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Chapter 1

Introduction

1.1 Purpose

The purpose of this document is to describe the design dDffen Ravenscar Real-Time
Kernelsoftware.

The Open Ravenscar Real-Time Kernel (ORK) is an open-saoesatdime kernel of
reduced size and complexity, for which users can seek catidn for mission-critical
space applications. The kernel supports Ada 95 applicatbonan ERC32 based com-
puter. A C interface is also provided.

1.2 Scope

This document applies tark-erc32, a software package based on ORK, a compact real-

time kernel for the ERC32 processor with programming iatees for GNAT, the GNU

Ada Compiler, angcc, the GNU C compiler. Debugging of real-time programs usie t

kernel is based ogdb, the GNU debugger, and a graphical front-end to interadt it
Theork-erc32 package includes:

e ORK, the Open Ravenscar Real-Time Kernel itself.

e An adapted cross-development version of GNAT 3.13 targede@®RK on the
ERC32 (SPARC V7) architecture. This version is built frore fiollowing com-
ponents:

— GNAT 3.13 sources with ORK-ERC32 patches, and special messif some
GNARL (GNU Ada Runtime Library) and all of the GNULL (GNU Lowe
Level) packages.

— binutils-2.9.1 sources with ORK-ERC32 patches.
— newlib-1.8.2 sources with ORK-ERC32 patches.
— gcc-2.8.1 sources with ORK-ERC32 patches.

e GDB-ORK, an adapted version of GDB 4.17 with ORK-ERC32 pasch
e DDD-ORK, an adapted version of DDD 3.2 with ORK-ERC32 patche
¢ MKPROM-ORK, an adapted version of MKPROM for ERC32 with OR&t¢hes.

¢ RMON-ORK, an adapted version of Remote Debugger MonitoiHRIC32 with
ORK patches.
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e ORK-CIL, the ORK C Interface Library.

1.3 Glossary

Acronyms and definitions related to ORK can be found in a sgpatocumentOpen
Ravenscar Real-Time Kernel Glossary and documentatiashegto which the reader is
referred.

1.4 References

1.4.1 Applicable documents
1. ECCS-E40A. Space Engineering — Software [1].

. Ada 95 Reference Manual [2].
. Ada 95 — Guidance for High Integrity Systems [3].

2
3
4. Alan Burns. The Ravenscar profile [4].
5. C Programming Language [5].

6

. POSIX Real-Time Standards [6].

1.4.2 Reference documents
1. ERC-32 Manuals [7, 8, 9, 10].

2. ERC-32 GCC Manual [11].

3. Ada 95 — Quality and Style [12].
4. HOOD Reference Manual 3.1 [13].
5. GNAT Manuals [14, 15].

6. Debugging with GDB [16].

Additional references can be found in the bibliography atehd of this volume.

1.5 Document overview

This document is organised as follows: chapter 2 makes agatescription of the kernel
architecture. Chapter 3 describes the top-level designeo$ystem interfaces. Chapter 4
contains the standards, conventions and procedures fadlowthe design of this product.
Chapter 5 provides the software top-level architecturalgieof the product. Chapter 6
contains a detailed description of each software packagelly; chapter 7 shows where
the code listings are available.



Chapter 2

Software overview

2.1 The Open Ravenscar Real-Time Kernel

The Open Ravenscar Real-Time Kernel (ORK) is a tasking kéon¢he Ada language
[2] which provides full conformance with the Ravenscar peof8, 4] on ERC32-based
computers. The kernel has been designed for efficient suppAda tasking constructs,
but it can also be used with C programs. A C interface layerK@HL.) is available for
this purpose.

ORK supports the restricted version of Ada tasking definethbyprofile, which in-
cludes static tasks (with no entries) and protected obj@uith at most one entry), a
real-time clock andielay until statements, and protected interrupt handler procedwses, a
well as other tasking features.

The kernel is fully integrated with the GNAT compilation 1. The restrictions of
the Ravenscar profile are enforced on Ada application progitay means of appropriate
restriction pragmas. In this way, conformance with the peafan be secured almost
entirely at compile time. The only exceptions are task tegtion and protected entry
call by more than one task, which can only be detected at noa [i].

Debugging support for the ORK kernel, including taskingh@sed on an enhanced
version of the GDB debugger. A graphical front-end for thbudgger is also provided.

Theork-erc32 software has the following components (figure 2.1):

e Aspecialized version of GNARL, the GNU Ada Runtime Librarpm GNAT 3.13.

A specialized version of GNULL, the GNU Low-Level Layer, moGNAT 3.13 .

A C interface layer, based on a subseptifeads (part of ORK-ERC32 1.0).

The ORK kernel itself (the main part of ORK-ERC32 1.0).

An adapted version of GDB 4.17 and DDD 3.2.

2.2 The GNU Ada Run-Time Library (GNARL)

The GNU Ada Runtime Library (GNARL) [17] provides taskingpgort to Ada pro-
grams, and is part of the GNAT compilation system. Most okitndependent of the
underlying OS and hardware, so that it can be easily portedwoplatforms.

GNARL offers a procedural interface (GNARLI) to Ada progmmThis interface
should not be changed, or the compiler itself would have tmbdified.

3
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Figure 2.1: Architecture of ORK and main interfaces. The ponents inside the dotted
line are part of therk-erc32 distribution.

The GNARL packages implement the full Ada tasking model. &gy, enforcing the
Ravenscar profile on a program makes some of GNARL packagexassary, and allows
simplified versions of others to be used. From GNAT 3.12 onpglker implementation
of tasks and protected objects for Ravenscar compliantanaglis automatically selected
when the pragm®avenscar is in effect.

The specialized version of GNARL for ORK consists of threeds of packages:

e Standard GNARL packages. These packages are taken unchahigst of the
GNARL packages are in this category, including all the djpsations that make up
GNARLI.

e Specific GNARL packages. These packages have been modifeeden to adapt
them to the Ravenscar profile and ORK specific charactesistic

e New packages that have been added to GNARL in order to sufiikt-specific
features.

In addition to this, there are some GNARL packages that areses under the Raven-
scar profile restrictions.

2.3 The GNU Lower-Level (GNULL) Library

The purpose of GNULL (GNU Low-Level library) is to provideghmplementation of
low-level services that GNARL needs to request from the dgihg operating system.
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GNULL provides an interface to the GNARL upper layers cal®&dULLI (GNULL
Interface) which is intended to be OS and hardware indepegntiodifying this interface
would require changing the upper layer GNARL packages.

The specific version of GNULL for ORK consists of:

e The specifications of some packages which define the GNUIdtfate (GNULLI).
All the interface elements in these specifications have lfeanchanged with re-
spect to the current GNAT distribution so that most of the GllAcan be used “as
is” (see 2.2 above.).

e The bodies of the GNULL packages, which have been rewritiarder to adapt
them to ORK.

