
Ada 2005 code patterns for provable
real-time programming

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

2 of 119

Task model summary – 1
• Static set of tasks

– Ada: all tasks at library level
• Tasks issue jobs repeatedly

– Task cycle: activation, execution, suspension
• Single activation point, no blocking

• Real-time attributes
– Activation

• Periodic or cyclic: every T time units
• Sporadic: at least T time units between consecutive events

– Execution
• Worst case execution time (WCET) assumed to be known
• Deadline: D time units after activation

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

3 of 119

Task model summary – 2
• Task communication

– Shared variables with mutually exclusive access
• Ada: protected objects with procedures and functions

– No conditional synchronization
• Except for sporadic task activation
• Ada: PO with a single entry

• Scheduling model
– Fixed-priority pre-emptive

• Ada: FIFO within priorities
• Access protocol for shared objects

– Immediate priority ceiling
• Ada: Ceiling_Locking policy

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

4 of 119

Profile definition
• The profile is enforced by means of a

configuration pragma
pragma Profile (Ravenscar);

which is equivalent to a set of Ada restrictions
and three additional configuration pragmas:
pragma Task_Dispatching_Policy (FIFO_Within_Priorities);

pragma Locking_Policy (Ceiling_Locking);

pragma Detect_Blocking;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

5 of 119

Ravenscar restrictions
No_Abort_Statements,
No_Dynamic_Attachment,
No_Dynamic_Priorities,
No_Implicit_Heap_Allocations,
No_Local_Protected_Objects,
No_Local_Timing_Events,
No_Protected_Type_Allocators,
No_Relative_Delay,
No_Requeue_Statements,
No_Select_Statements,
No_Specific_Termination_Handlers,
No_Task_Allocators,
No_Task_Hierarchy,
No_Task_Termination,
Simple_Barriers,
Max_Entry_Queue_Length => 1,
Max_Protected_Entries => 1,
Max_Task_Entries => 0,
No_Dependence => Ada.Asynchronous_Task_Control,
No_Dependence => Ada.Calendar,
No_Dependence => Ada.Execution_Time.Group_Budget,
No_Dependence => Ada.Execution_Time.Timers,

No_Dependence => Ada.Task_Attributes

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

6 of 119

Restriction checking
• Almost all of the restrictions can be checked at

compile time
• A few restrictions can only be checked at run

time
– Potentially blocking operations in protected operation

bodies
– Priority ceiling violation
– More than one call queued on a protected entry or a

suspension object
– Task termination

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

7 of 119

Potentially blocking operations
• Potentially blocking operations

– Protected entry call statement
– Delay until statement
– Call on a subprogram whose body contains a

potentially blocking operation
• Pragma Detect_Blocking requires detection of

potentially blocking operations
– Exception Program_Error must be raised if detected

at run-time
– Blocking need not be detected if it occurs in the

domain of a foreign language (e.g. C)

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

8 of 119

Other run-time checks
• Priority ceiling violation
• More than one call waiting on a protected entry

or a suspension object
– Program_Error must be raised in both cases

• Task termination
– Program behaviour must be documented
– Possible effects include

• Silent termination
• Holding the task in a pre-terminated state
• Execution on an application-defined termination handler

– Use of the new Ada.Task_Termination package (C.7.3)

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

9 of 119

Other restrictions
• Some restrictions on the sequential part of the

language may be useful in conjunction with the
Ravenscar profile
– No_Dispatch
– No_IO
– No_Recursion
– No_Unchecked_Access
– No_Allocators
– No_Local_Allocators

• See ISO/IEC TR 15942, Guide for the use of the
Ada Programming Language in High Integrity
Systems for the details

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

10 of 119

Execution-time measurement
• The CPU time consumed by tasks can be

monitored
• Per-task CPU clocks can be defined

– Set at 0 before task activation
– The clock value increases as the task

executes

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

11 of 119

Ada.Execution_Time
with Ada.Task_Identification;

with Ada.Real_Time; use Ada.Real_Time;

package Ada.Execution_Time is

type CPU_Time is private;

