

procedure
• Basic mechanism for execution-time 

monitoring
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Ada.Execution_Time.Timers
with System;

package Ada.Execution_Time.Timers is

type Timer (T : not null access constant
Ada.Task_Identification.Task_Id) is

tagged limited private;

type Timer_Handler is

access protected procedure (TM : in out Timer);

Min_Handler_Ceiling : constant System.Any_Priority
:= implementation-defined;

procedure Set_Handler (TM      : in out Timer;

In_Time : in Time_Span;

Handler : in Timer_Handler);

procedure Set_Handler (TM      : in out Timer;

At_Time : in CPU_Time;

Handler : in Timer_Handler);

...

end Ada.Execution_Time.Timers;
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Group budgets
• Groups of tasks with a global execution-

time budget can be defined
– Basic mechanism for server-based scheduling
– Can be used to provide temporal isolation 

among groups of tasks
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Group budgets (spec)
with System;
package Ada.Execution_Time.Group_Budgets is

type Group_Budget is tagged limited private;
type Group_Budget_Handler is 
access protected procedure (GB : in out Group_Budget);

...
Min_Handler_Ceiling : constant System.Any_Priority

:= implementation-defined;
procedure Add_Task (GB : in out Group_Budget;

T  : in Ada.Task_Identification.Task_Id);
...
procedure Replenish (GB : in out Group_Budget; 

To : in Time_Span);
procedure Add (GB       : in out Group_Budget; 

Interval : in Time_Span);
...
procedure Set_Handler (GB      : in out Group_Budget;

Handler : in Group_Budget_Handler);
...

end Ada.Execution_Time.Group_Budgets;
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Timing events
• Lightweight mechanism for defining code 

to be executed at a specified time
– Does not require an application-level task
– Analogous to interrupt handling

• The code is defined as an event handler
– An (access to) a protected procedure
– Directly invoked by the runtime
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Ada.Real_Time.Timing events
package Ada.Real_Time.Timing_Events is

type Timing_Event is tagged limited private;

type Timing_Event_Handler is 

access protected procedure (Event : in out Timing_Event);

procedure Set_Handler (Event   : in out Timing_Event;

At_Time : in Time;

Handler : in Timing_Event_Handler);

... 

procedure Cancel_Handler (Event     : in out Timing_Event;

Cancelled : out Boolean);

...

end Ada.Real_Time.Timing_Events;
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Scheduling and dispatching 
policies
• Additional dispatching policies

– Non preemptive
• Run-to-completion semantics (per partition)
• Built-in support provided

– Round robin
• Within specified priority band
• Built-in support provided
• Dispatch on quantum expiry is deferred until end of protected action

– Earliest Deadline First
• Within specified priority band
• Built-in support provided for relative and absolute “deadline”
• EDF ordered ready queues
• Guaranteed form of resource locking (preemption level + deadline)
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Priority-band dispatching
• Mixed policies can coexist within a single 

partition
– Priority specific dispatching policy can be set 

by configuration
– Protected objects can be used for tasks to 

communicate across different policies
– Tasks do not move across bands
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An object-oriented approach
• Real-time components are objects

– Instances of classes
– Internal state + interfaces
– Based on a reduced set of archetypes

• Cyclic & sporadic tasks
• Protected data
• Passive data
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Two ways to ensure consistent 
temporal behavior
• Static WCET analysis and response-time 

analysis can be used to assert correct 
temporal behavior at design time

• Platform mechanisms can be used at 
run time to ensure that temporal behavior 
stays within the asserted boundaries
– Clocks, timers, timing events, …

• Conveniently complementary approaches
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Run-time services
• The execution environment must provide run-

time services to preserve properties asserted at 
model level
– Real-time clocks & timers
– Execution-time clocks & timers
– Predictable scheduling

• We assume an execution environment 
implementing the Ravenscar model
– Ada 2005 with the Ravenscar profile
– Augmented with (restricted) execution-time timers
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Component structure

control agent
(OBCS)

operations
(OPCS)

thread

component

PI RI

concurrency

synchronization
functionality
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Basic patterns

• Cyclic component
• Sporadic component
• Protected data component
• Passive component
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Cyclic component
• Clock-activated activity with fixed rate
• Attributes

– Period
– Deadline
– Worst-case execution time

• The most basic cyclic code pattern does not 
need the synchronization agent
– The system clock delivers the activation event
– The component behavior is fixed and immutable
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Cyclic component (basic)

operations
(OPCS)

thread

cyclic component

RI

cyclic operation 
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Cyclic thread (spec)

task type Cyclic_Thread 

(Thread_Priority : Priority; 