The GNULL interface provides much more than is actually ekt implement the
restricted Ravenscar tasking functionality. However,nahen not to modify the GNARL
upper level components and avoid compilation errors, th&J@N for ORK still contains
the full set of operation specifications. The bodies of theesiluous operations raise an
exception in order to properly signal violations of the deoft execution time. Notice
that this is mainly useful for debugging purposes, as theeRswar restrictions should be
checked at compilation time by means of appropriate pragmas

2.4 The C interface layer
The purpose of the C interface layer is to provide an apptingirogram interface (API)
to kernel that can be used from C programs. The interfacécegps the functionality of

the kernel by means of a set of C type definitions and procedure
The C interface layer consists of a number of C header (.hpamgram (.c) files.

2.5 The kernel layer
The kernel layer provides all the required functionalitgtgport real-time programming

on top of the ERC32 hardware architecture. The kernel fanstican be grouped as
follows:

1. Task management, including task creation, synchrdoizaind scheduling.

2. Time services, including absolute delays and real-tilnekc

3. Memory management. The only kinds of dynamic storageaition supported by
the kernel are those required to allocate task control ISIGEEBs) and stack space

for tasks at system startup. Deallocation is not supported.

4. Interrupt handling.

The kernel interface to these functions consists of theiSpations of some Ada
packages, which together make up the kernel interface.
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2.6 The GNU debugger

The Open Ravenscar Kernel is provided with debugging faeslibased on GDB (GNU
debugger.) GDB is widely known as a very portable and powedbugger, available on
many hosts, and capable of debugging many targets. It dlyrempports source level
debugging in various languages, including C, C++ and Ada.

For the purposes of debugging ORK-based programs, sonigiéacior debugging
Ada tasks implemented using ORK have been included in GNAREK level debugging
is very platform dependent, and therefore specific suppoe given task implementation
has to be built into GDB. This support is implemented with eo& DB scripts, provid-
ing new task debugging functions. The scripts require stgpom the kernel, either
directly or by means of some GNARL packages which use theckemformation. The
debugging interface consists of these GNARL packages,qoloee operations defined in
the specifications of the GNULLI and kernel interface padsag

A graphical front-end is provided on top of GDB, based on DMata Display De-
bugger.) DDD is a program designed to act as a simple to usepyeplete, debugging
graphic interface, which can interact with several debugjacluding GDB). Some new
functionality has been added to it in order to make it a sietgbaphical debugger for
ORK. This functionality is mainly implemented as a set ofgbats which enable DDD to
support task-level debugging.



Chapter 3

System interfaces context

The Open Ravenscar Real-Time Kernel (ORK) provides suppothe restricted version
of Ada tasking defined by the Ravenscar profile. There are teakb which are supposed
to use these services: the GNULL Layer and the C Interfaceigee figure 2.1). Both
layers use the kernel services through the kernel intedéieeed by ORK.

The purpose of GNULL is to isolate GNARL from the underlyingrikel or operating
system. GNULL provides an interface called GNULLI which ssamed to be OS in-
dependent. When porting GNARL on top of ORK the GNULL layanlates GNARL
calls into ORK primitives.

A C Interface is provided to make ORK callable from C programie C Interface
Layer provides the appropriate conversion mechanismsutine calling and parameter
passing conventions, to allow C applications to use the ORMifives easily.

This document is focused on ORK itself, and the kernel irgtkimerface. A detailed
description of all the external interfaces can be found @ltterface Control Document
of this project.
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Chapter 4

Design standards, conventions, and
procedures

4.1 Architectural design method

The graphical HOOD notation [13] is used for architecturgidn and interface descrip-
tion.

According to the small size of the project, the details of itterfaces are written
directly in Ada instead of the HOOD textual notation.

4.2 Detailed design method

The graphical HOOD notation is also used to represent thersydependencies and its
hierarchy.
Names and comments are written in English.

4.3 Code documentation standards

The code formatting of Ada source code follows the guidalidescribed in Ada 95 Qual-
ity and Style Guide [12]. This format is also used with assigrmabde as appropriate.

4.4 Naming conventions

Following the guidelines defined in Ada 95 Quality and Stylede [12], the selection of
names is made to clarify the object’s or entity’s intendegl us

4.5 Programming standards

ORK is implemented mainly in Ada 95. Assembly language igidse the lowest-level
operations.

The guidelines defined in Ada 95 Quality and Style Guide [X2]fallowed for the
code written in Ada 95. The guidelines are also applied teragdy code as far as possi-
ble.

The safe subset of Ada used for the implementation of theekésrdefined from the
recommendations made by the Ada High Integrity Systemsdatai3]. Notice that the
following restrictions apply only to the kernel, not to GNARr GNULL packages.

9



10 CHAPTER 4. DESIGN STANDARDS, CONVENTIONS, AND PROCEDURES

Ada features are split into fourteen groups. These groupsategorized into three
types:

1. Fully used. The Ada features that were used without artyicesn are:
e Packages (child and library).

2. Partially used. Now it will be listed the groups that aretipdly used, with a brief
description of the concrete features that are forbidderobused:

e Types with static attributes.

— Discriminated records are not allowed, because they casduto create
unconstrained objects, to make some components inackegsifome
variants, and to define indefinite generic formal paramedacs private
types.

— Tagged types, and therefore class wide operations, aréastsdden, to
avoid the difficulty involved with dispatching operations.

e Declarations.

— Complex definitions of aliased objects or components aresed. These
are definitions which could render properties of the objacbnsistent
with non-aliased objects of the same type. Examples of ttesiowhen
the original type is indefinite, unconstrained, or modifigarépresenta-
tion clauses.

— Declarative parts in block statements are not used. Thisrfearesents
some drawbacks to Flow Analysis and Symbolic Analysis a$ ageto
structural coverage.

e Names, including scope and visibility.

— Complex forms of renaming (i.e., those which require rumetevaluation
of bounds or object components, or those which extend cosmdifie-
time) are forbidden because they hinder Symbolic Analyd®y Anal-
ysis and Range Checking, and complicate Object Code Arsahgsthey
embed run-time code that has no associated visible souds co

— Overloading of subprogram is not used to facilitate Flow isis, Sym-
bolic Analysis, and Object Code Analysis.

— Package nesting is not used, because it makes difficult agedrased
testing, and Range Checking becomes problematic.

e Expressions.

— Slices of arrays are not used to ease the understanding cbtlee

— Type conversions are only allowed for numeric types. Moreglex
conversions can either generate additional code, or reguiemporary
object, or require dynamic checks.

e Statements.

— goto statements are forbidden, because their use is contratlyoreci-
ples of structured programming.

e Subprograms.
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— Indefinite formal parameters are not used because they nealydymamic
storage.

— Complex return types (indefinite types, unconstrainedsypad tagged
types) are forbidden because they require dynamic stoeapaigues.