CPU_Time_First : constant CPU_Time;

CPU_Time_Last : constant CPU_Time;

CPU_Time_Unit : constant := implementation-defined-real-number;

CPU_Tick : constant Time_Span;

function Clock

(T : Ada.Task_Identification.Task_Id

:= Ada.Task_Identification.Current_Task)

return CPU_Time;

...

end Ada.Execution_Time;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

12 of 119

Execution-time timers
• A user-defined event can be fired when a

CPU clock reaches a specified value
– An event handler is automatically invoked by

the runtime
– The handler is an (access to) a protected

procedure
• Basic mechanism for execution-time

monitoring

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

13 of 119

Ada.Execution_Time.Timers
with System;

package Ada.Execution_Time.Timers is

type Timer (T : not null access constant
Ada.Task_Identification.Task_Id) is

tagged limited private;

type Timer_Handler is

access protected procedure (TM : in out Timer);

Min_Handler_Ceiling : constant System.Any_Priority
:= implementation-defined;

procedure Set_Handler (TM : in out Timer;

In_Time : in Time_Span;

Handler : in Timer_Handler);

procedure Set_Handler (TM : in out Timer;

At_Time : in CPU_Time;

Handler : in Timer_Handler);

...

end Ada.Execution_Time.Timers;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

14 of 119

Group budgets
• Groups of tasks with a global execution-

time budget can be defined
– Basic mechanism for server-based scheduling
– Can be used to provide temporal isolation

among groups of tasks

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

15 of 119

Group budgets (spec)
with System;
package Ada.Execution_Time.Group_Budgets is

type Group_Budget is tagged limited private;
type Group_Budget_Handler is
access protected procedure (GB : in out Group_Budget);

...
Min_Handler_Ceiling : constant System.Any_Priority

:= implementation-defined;
procedure Add_Task (GB : in out Group_Budget;

T : in Ada.Task_Identification.Task_Id);
...
procedure Replenish (GB : in out Group_Budget;

To : in Time_Span);
procedure Add (GB : in out Group_Budget;

Interval : in Time_Span);
...
procedure Set_Handler (GB : in out Group_Budget;

Handler : in Group_Budget_Handler);
...

end Ada.Execution_Time.Group_Budgets;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

16 of 119

Timing events
• Lightweight mechanism for defining code

to be executed at a specified time
– Does not require an application-level task
– Analogous to interrupt handling

• The code is defined as an event handler
– An (access to) a protected procedure
– Directly invoked by the runtime

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

17 of 119

Ada.Real_Time.Timing events
package Ada.Real_Time.Timing_Events is

type Timing_Event is tagged limited private;

type Timing_Event_Handler is

access protected procedure (Event : in out Timing_Event);

procedure Set_Handler (Event : in out Timing_Event;

At_Time : in Time;

Handler : in Timing_Event_Handler);

...

procedure Cancel_Handler (Event : in out Timing_Event;

Cancelled : out Boolean);

...

end Ada.Real_Time.Timing_Events;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

18 of 119

Scheduling and dispatching
policies
• Additional dispatching policies

– Non preemptive
• Run-to-completion semantics (per partition)
• Built-in support provided

– Round robin
• Within specified priority band
• Built-in support provided
• Dispatch on quantum expiry is deferred until end of protected action

– Earliest Deadline First
• Within specified priority band
• Built-in support provided for relative and absolute “deadline”
• EDF ordered ready queues
• Guaranteed form of resource locking (preemption level + deadline)

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

19 of 119

Priority-band dispatching
• Mixed policies can coexist within a single

partition
– Priority specific dispatching policy can be set

by configuration
– Protected objects can be used for tasks to

communicate across different policies
– Tasks do not move across bands

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

20 of 119

An object-oriented approach
• Real-time components are objects

– Instances of classes
– Internal state + interfaces
– Based on a reduced set of archetypes