Period          : Positive) is

pragma Priority(Thread_Priority);

end Cyclic_Thread;

cannot be Time_Span!

ms
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Cyclic thread (body)

task body Cyclic_Thread is

Next_Time : Time := <Start_Time>; -- taken at elaboration time

--+ higher in the system

--+ hierarchy

begin

loop

delay until Next_Time; -- so that all tasks start at T0

OPCS.Cyclic_Operation; -- fixed and parameterless

Next_Time := Next_Time + Milliseconds(Period);

end loop;

end Cyclic_Thread;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

29 of 119

Sporadic component
• Activated by a software-mediated event

– Signaled by software or hardware interrupts
• Attributes

– Minimum inter-arrival time
– Deadline
– Worst-case execution time

• The synchronization agent of the target 
component is used to signal the activation event
– And to store-and-forward signal-related data (if any)
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Sporadic component 

control agent
(OBCS)

operations
(OPCS)

thread

sporadic component

signal
RI

wait
sporadic operation 

PI
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Sporadic component (spec)

protected type OBCS(Ceiling : Priority) is

pragma Priority(Ceiling);

procedure Signal;

entry     Wait;

private

Occurred : Boolean := False;

end OBCS;

task type Sporadic_Thread(Thread_Priority : Priority) is

pragma Priority(Thread_Priority);

end Sporadic_Thread;

A sporadic thread is activated by calling 
the Signal operation
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Sporadic thread (body)

task body Sporadic_Thread is

Next_Time : Time := <Start_Time>;

begin

delay until Next_Time; -- so that all tasks start at T0

loop

OBCS.Wait;

OPCS.Sporadic_Operation;

-- may take parameters if they were delivered by Signal 

--+ and retrieved by Wait

end loop;

end Sporadic_Thread;
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Sporadic control agent (body)

protected body OBCS is

procedure Signal is

begin

Occurred := True;

end Signal;     

entry Wait when Occurred is

begin

Occurred := False;

end Wait;

end OBCS;
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Other basic patterns
• Protected component

– No thread, only synchronization and operations
– Straightforward direct implementation with protected 

object
• Passive component

– Purely functional behavior, neither thread nor 
synchronization

– Straightforward direct implementation with functional 
package
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Temporal properties
• Basic patterns only guarantee periodic or 

sporadic activation
• They can be augmented to guarantee 

additional temporal properties at run time
– Minimum inter-arrival time for sporadic events
– Deadline for all types of thread
– WCET budgets for all types of thread
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Minimum inter-arrival time
• Violations of the specified separation 

interval may cause increased interference 
on lower priority tasks

• Approach: prevent sporadic thread from 
being activated earlier than stipulated
– Compute earliest (absolute) allowable 

activation time
– Withhold activation (if triggered) until that time
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Sporadic thread with minimum 
separation (spec)

task type Sporadic_Thread 

(Thread_Priority : Priority; 

Separation : Positive) is

pragma Priority(Thread_Priority);

end Sporadic_Thread;

Minimum inter-arrival time 
expressed in ms

ms
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Sporadic thread (body)
task body Sporadic_Thread is

Release_Time : Time;

Next_Release : Time := <Start_Time>;

begin

loop

delay until Next_Release; 

OBCS.Wait;

Release_Time := Clock;

OPCS.Sporadic_Operation;

Next_Release := Release_Time + Milliseconds(Separation); 

end loop;

end Sporadic_Thread;

Still a single point of activation
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Comments
• May incur some temporal drift as the clock is 

read after task release
– Hence preemption may hit just after the release but 

before reading the clock
– The net effect is a larger separation than required

• It is better to read the clock at the place and time 
the task is released
– Within the synchronization agent

• Which is protected and thus less exposed to general 
interference
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Minimum inter-arrival time 
– alternate pattern
task body Sporadic_Thread is

Release_Time : Time;

Next_Release : Time := <Start_Time>;

begin

loop

delay until Next_Release;

OBCS.Wait(Release_Time);

OPCS.Sporadic_Operation;

Next_Release := Release_Time + Milliseconds(Separation); 

end loop;

end Sporadic_Thread;
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Recording release time – 1

protected type OBCS(Ceiling : Priority) is

pragma Priority(Ceiling);

procedure Signal;

entry Wait(Release_Time : out Time);

private

Occurred : Boolean := False;

end OBCS;
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Recording release time – 2

protected body OBCS is

procedure Signal is

begin

Occurred := True;

end Signal;

entry Wait(Release_Time : out Time) when Occurred is

begin

Release_Time := Clock;