— Return statements in procedures are not allowed becausegh@bscure
and cause difficulties for Flow Analysis, Object Code Analystc.

e Arithmetic types

— Modular integer types are not used, because their predefipedtions
are not those of classical mathematics, and care is needatstwe that
the operations perform the intended function.

e Low level and interfacing.

— Unchecked access is forbidden, because it can lead to dgmgferences
or corruption of data.

— Streams are not used. They require class wide types andsguaesne-
ters, and are therefore difficult to analyse.

e Access types and types with dynamic attributes.

— Unconstrained array types are not used.

— Full access types are forbidden. They need to allocate mefran the
heap and other storage areas, making memory use unpreedjdtabng
analysis problematic, and heap exhaustion and fragmentasignificant
risk. It can also create unbounded aliasing problems.

— Restricted storage pools are not allowed. They are not teed®©RK,
and require careful implementation and use to ensure tlugiddms are
predictable.

— Controlled types are not used because they introduce hiclaerol flows
due to user-defined initialisation, assignment and fintdisa

— Indefinite objects are forbidden. They consume time andg®m ways
which are difficult, if not impossible, to predict.

— Non-static array objects are not allowed because time amdaneused
depends on dynamic bounds.

3. Not used. Finally, it will be shown the features that areused in the implemen-
tation of the kernel. Some of them were not needed at all, antesothers were
forbidden because they were not considered safe:

Generics. Generics are not used, because they are not needed

Exceptions. Exceptions are not used within the kernel.

Tasking. Not used.
Distribution. Not used within the kernel.
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Chapter 5

Software top-level architectural design

5.1 Overall architecture

The functionality provided by ORK can be divided into thddaling sets of services:

e Thread management

e Synchronization

e Scheduling

e Storage allocation

e Time-keeping and delays
¢ Interrupt handling

e Serial output

These sets of functions are defined in different Ada packagbsre are also some
more packages in the kernel which are used to isolate thevaseddependent aspects.
These packages are shown in figure 5.1.

Only five of these packages are designed to be visible to therdpyers. They are:
Kernel.Interrupts, Kernel.Time, Kernel.Memory, Kernel. Threads, andKernel.Serial_Output.
The other three packagéesefnel.CPU_Primitives, Kernel.Peripherals, andKernel.Parame-
ters) are used to implement internal services not availabled¢eiternal world, isolating
machine dependent issues and implementation definecctests. The only exception is
that packageystem (which contains the definition of system dependent typescand
stants) imports some values frdfarnel.Parameters.

Kernel primitives in ORK are always non-threaded (intetsugre disabled while ac-
cessing the kernel), so that kernel operations are onlyutgdon behalf of a specific
user-level thread to which the relevant overhead can thushbeged. There are no im-
plicit threads hidden within the kernel (e.g. to support d@erations). Actually, there is
a thread (calle®ummy_Thread) which is automatically created by the kernel to be exe-
cuted when there is not any other ready thread to executeséstien 5.2.1). However,
this thread does not interfere with any other thread in tis¢esy, because as soon as there
is any ready thread to execute, themmy_Thread is immediately preempted.

13
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Figure 5.1: Open Ravenscar Real-Time Kernel
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4 Kernel.Threads N
fKerneI.Threads.Queu¢s
{Queue Handling} [---1__ |
{ATCB Management}{---- -~ !
{Kernel Protection} --- i fKerneI.Threads.ATCHB

{Thread Management \

{Synchronization}
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Figure 5.2:Kernel.Threads hierarchy

5.2 Software item components

The sets of functions identified in the ORK architecture arglemented by different Ada
packages. This section describes the different kernel feediepicted in figure 5.1.

5.2.1 The package Kernel.Threads

This package implements the primitives related to threadageament, synchronization,
and scheduling; it also contains the data definitions réla¢hese services. This package
does not depend on the target machine. The data and prismdafened here are visible
to both C applications and GNULL.

Kernel.Threads uses three children packages (see figure 5.2) to implemerititic-
tionality provided.

This package defines the thread identifiers used both by GN&sid C applications.
These identifiers are required by some low-level taskingtions, such as those related
to synchronization.

The specification of this package also contains the synctabon elements required
by GNULL, not only for the runtime internal data protectidnit also for the implemen-
tation of protected objects. The types of synchronizatiements needed by GNULL
are:

e Mutexes. Mutexes are objects which provide access with ahwgxclusion to
shared data. They implement the Immediate Priority Ceifngtocol.

e Condition Variables. These objects provide the functimpaéquired by a thread
to voluntarily suspend itself to wait for some condition ®datisfied.

The functions implemented by this package are:

e Creation of a concurrent thread of execution to execute tlie of an Ada or C
task.

¢ Identification of the currently executing thread.

e Operations to insert, remove, and change the position afeadwithin the list of
ready threads. These are internal services that cannotebeoysany other package
or layer.
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e Synchronization. The kernel provides primitives to alldweiad synchronization
using both mutexes and condition variables. Other synéhation methods can be
easily implemented using these two objects.

The synchronization primitives provided by ORK are briefkpkained in the follow-
ing paragraphs.

ORK provides operations to acquire and release mutexesniolyy the Immediate
Priority Ceiling Protocol. GNULL defines two different predures to acquire a mutex
(Read_Lock andWrite_Lock), depending on the kind of access required; several threads
can acquire a mutex for reading at a time, but just one thiealtbiwed to lock a mutex for
writing. In a monoprocessor system, such as ORK/ERC32ngadifferent implementa-
tions for reading and writing is an unnecessary overheal [Mli&erefore, ORK provides
only one primitive to acquire a mutex withirite_Lock semanticsRead_Lock operations
are mapped to the same primitive, so that the effect of bo¢hations is exactly the same.

ORK takes great advantage of being targeted primarily to aapmcessor system,
and its implementation of mutexes is very simple and efficiemcase of migration to a
multiprocessor, the synchronization primitives shoulddimplemented to allow efficient
concurrent reading accesses to mutexes.

The kernel protects its internal data avoiding kernel op@ma to be disturbed by
any external interrupt. This way, kernel operations arenato GNARL also needs to
protect its internal data, but this library relies on kerpemitives (mutex operations) to
guarantee the atomic access. As runtime operations am@ped at the highest priority,
the priority ceiling checking would be unnecessary anddhkierhead is avoided by using
a simpler mutex (calle®TS_Lock) with the highest priority, which does not check for
ceiling priority violations. However, ORK implements onbne type of mutex which
always checks ceiling priority violations. Avoiding just® check is not a strong enough
reason to implement two different types of mutexes.

The semantics of condition variables have also been dreafigtsimplified with re-
spect to POSIX [19]. The simplifications are motivated by:

e The maximum number of waiting threads is one.
e There are no timed-wait operations.

e The Ravenscar profile does not allow any other form of awailgetireads than sig-
naling a condition variable. Select statements and abwrtothe full Ada language
make it possible to cancel a waiting operation before siggahe condition.