• Cyclic & sporadic tasks
• Protected data
• Passive data

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

21 of 119

Two ways to ensure consistent
temporal behavior
• Static WCET analysis and response-time

analysis can be used to assert correct
temporal behavior at design time

• Platform mechanisms can be used at
run time to ensure that temporal behavior
stays within the asserted boundaries
– Clocks, timers, timing events, …

• Conveniently complementary approaches

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

22 of 119

Run-time services
• The execution environment must provide run-

time services to preserve properties asserted at
model level
– Real-time clocks & timers
– Execution-time clocks & timers
– Predictable scheduling

• We assume an execution environment
implementing the Ravenscar model
– Ada 2005 with the Ravenscar profile
– Augmented with (restricted) execution-time timers

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

23 of 119

Component structure

control agent
(OBCS)

operations
(OPCS)

thread

component

PI RI

concurrency

synchronization
functionality

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

24 of 119

Basic patterns

• Cyclic component
• Sporadic component
• Protected data component
• Passive component

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

25 of 119

Cyclic component
• Clock-activated activity with fixed rate
• Attributes

– Period
– Deadline
– Worst-case execution time

• The most basic cyclic code pattern does not
need the synchronization agent
– The system clock delivers the activation event
– The component behavior is fixed and immutable

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

26 of 119

Cyclic component (basic)

operations
(OPCS)

thread

cyclic component

RI

cyclic operation

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

27 of 119

Cyclic thread (spec)

task type Cyclic_Thread

(Thread_Priority : Priority;

Period : Positive) is

pragma Priority(Thread_Priority);

end Cyclic_Thread;

cannot be Time_Span!

ms

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

28 of 119

Cyclic thread (body)

task body Cyclic_Thread is

Next_Time : Time := <Start_Time>; -- taken at elaboration time

--+ higher in the system

--+ hierarchy

begin

loop

delay until Next_Time; -- so that all tasks start at T0

OPCS.Cyclic_Operation; -- fixed and parameterless

Next_Time := Next_Time + Milliseconds(Period);

end loop;

end Cyclic_Thread;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

29 of 119

Sporadic component
• Activated by a software-mediated event

– Signaled by software or hardware interrupts
• Attributes

– Minimum inter-arrival time
– Deadline
– Worst-case execution time

• The synchronization agent of the target
component is used to signal the activation event
– And to store-and-forward signal-related data (if any)

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

30 of 119

Sporadic component

control agent
(OBCS)

operations
(OPCS)

thread

sporadic component

signal
RI

wait
sporadic operation

PI

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

31 of 119

Sporadic component (spec)

protected type OBCS(Ceiling : Priority) is

pragma Priority(Ceiling);

procedure Signal;

entry Wait;

private

Occurred : Boolean := False;

end OBCS;

task type Sporadic_Thread(Thread_Priority : Priority) is

pragma Priority(Thread_Priority);

end Sporadic_Thread;

A sporadic thread is activated by calling
the Signal operation

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

32 of 119

Sporadic thread (body)

task body Sporadic_Thread is

Next_Time : Time := <Start_Time>;

begin

delay until Next_Time; -- so that all tasks start at T0

loop

OBCS.Wait;

OPCS.Sporadic_Operation;

-- may take parameters if they were delivered by Signal

--+ and retrieved by Wait

end loop;

end Sporadic_Thread;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

33 of 119

Sporadic control agent (body)

protected body OBCS is

procedure Signal is

begin

Occurred := True;

end Signal;

entry Wait when Occurred is

begin

Occurred := False;

end Wait;

end OBCS;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

34 of 119

Other basic patterns
• Protected component

– No thread, only synchronization and operations
– Straightforward direct implementation with protected

object
• Passive component

– Purely functional behavior, neither thread nor
synchronization

– Straightforward direct implementation with functional
package

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

35 of 119

Temporal properties
• Basic patterns only guarantee periodic or

sporadic activation
• They can be augmented to guarantee

additional temporal properties at run time
– Minimum inter-arrival time for sporadic events
– Deadline for all types of thread
– WCET budgets for all types of thread