Occurred := False;

end Wait;

end OBCS;



Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

43 of 119

Deadline overruns
• Deadline overruns in a task may occur as 

a result of
– Higher priority tasks executing more often 

than expected
• Prevented with inter-arrival time enforcement

– Execution time of the same or higher priority 
tasks longer than stipulated

• Programming errors
– Bounding assertions violated by functional code

• Inaccurate WCET analysis
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Detection of deadline overruns
• Deadline overruns can be detected at run time 

with the help of timing events
– A mechanism for requiring some application-level 

action to be executed at a given time
– Timing events can only exist at library level under the 

Ravenscar Profile
• Statically allocated

• A minor optimization may be possible for 
periodic tasks
– Which however breaks the symmetry of patterns
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Cyclic thread with deadline 
overrun detection (spec)

task type Cyclic_Thread 

(Thread_Priority : Priority; 

Period          : Positive;

Deadline : Positive) is

pragma Priority(Thread_Priority);

end Cyclic_Thread;

ms
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Thread body
Deadline_Overrun : Timing_Event; -- static, local per component

task body Cyclic_Thread is

Next_Time : Time := <Start_Time>;

Canceled : Boolean := False;

begin

loop

delay until Next_Time;

Set_Handler(Deadline_Overrun, 

Next_Time + Milliseconds(Deadline),

Deadline_Overrun_Handler); -- application-specific

OPCS.Cyclic_Operation;

Cancel_Handler(Deadline_Overrun, Canceled);

Next_Time := Next_Time + Milliseconds(Period);

end loop;

end Cyclic_Thread;
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Thread body (streamlined)
Deadline_Overrun : Timing_Event; -- static, local per component

task body Cyclic_Thread is

Next_Time : Time := <Start_Time>;

Canceled : Boolean := False;

begin

loop

-- setting again cancels any previous event

Set_Handler(Deadline_Overrun, 

Next_Time + Milliseconds(Deadline),

Deadline_Overrun_Handler); -- application-specific

delay until Next_Time;

OPCS.Cyclic_Operation;

Next_Time := Next_Time + Milliseconds(Period);

end loop;

end Cyclic_Thread;
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Sporadic thread with deadline 
overrun detection (spec)

task type Sporadic_Thread 

(Thread_Priority : Priority;

Separation      : Positive;

Deadline : Positive) is

pragma Priority(Thread_Priority);

end Sporadic_Thread;

ms
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Thread body
Deadline_Overrun : Timing_Event; -- static, local per component

task body Sporadic_Thread is

Release_Time    : Time;

Next_Release    : Time := <Start_Time>;

Canceled : Boolean := False;

begin

loop

delay until Next_Release;

OBCS.Wait(Release_Time);

Set_Handler(Deadline_Overrun,

Release_Time + Milliseconds(Deadline),

Deadline_Overrun_Handler); -- application-specific

OPCS.Sporadic_Operation;

Cancel_Handler(Deadline_Overrun, Canceled);

Next_Release := Release_Time + Milliseconds(Separation); 

end loop;

end Sporadic_Thread;

Can’t streamline as 
the deadline cannot 
be computed until 
returning from Wait 
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Execution-time overruns
• Tasks may execute for longer than stipulated, 

owing to programming errors
– Bounding assertions violated by functional code

• WCET values used in temporal analysis may be 
inaccurate
– Optimistic vs. pessimistic

• WCET overruns can be detected at run time with 
the help of execution-time timers
– Not included in Ravenscar
– Extended profile
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Cyclic thread with WCET overrun 
detection (spec)

task type Cyclic_Thread 

(Thread_Priority : Priority; 

Period          : Positive;

WCET_Budget : Positive) is

pragma Priority(Thread_Priority);

end Cyclic_Thread;

ms
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Thread body
task body Cyclic_Thread is

Next_Time : Time := <Start_Time>;

Id : aliased constant Task_ID := Current_Task;

WCET_Timer : Timer(Id'access);

begin

loop

delay until Next_Time;

Set_Handler(WCET_Timer,

Milliseconds(WCET_Budget),

WCET_Overrun_Handler); -- application-specific

OPCS.Cyclic_Operation;

Next_Time := Next_Time + Milliseconds(Period);

end loop;

end Cyclic_Thread;
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Observations
• WCET overruns in sporadic tasks can be 

detected similarly
– The timer should be set after the activation
– There is no need for timer cancellation
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Fault handling strategies
• Error logging

– Only for low-criticality tasks
• Second chance

– Use slack time and try to complete
• Mode change

– Switch to safe mode
• Fail safe or fail soft behaviour
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Fault handling scheme
task timer

set

handler

timer expiration

ET
monitor

mode
change

log reset 
system

reflective 
computing

wait
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Modifiers
• Cyclic and sporadic objects may have 

modifier operations
– Mode change, behavior modifications, etc.