Therefore, the mechanisms implemented by condition viasato suspend and re-
sume athread are very simple, without even requiring anyet@ storing waiting tasks.

5.2.2 The package Kernel.Interrupts

This package is visible both to C applications and GNULL. Thplementation of this
package is very simple because all the hardware relatedsss@ managed inside the
packageernel.CPU_Primitives.

The interface offered by this package contains the funstion

¢ Install interrupt handlers.

e Detach interrupt handlers.
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¢ Obtain the current handler for any interrupt.

An interrupt represents a class of events that are detegtdtelhardware or the sys-
tem software. When an interrupt occurslaterrupt Service RoutindSR) (implemented
by packagekernel.CPU_Primitives, see section 5.2.7) is invoked to make the interrupt
available to the kernel. The following paragraphs desctilgemechanism used by the
kernel to handle interrupts.

Protected procedures have appropriate semantics fomtastupt handlers; they can
be directly invoked by the hardware and share data with @s@®ther interrupt handlers.
The Ravenscar profile does not allow any other form of infgrhandlers.

The typeSystem.Any_Priority represents all the possible priorities in the system. The
highest priorities in this range are used to represent ttegrupt priorities (typeSys-
tem.Interrupt_Priority). Therefore, hardware priorities are mapped to softwaieripy,
providing a unified priority model [20]. This model also ingd that tasks with priorities
in the range oBystem.Interrupt_Priority block interrupts with lower priorities.

The SPARC architecture has 15 different interrupt levelgtviare mapped to the 15
elements of the typ8ystem.Interrupt_Priority. Therefore, when a thread executes with
a priority within this interrupt range, the interrupts @sponding to the levels below
the current interrupt level are disabled by ORK. When a threl@anges its currently
active priority (due, for example, to the execution of a mygemitive) the level to which
interrupts are enabled also change.

When attaching a protected procedure to an interrupt, dvec@terrupt handler begins
to execute its priority is raised to the ceiling of the progéecobject. Thus, the handler
can only be preempted by other interrupt with a priority l@gthan the ceiling of the
protected object; on the other hand while any shared dathifwihe protected object
which provides the protected procedure handler) is beingssed by other threads of
control, all interrupts attached to this protected objeetdisabled [21], and obvioulsly
all the interrupts with a lower priority than the ceiling bt protected object.

This way, ORK schedules interrupt handlers like any othezatl in the system; in-
terrupts have the peculiarity that the Immediate Priorigfli@g Protocol guarantees that
whenever an interrupt is acknoledged (that is, this is noecly masked) it begins to ex-
ecute its attached protected procedure being sure thatabecped object is always free,
as it has been explained in the previous paragraphs.

One important thing that must be taken into account is thanupdating internal
kernel data, interrupts are disabled (see section 6.1ki$.Way the kernel protects all its
critical sections, except for non-maskable interruptgciviare used to signal fatal system
failures and must be handled immediately.

Notice that the blocking time for interrupts can be easilglgsed, accounting the
blocking effects due to higher priority tasks and intersugthe blocking time caused by
the execution of kernel operations (mentioned in the presmaragraph) can be modeled
the same as accesses to a protected object with the higlerglypr

According to the current GNARL implementation, interrugtnidlers are executed
within the context of especially dedicated “server” tagkse of them associated to each
interrupt. In this way, GNARL implements a unified priorityoehel in which interrupts
have their own priorities (in fact the priorities assignedlte respective interrupt han-
dlers). Hence, all interrupt handlers having prioritiesdo than the active priority of the
currently executing task (or interrupt handler) are eff@ty inhibited. Inhibition will
remain while the current active priority is maintained regbr equal to the priority of the
interrupt handler.

Ada 95 allows an implementation to handle an interrupt effitiy by arranging for
the interrupt handler to be invoked directly by the hardw@le Since interrupts may
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Figure 5.3: Interrupt handling in GNARL

occur very frequently and require fast response, the ussacg overhead of using server
tasks, as mentioned in the previous paragraph, may be rabdde Attaching protected
procedures directly to ISR’s would seem at first to be the bekttion, however it is
not possible to call a protected procedure from an internaptler that is not executing
within a server task context. Therefore, even if it may apped®e wasteful to interpose
a separate task for each interrupt handler, this approadebssihe mutual exclusion prob-
lem of preventing concurrent execution of the handler place with other operations of
the same protected object [22], but with a very expensivehai@sm. It will be shown
later that the ORK kernel can solve the mutual exclusion lerabwith a much simpler
model.

Using server tasks, priorities and mutual exclusion arelleghin the standard way
for tasks and protected objects. Server tasks also giveaa ebeecution model compared
to other approaches in which the handler is executed in thiegbof the interrupted task.
Figure 5.3 shows the mechanism used to call interrupt hesittiéowing this scheme.

Server tasks move the problem of how to ensure mutual exclidsdm interrupt han-
dlers to kernel synchronization primitives. They couldoalscrease the level of concur-
rency allowed inside the kernel.

We could also think about dedicating one server task fohallgossible interrupts or
providing a server task for each interrupt. Although therfer approach saves runtime
space, it would block other interrupts during the protegtextedure call. For this reason
GNARL provides a separate server task for each interrupthviiould eliminate the
problem of delaying or losing interrupts [22].

This is a good approach for a generic run-time system whickt support the full Ada
language. But the implementation of this scheme in packagem.Interrupts (& member
of GNARL) contains tasks with entries which violate the Ras@ar profile. Moreover, in
the case of a Ravenscar compliant kernel there are sevstattiens that make interrupt
handling much simpler:

1. Only protected procedures can be used as interrupt hrandle
2. The only locking policy accepted within protected obgastCeiling locking.

These simplifications, together with the fact that withirr &arnel all the interrupts
with a lower priority than the currently active priority aneasked, make impossible that
an interrupt handler is blocked waiting for a protected obije be free. Therefore, there is
not need for any server task context to allow the interruptai. The protected procedure
can be installed as a low-level asynchronous handler puvegdallable directly from the
hardware (see figure 5.4). The effect is that interrupt hemsdire executed as if they were
directly invoked by the interrupted task, but using therntpt stack that was mentioned
in the begining of this section.
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Figure 5.4: Interrupt handling in ORK

This design simplifies not only the conceptual mechanisnalsatthe performance of
the system. Obviously, the portability of this solutionésluced as it can not be used for
POSIX compliant operating systems. However, as it was roeatl before our target is a
bare single processor system and we believe that thissolistfast enough for embedded
systems to account for the lack of portability. The curreNARL implementations rely
on POSIX signals to handle interrupts although signal séicgare too expensive [23,
24]. Our approach is to directly attach the user handlereartterrupt.