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

36 of 119

Minimum inter-arrival time
• Violations of the specified separation

interval may cause increased interference
on lower priority tasks

• Approach: prevent sporadic thread from
being activated earlier than stipulated
– Compute earliest (absolute) allowable

activation time
– Withhold activation (if triggered) until that time

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

37 of 119

Sporadic thread with minimum
separation (spec)

task type Sporadic_Thread

(Thread_Priority : Priority;

Separation : Positive) is

pragma Priority(Thread_Priority);

end Sporadic_Thread;

Minimum inter-arrival time
expressed in ms

ms

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

38 of 119

Sporadic thread (body)
task body Sporadic_Thread is

Release_Time : Time;

Next_Release : Time := <Start_Time>;

begin

loop

delay until Next_Release;

OBCS.Wait;

Release_Time := Clock;

OPCS.Sporadic_Operation;

Next_Release := Release_Time + Milliseconds(Separation);

end loop;

end Sporadic_Thread;

Still a single point of activation

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

39 of 119

Comments
• May incur some temporal drift as the clock is

read after task release
– Hence preemption may hit just after the release but

before reading the clock
– The net effect is a larger separation than required

• It is better to read the clock at the place and time
the task is released
– Within the synchronization agent

• Which is protected and thus less exposed to general
interference

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

40 of 119

Minimum inter-arrival time
– alternate pattern
task body Sporadic_Thread is

Release_Time : Time;

Next_Release : Time := <Start_Time>;

begin

loop

delay until Next_Release;

OBCS.Wait(Release_Time);

OPCS.Sporadic_Operation;

Next_Release := Release_Time + Milliseconds(Separation);

end loop;

end Sporadic_Thread;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

41 of 119

Recording release time – 1

protected type OBCS(Ceiling : Priority) is

pragma Priority(Ceiling);

procedure Signal;

entry Wait(Release_Time : out Time);

private

Occurred : Boolean := False;

end OBCS;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

42 of 119

Recording release time – 2

protected body OBCS is

procedure Signal is

begin

Occurred := True;

end Signal;

entry Wait(Release_Time : out Time) when Occurred is

begin

Release_Time := Clock;

Occurred := False;

end Wait;

end OBCS;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

43 of 119

Deadline overruns
• Deadline overruns in a task may occur as

a result of
– Higher priority tasks executing more often

than expected
• Prevented with inter-arrival time enforcement

– Execution time of the same or higher priority
tasks longer than stipulated

• Programming errors
– Bounding assertions violated by functional code

• Inaccurate WCET analysis

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

44 of 119

Detection of deadline overruns
• Deadline overruns can be detected at run time

with the help of timing events
– A mechanism for requiring some application-level

action to be executed at a given time
– Timing events can only exist at library level under the

Ravenscar Profile
• Statically allocated

• A minor optimization may be possible for
periodic tasks
– Which however breaks the symmetry of patterns

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

45 of 119

Cyclic thread with deadline
overrun detection (spec)

task type Cyclic_Thread

(Thread_Priority : Priority;

Period : Positive;

Deadline : Positive) is

pragma Priority(Thread_Priority);

end Cyclic_Thread;

ms

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

46 of 119

Thread body
Deadline_Overrun : Timing_Event; -- static, local per component

task body Cyclic_Thread is

Next_Time : Time := <Start_Time>;

Canceled : Boolean := False;

begin

loop

delay until Next_Time;

Set_Handler(Deadline_Overrun,

Next_Time + Milliseconds(Deadline),

Deadline_Overrun_Handler); -- application-specific

OPCS.Cyclic_Operation;