• ATC not allowed in Ravenscar
– Modifier requests are queued in the OBCS

• Synchronization agent now required for cyclic 
components as well

– The thread takes requests from the queue 
and executes them whenever possible
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Cyclic thread with modifier
task body Cyclic_Thread is

Next_Release_Time : Time := <Start_Time>;

Request : Request_Type;

begin

loop

delay until Next_Release_Time;

OBCS.Get_Request(Request); -- may include operation parameters

case Request is

when NO_REQ  => OPCS.Periodic_Activity;

when ATC_REQ => -- may take parameters

OPCS.Modifier_Operation;

end case;

Next_Release_Time := Next_Release_Time + Period;

end loop;

end Cyclic_Thread;
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Synchronization agent – 1

-- for cyclic thread

protected type OBCS (Ceiling: Priority) is

pragma Priority(Ceiling);

procedure Put_Request(Request : Request_Type);

procedure Get_Request(out Request : Request_Type);

private

Buffer : Request_Buffer; -- bounded queue

end OBCS;
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Synchronization agent – 2
-- for cyclic thread

protected body OBCS(Ceiling : Priority) is

procedure Put_Request(Request : Request_Type) is

begin

Buffer.Put(Request);

end Put_Request;

procedure Get_Request(out Request : Request_Type) is

begin

if Buffer.Empty then

Request := NO_REQ;

else

Buffer.Get(Request);

end if;

end Get_Request;

end OBCS;
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Ada 2005 compilation chain
• Ada 2005 compiler & linker

– Full support of Annex D – Real-time systems
• Real-time kernel

– Implements the Ravenscar tasking model
• Ada run-time system

– Implements the Ada tasking model on top of 
the kernel 
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GNAT for LEON
• Cross-compilation system targeted to 

LEON2 computers
– Radiation-hardened SPARC v8
– ESA standard

• Components
– GNAT Ada 2005 compiler (Ada Core)
– GNARL run-time system (Ada Core)
– ORK+ kernel (UPM)
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GNAT compiler
• Ada 2005 cross-compilation system

– Hosted on GNU/Linux
– Targeted to ELF-SPARC v8

• real hardware or simulators

• Current version: GNAT GPL 2007
– Supports Ada 2005
– Ported to LEON2 at UPM

• Including Ravenscar run-time
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ORK+
• Lightweight real-time kernel for the 

Ravenscar tasking model
• Evolution of ORK

– Developed at UPM under ESA contract
• New Ada 2005 features

– Timing events
– Execution-time clocks and timers
– Group budgets
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ORK+ architecture
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Compilation process

GNAT
compiler

application
sources

gnat.adc

RTS
specs

application
ALI files

application
object files

GNAT
binder

RTS
ALI files

elaboration
code

GNAT
linker

RTS &
kernel

object files

ELF-32 SPARC
executable
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Cross-compilation and 
debugging

application
exec file

GDB
debugger

GNAT
compiler

application
sources

RTS
specs

application
object files

GNAT
linker

RTS
objects

Host computer

loaded
application

GRMON

Target computer
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Running programs

• LEON2 simulator 
on host platform

• E.g. TSIM 

• LEON2 computer 
board
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Example
$ sparc-elf-gnatmake hello 

[ $ sparc-elf-gnatmake -g hello -largs -Wl,-Map=hello.map ]

$ tsim –gdb

... 

gdb interface: using port 1234

[ on another terminal – local or remote ]

$ sparc-elf-gdb hello 

(gdb) target extended-remote 127.0.0.1:1234

... 

(gdb) load

... 

(gdb) cont 

... 

(gdb) detach 

... 
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GNAT Programming System
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Other tools
• Response time analysis

– MAST (University of Cantabria, Spain)
• Execution-time (WCET) analysis

– Bound-T (Tidorum, Finland)
• Static analysis

– RapiTime (Rapita Systems, UK)
• Measurement based