5.2.3 The package Kernel.Time

Kernel.Time provides primitives for getting the time from the underlyinardware clock,
and the mechanisms for delaying threads until some spetifired These services can
be directly used by both the GNULL layer and C applications.

This package is independent from the machines to which theekés ported. The
implementation of the hardware dependentissues is ldfetpackag&ernel. CPU_Primi-
tives andKernel.Peripherals.

Delaying mechanisms are quite complex in the full GNARL (tisathe runtime li-
brary for the full Ada language), but this has been largetypdified in the restricted
kernel.

The current GNARL implementation uses condition varialgerations to execute all
kinds of delays. This scheme allows timed calls to be caddeddore the expiration of
the timer. The use of condition variables to implement delpgrations in ORK would
be unnecessarily expensive, as the profile does not allowrfpmeans of canceling a
delay. Therefore, ORK furnishes a simpler way to read thdware clock and to share
the timers among threads. Threads will wait inside the tiquesue until their respective
expiration time, and there will not be any other event to aidkeads.

Delay statements are transformed by GNULL into direct dallhe ORK timer mod-
ule.

ORK represents the typeme as a signed 64-bit value which represents a number of
nanoseconds. The range of time values can uniquely repsetfenrange of real times
from program start-up to almost 300 years later, which iss@tant with the Real-Time
Annex of the Ada Reference Manual (ALRM D.8) [2].

5.2.4 The package Kernel.Memory

This package is in charge of the dynamic memory managemedtit@afunctionality is
visible both to GNULL and C applications. At the initializan of the system, the size
and number of some objects (such as stacks or TCB’s) are fepade for these objects
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Figure 5.5: Stack layout

is requested at the initialization, but the allocation nagtm is very simple. ORK does
not allow for freeing memory, and so memory space is assignaccontiguous manner
without any need to find the right hole for allocating objects

The Ravenscar profile does not explicitly disallow the usgyosfamic memory as this
profile only covers tasking related issues, but it seemgalttuat an application designed
following the Ravenscar restrictions should also folloe sequential restrictions defined
by the Ada HIS standard [3]. Therefore, these memory funstghould only be used at
start-up time. However, there is no compiler check for thrg] also no runtime check, so
it is up to the user not to use dynamic memory after initidia

The different stacks associated to each task are protectadoid stack overflow.
When a task tries to request more stack than allo@eatage Error is raised. The ex-
ception is raised when the task performs a write operatidininvihe area named as “pro-
tected” in figure 5.5. Read operations within the protecteédsdo not raise any excep-
tion, because unfortunately the ERC32 hardware only impfegswrite access protection.

The MEC in ERC32 allows two different segments to be writégeted. One of them
is moved when the running thread changes, and the other @& tiixprotect always the
interrupt stack.

Tasks are therefore allowed to read/write inside the stpakesof any other task. At
first, ORK was designed to allow task to move its stack poiatdy within the bounds
of its own stack. But the mechanism used with protected ¢dbjdid not work with this
restriction, because one task may execute a protected lemtlty on behalf of another
task, and the former may modify data that is stored in thefatstack. This is the model
implemented by GNARL for servicing entry queues (alloweddyRM 9.5.3 par. 22) to
minimize unnecessary context switches.

5.2.5 The package Kernel.Serial_Output

This package allows applications to display the applicatiotput on the user screen. The
application sends characters (and strings) through UARIhgll A, which is connected
to the user screen when using the simulator (SIS or TSIM).

Under real targets, using the remote target monitor, anaalpimeric terminal or a
communication software (like kermit or tip) can also be &itd to UART channel A to
show the application output. Remote target monitor uses Uétiannel B as host-target
link.

5.2.6 The package Kernel.Parameters

This package contains some types and constants exclusisetyby the kernel (and the
packageSystem). This package is not visible to GNULL or C programs; GNULlyda
uses the packaggystem to extract target dependent information. Here we can find:

e Maximum number of threads allowed.

e The default stack size.
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e Maximum space available for the dynamic data to be defineditélization.
e The priority range, including the band used for interrupbpties.

e The clock frequency.

This package has no body, and it is usedKaynel.Threads, Kernel.Memory and
Kernel.CPU_Primitives.

These parameters are user configurable to allow the kerbeltylored to a concrete
board or application.

5.2.7 The package Kernel.CPU_Primitives

The implementation of this package is strongly processpeddent, while it offers the
same interface to the rest of kernel packages, providingchima independent interface.
This scheme simplifies porting the kernel to other targethis package encapsulates
functions to:

e Save and restore the machine state for context switches.

¢ Install trap and interrupt handlers. This function is in ieaof inserting the low
level Interrupt Service Routine (ISR) within the trap tablehe functionality pro-
vided by package&ernel.Interrupts uses this target dependent function to isolate
dependencies on the target.

e Enable and disable interrupts, as well as changing the tewehich interrupts are
allowed.

These functions are implemented in assembler. This padkagy# visible either to
GNULL or to C applications.

The main duties of the ISR are changing to the interrupt ssadkhandling the nesting
of interrupts. The ISR implemented by this package is comtoa@il interrupts.

When executing interrupt handlers ORK provides an intdrstgck. The other option
is to leave the interrupt to use the stack of the interrugtesbtd; but this would artificially
inflate the stack requirements for each thread, since ehegad would have to include
enough space to account for the worst case interrupt stgcikreenents in addition to its
own worst case usage. When processing a hon-nested irtdreulernel should switch
to the interrupt stack before invoking the handler.

This package also isolates the definition of some targetrakgpe constants:

e Size of the buffer to store the context of the threads.

e Register window size.

5.2.8 The package Kernel.Peripherals

This package provides the interface to the peripheraldadlaiin the system. It makes
easier the porting of the kernel to another target board efterent peripherals.

It can be found here the interrupt names related to the diftgyeripherals in the board
used.

The peripherals currently handled by ORK are:

e TheGeneral Purpose Timer
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Figure 5.6:Kernel.Peripherals hierarchy

e TheReal Time Clock
e The memory controller.

e UART

A child packageKernel.Peripherals.Registers) is used to isolate the kernel mappings
to the different peripheral registers (see figure 5.6).

5.3 Internal Interfaces Design

The external interface of the kernel is defined by the spetiéins of the following Ada
packages:

e Kernel.Threads

e Kernel.Time

e Kernel.Interrupts

e Kernel.Memory

e Kernel.Serial_Output

This external interface is largely explained in théerface Control Documeruf this
project.