Cancel_Handler(Deadline_Overrun, Canceled);

Next_Time := Next_Time + Milliseconds(Period);

end loop;

end Cyclic_Thread;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

47 of 119

Thread body (streamlined)
Deadline_Overrun : Timing_Event; -- static, local per component

task body Cyclic_Thread is

Next_Time : Time := <Start_Time>;

Canceled : Boolean := False;

begin

loop

-- setting again cancels any previous event

Set_Handler(Deadline_Overrun,

Next_Time + Milliseconds(Deadline),

Deadline_Overrun_Handler); -- application-specific

delay until Next_Time;

OPCS.Cyclic_Operation;

Next_Time := Next_Time + Milliseconds(Period);

end loop;

end Cyclic_Thread;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

48 of 119

Sporadic thread with deadline
overrun detection (spec)

task type Sporadic_Thread

(Thread_Priority : Priority;

Separation : Positive;

Deadline : Positive) is

pragma Priority(Thread_Priority);

end Sporadic_Thread;

ms

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

49 of 119

Thread body
Deadline_Overrun : Timing_Event; -- static, local per component

task body Sporadic_Thread is

Release_Time : Time;

Next_Release : Time := <Start_Time>;

Canceled : Boolean := False;

begin

loop

delay until Next_Release;

OBCS.Wait(Release_Time);

Set_Handler(Deadline_Overrun,

Release_Time + Milliseconds(Deadline),

Deadline_Overrun_Handler); -- application-specific

OPCS.Sporadic_Operation;

Cancel_Handler(Deadline_Overrun, Canceled);

Next_Release := Release_Time + Milliseconds(Separation);

end loop;

end Sporadic_Thread;

Can’t streamline as
the deadline cannot
be computed until
returning from Wait

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

50 of 119

Execution-time overruns
• Tasks may execute for longer than stipulated,

owing to programming errors
– Bounding assertions violated by functional code

• WCET values used in temporal analysis may be
inaccurate
– Optimistic vs. pessimistic

• WCET overruns can be detected at run time with
the help of execution-time timers
– Not included in Ravenscar
– Extended profile

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

51 of 119

Cyclic thread with WCET overrun
detection (spec)

task type Cyclic_Thread

(Thread_Priority : Priority;

Period : Positive;

WCET_Budget : Positive) is

pragma Priority(Thread_Priority);

end Cyclic_Thread;

ms

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

52 of 119

Thread body
task body Cyclic_Thread is

Next_Time : Time := <Start_Time>;

Id : aliased constant Task_ID := Current_Task;

WCET_Timer : Timer(Id'access);

begin

loop

delay until Next_Time;

Set_Handler(WCET_Timer,

Milliseconds(WCET_Budget),

WCET_Overrun_Handler); -- application-specific

OPCS.Cyclic_Operation;

Next_Time := Next_Time + Milliseconds(Period);

end loop;

end Cyclic_Thread;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

53 of 119

Observations
• WCET overruns in sporadic tasks can be

detected similarly
– The timer should be set after the activation
– There is no need for timer cancellation

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

54 of 119

Fault handling strategies
• Error logging

– Only for low-criticality tasks
• Second chance

– Use slack time and try to complete
• Mode change

– Switch to safe mode
• Fail safe or fail soft behaviour

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

55 of 119

Fault handling scheme
task timer

set

handler

timer expiration

ET
monitor

mode
change

log reset
system

reflective
computing

wait

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

56 of 119

Modifiers
• Cyclic and sporadic objects may have

modifier operations
– Mode change, behavior modifications, etc.