The kernel also contains some more packages (see figure bid) provide the in-
ternal primitives required to implement the kernel funotibty. These packages are:

e Kernel.Threads.Queues

e Kernel.Threads.ATCB

e Kernel.Threads.Protection
e Kernel.Parameters

e Kernel.Peripherals

e Kernel.Peripherals.Registers
e Kernel.CPU_Primitives

The specifications of these packages are described in thseeions.
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5.3.1 The package Kernel.Threads.Queues

The kernel needs two different queues to keep the threadsemtd One of them is the
ready queue, where the kernel keeps the ready threads drolerts priority. The other
queue is the one used for timer handling, where all threaalshifive requested a delay,
and are still waiting for it, are ordered by its expiratiom#é. This package provides the
functionality required to handle the ready queue and theratpieue.

with Kernel.Time
—— Used for Time

package Kernel. Threads.Queués
—— thread descriptors
function Dummy_Threadld return Threadld;
function EnvironmentThreadld return Threadld; 10
function Get.New_ThreadDescriptorreturn Threadld;
—— Ready list
15
procedure Insert At_Head (Thread: Threadld);
procedure Insert At_Tail (Thread: Threadld);
procedure Extract From Ready(Thread: Threadld); 20
function Next Runningreturn Threadld;
Running Thread: Threadld;
25
—— Alarm list
procedure Insert Alarm (T : Kernel.Time.Time
Thread: Threadld;
Is_First : out Boolean; 30
function ExtractFirst Alarm return Threadld;
function Get.Next Alarm_Time return Kernel.Time.Time

35
end Kernel.Threads.Queues

The variableRunning_Thread defined in this package contains the identifier of the
thread that is currently executing. Its value is updatedh éace a new thread acquire the
processor.

This variable is declared in the specification of this paekegmake it visible to the
debugger. Therefore, even if maintaining a shared variebleot the most “elegant”
way of providing this information (it would be preferable poovide a function which
returns theRunning_Thread value) the scripting language used by the debugger places
this limitation.

The set of operations related to the ready queue providedhisypbckage are the
following:

Dummy_Thread_Id. Get the thread identifier associated to thenmy Thread. This
thread is executed when there is no other ready thread.
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Environment_Thread_Id. Get the identifier for the environment thread. This thread ex
ecutes the code of the main procedure of the program.

Insert_At_Head. Insert the thread in the ready queue, at the head of its gutivety.
Insert_At_Tail. Insert the thread in the ready queue, at the tail of its agnaity.
Extract_From_Ready. Remove the thread from the ready list.

Next_Running. Get the identifier of the thread that is placed at the headehtghest
active priority in the ready queue.

The alarm queue is handled using the following primitives:

Insert_Alarm. Insert the thread in the alarm queue. The queue is orderes bipsolute
expiration time. The first place is occupied by the first aléorbe raised.

Extract_First_Alarm. Get the identifier of the thread placed at the head of the alarm
queue. The thread is also extracted from the alarm queue.

Get_Next_Alarm_Time. Return the absolute delay of the first alarm in the queue.

5.3.2 The package Kernel.Threads.ATCB

This package is used by GNULL layer to store and get the ATCia@ated to each
thread. This interface has been moved outside the padiaagel. Threads because these
procedures should not be used by C applications.

with System
—— Used for Address

package Kernel.Threads.ATCBs
procedure Set ATCB (ATCB : System.Address
Threadld : Kernel.Threads.Threatti :=
Kernel. Threads.Queues.Runnifigread;

function Thread Self ATCB return System.Address 10

end Kernel.Threads.ATCB

The operations provided are:

Set_ATCB. Store the pointer to the ATCB which owns the thread insidetiinead de-
scriptor. It is used to extract Ada task information from eetid identifier.

Thread_Self ATCB. Getthe ATCB associated to the currently running threads Tmc-
tion returnsNull_Thread_Id when the thread does not belong to an Ada task.
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5.3.3 The package Kernel.Threads.Protection

This package is in charge of providing the procedures tavadlocess with mutual exclu-
sion to the kernel internal data.

The procedures exported by this package are:

Enter_Kernel. Get exclusive read/write access to the kernel data. Alrinpgs are dis-
abled.

Leave_Kernel. Finish the exclusive access to the kernel. This procedufenpes a con-
text switch if necessary, and restores the level to whicérinpts are disabled (it
depends on the active priority of the currently executingai).

Dispatch. Notify to the kernel that the highest priority ready threadid have changed,
therefore the dispatcher must be called when leaving theeker

5.3.4 The package Kernel.Parameters

This package contains types and constants which can be swbdifithe user to tailor the
kernel to a concrete board or application.

Some of these definitions are dependent on the applicatioey dre:
e Maximum number of tasks.

e Space reserved for stacks. This value has been calculatecheg that it will be
used the maximum number of allowed tasks (with the defaaltksspace), and
adding the space required for interrupts.

e Default stack size for threads.

e Stack size reserved for the interrupts.

e Range of priorities supported by the kernel.

e The period of the interrupts generated by Real Time Clock.
There is another value dependent on the board:

e Clock frequency.

The constants dependent on the processor are:

e Number of interrupt levels supported by the processor.

e Maximum value of the interrupt priority range. This valugpdads on the previ-
ously defined number of interrupt levels.

e The range of interrupts supported by the target architecflinere is a one-to-one
correspondence between these hardware interrupt levelsadtware priorities in
the range oBystem.Interrupt_Priority.

e SubtypeRange_of_Vector defines the union of external (asynchronous) interrupts
and software generated (synchronous) interrupts. This typused to index the
handler table.
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5.3.5 The package Kernel.Peripherals
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This package provides the interface to the peripheraldadtaiin the target board. The
required types and primitives are defined here.

with System

— used for System.Address

with Kernel.Parameters

— used for Clockinterrupt Period
— Interrupt_Level

package Kernel.Peripheralés

package KPa renames Kernel.Parameters

—— Initialization -

procedure Init_Board

—— Clock and timer —

type Timer_Interval is
range 0 .. Kernel.Parameters.Clodkterrupt Period — 1;

Clock_Freq Hz : constant Integer:= Integer (KPa.Clock Frequency* 10**6);
procedure Set Alarm (nanoseconds Timer_Interval);

procedure CancelAnd_Set Alarm (nanoseconds Timer_Interval;

function Read Clock return Timer_Interval

procedure Clear Alarm_Interrupt

procedure Clear Clock_Interrupt

—— Interrupts —

function To_Vector (Level : KPa.InterruptLevel) return KPa.RangeOf_Vector,

function Priority_Of_Interrupt (Level : KPa.InterruptLevel) return
System.AnyPriority;

Watch.Dog_Time_Out : constant InterruptLevel := 15;
External Interrupt4 : constant Interrupt Level := 14;
Real Time_Clock : constant Interrupt Level := 13;
GeneralPurposeTimer  : constant InterruptLevel := 12;
External Interrupt 3 : constant Interrupt Level := 11;
Externallnterrupt2 : constant InterruptLevel := 10;
DMA _Time_Out : constant Interrupt Level := 9;
DMA _AccessError . constant Interrupt Level := 8;
UART_Error : constant Interrupt.Level := 7;

CorrectableError_In_Memory : constant Interrupt Level := 6;

10

15

20
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30

35

40

45

50

55
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UART_B_Ready : constant Interrupt.Level := 5;
UART_A_Ready : constant Interrupt Level := 4;
External Interrupt 1 : constant Interrupt Level := 3;
ExternallnterruptO : constant Interrupt.Level := 2;
Masked HardwareErrors : constant Interrupt Level := 1; 60

—— Memory protection —

65
type ProtectionSegmentld is (Segmentl, Segment?);

procedure Protect Segmentbase: System.Address
ending: System.Address
id : ProtectionSegmentld); 70

—— Serial output —

75
type UART _Baudrateis
range Clock FreqHz / (32 * 255 * 2) — 1 .. Clock FreqHz / 32 — 1,

type UART _Parity is (None Even Odd);
80
type UART_Stop Bits is (One Two);
type UART_Channelis (A, B);
procedure Init_UART (baudrate. UART _Baudrate 85
parity : UART _Parity,
stop.bits : UART_Stop Bits);

procedure UART_Send(char: Character
channel: UART_Channe); 90

end Kernel.Peripherals

There is one procedure to initialize the board:

Init_Board. Initialize the hardware available in the board. This prazedmust be in-
voked when booting the system.

There are also definitions used for time keeping and delalgs.typeTimer_Interval
defines the range of nanoseconds used to represent the timeollowing paragraphs
describe the primitives used to interact with the clock amet:

Set_Alarm. Arm the timer to raise an interrupt after the number of nanosds specified
by the argument of this procedure.

Cancel_And_Set_Alarm. Cancel a previous alarm and set a new one. This procedure
is identical to the previous one (in this implementatiorécéuse with the ERC32
setting a new alarm cancel the previous one.

Read_Clock. Return the number of nanoseconds since the last clock uterr
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Clear_Alarm_Interrupt. Clear the timer interrupt from the set of pending interrupisth-
ing has to be done in the ERC32, because interrupts are dlaatematically when
they are acknowledged.

Clear_Clock_Interrupt. The same as the previous procedure but with the clock irgerru
This procedure does nothing in the ERC32 porting of ORK.

The interrupt level for each interrupt is defined here. Infer levels are not shared
among interrupts, so the level defines uniquely each haelwéerrupt. Two functions
are also defined for the hardware interrupts associateese theripherals:

To_Vector. This function is used to obtain the right place within theteetable for each
interrupt.

Priority_Of Interrupt. This function returns the software priority for each intgat.

The MEC in ERC32 allows the definition of two different segrsethat can be write
protected. ORK uses this mechanism to protect stack bouridstypeProtection_Seg-
ment_lId is defined to differentiate the two segments that can be gexde The function
to write-protect segments is:

Protect_Segment. This procedure needs the bounds of the segment to be pitacied
the identifier used to distinguish the two segments that eaprbtected. After
executing this procedure, if there is any attempt to writthimithe bounds of any
protected segment, a memory exception occurs.

ORK also provides support for sending characters throughial $ine. This capability
requires the use of the UART. Some types are defined to refleatdnfiguration of the
UART. Type UART_Baudrate defines the range of valid rates. The typ&RT_Parity
contains the values for the parity of the UART. Typ&RT_Stop_Bits defines whether
there are one or two stop bits. There are two channels in tHeTUdefined by the type
UART_Channel.

Two procedures are used to manage the UART:

Init_UART. This procedure initializes the UART. The baud rate, pagatyl number of
stop bits is set.

UART_Send. This procedure sends the character received as argumeuagththe spec-
ified channel of the UART.

5.3.6 The package Kernel.Peripherals.Registers

This package contains the addresses of the memory mappstersgised to configure
the peripherals, as well as the range of bits which represath field inside the registers.

5.3.7 The package Kernel.CPU_Primitives

This package isolates the processor dependent primitiltefcilitates the porting to
another target.

with System
with Kernel.Parameters
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package Kernel.CPUPrimitives is
package KPa renames Kernel.Parameters
type ContextBuffer is private;

procedure Context Switch (Current: accessContext Buffer; 10
Next : accessContextBuffer;
Running Threadld : System.Addregs

procedure Initialize_Context(Buffer : accessContext Buffer;
ProgramCounter: System.Address 15
Priority : System.AnyPriority;
Stack Pointer: System.Address
Stack Size : Intege;

procedure Install Trap_Handler (Service Routine: System.Address 20
Vector : KPa.RangeOf_Vecton;

procedure Install_Interrupt Handler (Service Routine: System.Address
Vector : KPa.RangeOf_Vectol);
25
procedure Disable Interrupts

procedure EnablelInterrupts(Level : in KPa.InterruptLevel);

private 30
subtype RangeOf_Contextis Naturalrange 1 .. 54;

type ContextBuffer is array (RangeOf_Contexj of System.Address

end Kernel.CPUPrimitives 35

This package defines a private ty@@ftext_Buffer) which stores the contents of the
hardware registers. Two more values (the beginning and etitestack owned by the
thread) are also stored here, to allow the bounded stackgtian. In the case of the
ERC32 the number of 32-bit registers that make up the statsicth thread are:

e 2 Program Counter registers (PC, nPC)
e Boutregisters

e 7 global registers (g0 does not need to be stored, because it is aakpegister,
always returning a zero when read and discarding whateveattign to it)

e TheProcessor State register (PSR)

e TheMultiply/Divide register (Y)

e 32Floating Point registers

e TheFPU Control/Status register (FSR)
e The beginning of the task stack

e The end of the task stack
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Therefore, the total amount of 32-bit registers to save gk is 54.
The primitives provided by this package are:

Context_Switch. This procedure saves the hardware context of the threadhwsleav-
ing the processor, restoring the context of the thread waaecjuires its ownership.
The pointers to the places where storing the context for bagks are passed as
the argument of the procedure. The argunfmining_Thread_Id is used to pass
the thread identifier of the new running thread, so that winenthread actually
acquires the processor, the variaRlening_Thread is updated.

Initialize_Context. This procedure stores the initial value for the registers.

The first time the thread acquires the processor,Pifogram Counter, the Stack
Pointer, the Frame Pointer, and theProcessor State Register have the contents re-
quired to execute the code associated to the thread, usiogvit stack, and exe-
cuting at the interrupt level required by the active pripdf the thread. The values
of the beginning and end of the stack are also initializedlomethe stack bounds
protection for this thread.

Install_Trap_Handler. This procedure install the Service Routine passed as arngfLese
the handler for the synchronous trap specified when callirggarocedure.

Install_Interrupt_Handler. This procedure is the same as the previous one, installeng th
Interrupt Service Routine for the specified interrupt.

Disable_Interrupts. This procedure disables all the external interrupts, extteppnon-
maskable interrupt.

Enable_Interrupts. The processor interrupt level is set to the level specifigtiigpro-
cedure call.
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Software components detailed design

This chapter describes the detailed implementation of éneet packages.