• ATC not allowed in Ravenscar
– Modifier requests are queued in the OBCS

• Synchronization agent now required for cyclic
components as well

– The thread takes requests from the queue
and executes them whenever possible

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

57 of 119

Cyclic thread with modifier
task body Cyclic_Thread is

Next_Release_Time : Time := <Start_Time>;

Request : Request_Type;

begin

loop

delay until Next_Release_Time;

OBCS.Get_Request(Request); -- may include operation parameters

case Request is

when NO_REQ => OPCS.Periodic_Activity;

when ATC_REQ => -- may take parameters

OPCS.Modifier_Operation;

end case;

Next_Release_Time := Next_Release_Time + Period;

end loop;

end Cyclic_Thread;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

58 of 119

Synchronization agent – 1

-- for cyclic thread

protected type OBCS (Ceiling: Priority) is

pragma Priority(Ceiling);

procedure Put_Request(Request : Request_Type);

procedure Get_Request(out Request : Request_Type);

private

Buffer : Request_Buffer; -- bounded queue

end OBCS;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

59 of 119

Synchronization agent – 2
-- for cyclic thread

protected body OBCS(Ceiling : Priority) is

procedure Put_Request(Request : Request_Type) is

begin

Buffer.Put(Request);

end Put_Request;

procedure Get_Request(out Request : Request_Type) is

begin

if Buffer.Empty then

Request := NO_REQ;

else

Buffer.Get(Request);

end if;

end Get_Request;

end OBCS;

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

60 of 119

Ada 2005 compilation chain
• Ada 2005 compiler & linker

– Full support of Annex D – Real-time systems
• Real-time kernel

– Implements the Ravenscar tasking model
• Ada run-time system

– Implements the Ada tasking model on top of
the kernel

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

61 of 119

GNAT for LEON
• Cross-compilation system targeted to

LEON2 computers
– Radiation-hardened SPARC v8
– ESA standard

• Components
– GNAT Ada 2005 compiler (Ada Core)
– GNARL run-time system (Ada Core)
– ORK+ kernel (UPM)

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

62 of 119

GNAT compiler
• Ada 2005 cross-compilation system

– Hosted on GNU/Linux
– Targeted to ELF-SPARC v8

• real hardware or simulators

• Current version: GNAT GPL 2007
– Supports Ada 2005
– Ported to LEON2 at UPM

• Including Ravenscar run-time

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

63 of 119

ORK+
• Lightweight real-time kernel for the

Ravenscar tasking model
• Evolution of ORK

– Developed at UPM under ESA contract
• New Ada 2005 features

– Timing events
– Execution-time clocks and timers
– Group budgets

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

64 of 119

ORK+ architecture

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

65 of 119

Compilation process

GNAT
compiler

application
sources

gnat.adc

RTS
specs

application
ALI files

application
object files

GNAT
binder

RTS
ALI files

elaboration
code

GNAT
linker

RTS &
kernel

object files

ELF-32 SPARC
executable

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

66 of 119

Cross-compilation and
debugging

application
exec file

GDB
debugger

GNAT
compiler

application
sources

RTS
specs

application
object files

GNAT
linker

RTS
objects

Host computer

loaded
application

GRMON

Target computer

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

67 of 119

Running programs

• LEON2 simulator
on host platform

• E.g. TSIM

• LEON2 computer
board

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

68 of 119

Example
$ sparc-elf-gnatmake hello

[$ sparc-elf-gnatmake -g hello -largs -Wl,-Map=hello.map]

$ tsim –gdb

...

gdb interface: using port 1234

[on another terminal – local or remote]

$ sparc-elf-gdb hello

(gdb) target extended-remote 127.0.0.1:1234

...

(gdb) load

...

(gdb) cont

...

(gdb) detach

...

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

69 of 119

GNAT Programming System

Excerpts from Ada-Europe 2008 Tutorial T4 – June 16, 2008

Preserving properties at run time

70 of 119

Other tools
• Response time analysis

– MAST (University of Cantabria, Spain)
• Execution-time (WCET) analysis

– Bound-T (Tidorum, Finland)
• Static analysis

– RapiTime (Rapita Systems, UK)
• Measurement based