6.1 Kernel.Threads

This package is the central component of the ORK architecfline operations related to
the basic tasking functionality are defined here. The pimstfor exclusive use by other
kernel packages are defined in three children packages.

There is a procedure which initializes the thread enviramnalledinitialize. Its pur-
pose is to initialize the ready queue, inserting Emgironment_Thread and theDummy-
_Thread within that queue. Th&nvironment_Thread is the thread which executes the
environment code, that is, the main procedure. Dhemy_Thread is an internally used
thread which is only selected to execute when there is noteady threads in the system.
As this thread only executes when no other thread is readyeiouge, and it is immedi-
ately preempted when any other thread becomes ready, itsitexe does not interfere
with the rest of threads.

type Thread Descriptor
—— This type contains the internal information about each &lare

type Threadld is access allThread Descriptor
—— This type is used as identifier. 5

Null_Threadld : constant Threadld := null;

type ThreadBody is access
function (arg: System.Addregsreturn System.Address 10
—— Pointer to the function that should be executed by the thread

type ThreadDescriptoris record
Code: ThreadBody := null;
Args : System.Address= System.NullAddress 15
ATCB : System.Address= System.NullAddress
Context: aliased Kernel.CPUPrimitives.ContextBuffer;
Base Priority : System.AnyPriority := System.AnyPriority‘First
Active_Priority : System.AnyPriority := System.AnyPriority'First
Lock_Nesting Level : Natural := 0; 20
Previous: Threadld := Null_Threadld;
Next : Threadld := Null_Threadld;
Alarm_Time : Kernel.Time.Time:= Kernel. Time.Timé_ast
Next Alarm : Threadld := Null_Threadld;
end record, 25

31
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The types used for identifying a threathfead_ld) and storing the information about
a thread Thread_Descriptor) are defined in this package. The latter is internally im-
plemented as a pointer to the former. Theead_Descriptor is a private record which
contains the following fields:

Code. The pointer to the procedure to be executed by the thread.
Args. The arguments required by the procedure defined above.

ATCB. The address of the Ada Task Control Block associated to theamat thread.
This field is meaningless when the kernel is used by C appiitat The ATCB
structure will be described in detail later in this section.

Context. The space to save the hardware context (stack pointer,grogounter,
etc.) of the thread when was last preempted. This array als@ains the beginning
and end of the stack space reserved for each thread, so thatime the running
thread changes, the right stack space is write protectedsgseion 6.7).

Base_Priority. The base priority of the thread. This priority corresponalghe
priority of the thread when it was created, and does not ahahong the lifetime
of the thread because the Ravenscar profile does not alloanalgrpriorities.

Active_Priority. The active priority of the thread. Active priority differsoim the
base priority due to dynamic priority changes caused by ¢ilag locking policy.

Lock_Nesting_Level. The number of mutexes held by the thread. It is used to know
when the base priority must be restored afteMarex_Unlock operation.

Previous. Pointers to the revious thread in the ready queue. If thathig at the
head of the queue, this pointer is null.

Next. Pointers to the next thread in the ready queue. If the thieatthe tail of the
queue, this pointer is null. The ready queue is implemergeidoubly linked list,
hence the need for two pointers in the thread descriptor.

Alarm_Time. The time when the alarm expires. If the thread has not a pgndin
alarm the value of this field is set to the maximum time value.

Next_Alarm. Pointer to the next thread within the alarm queue. The queolered
by its absolute expiration time. The first place is occupigdhe nearest alarm to
expire.

The ATCB definition can be found in packaggstem.Tasking. This type contains the
information about Ada tasks.

type CommonATCB is record

State: Task States:= Unactivated

Parent: Task ID;

Base Priority : System.AnyPriority;

CurrentPriority : System.AnyPriority := 0; 5
Task Image: System.Tasknfo.Task Image Type

Call : Entry_Call_Link;

LL : aliased Task Primitives.PrivateDatg

Task Arg : System.Address

Stack Size : System.Parameters.Sizgpe 10
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Task Entry_Point : Task ProcedureAccess
Compiler.Data: System.SoftLinks. TSD,
All _TasksLink : Task ID;
Activation_Link : Task.ID;
Activator : Task ID; 15
Wait_Count: Integer:= 0;
Elaborated AccessBoolean
Activation_Failed : Boolean:= False
end record;
20
type RestrictedAda Task ControlBlock (Entry_Num : Task Entry_IndeX is
record
Common: CommonATCB;
Entry_Call : Entry_Call_Record
end record; 25

The typeCommon_ATCB is used to hold information common to both the restricted
GNARL (used for implementing the Ravenscar profile) and dggikar version of it.

e State. Encodes the information about the current state of the tadke possi-
ble states for a restricted task areactivated, Runnable, Activator_Sleep, andEn-
try_Caller_Sleep.

e Parent. The task on which this task depends. In a Ravenscar comliagtam,
the only parent allowed is thenvironment_Task, because there is no hierarchy of
tasks.

e Base_Priority. Base priority of the task. The Ravenscar profile does notvatihos
value to change.

e Current_Priority. This field is equal to the active priority of the task, excdjattithe
effects of protected objects priority ceilings are not icife.

e Task Image. Holds an access to string that provides a readable iderfofi¢ask,
built from the variable of which it is a value or component.

e Call. The entry call that has been accepted by this task. This freddld not be
placed here (in the common part), because the Ravenscde foofids task entries.
However, the debugger needs to access to this field easilyinglthis to a different
location would require a non trivial amount of work in the dgger.

e LL. Control block used by the underlying low-level tasking seeGNULL).

e Task_Arg. The argument to task procedure. This field is currently udubat it
could provide a handle for discriminant information.

e Stack_Size. Requested stack size.

e Task_Entry Point. Information needed to call the procedure containing thedod
the body of this task.

e Compiler_Data. Task-specific data needed by the compiler to store per-tasg-s
tures.

e All_Tasks_Link. Used to link this task to the list of all tasks in the system.

e Activation_Link. Used to link this task to a list of tasks to be activated.
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e Activator. The task that created this task. This value is set to nulldf amly if the
task has completed activation.

e Wait_Count. This count is used by a task that is waiting for other tasksallAdther
times, the value should be zero. It is used differently iresa\different states, but
since a task cannot be in more than one of these states atntigetisae, a single
counter suffices.

e Elaborated. Pointer to a flag indicating that this task body has been e#dbd. The
flag is created and managed by the compiler generated code.

e Activation_Failed. Set to True if activation of a chain of tasks fails, so that the
activator should rais&asking_Error.

Type Restricted_Ada_Task_Control_Block needs significantly less memory than reg-
ular Ada Task Control Block. Thentry_Num discriminant has not been deleted (even
when task entries are not allowed in the restricted run timé&gep the same interface as
the regular ATCB. This way, minor changes have to be madestadmpiler.

The components of thRestricted_Ada_Task_Control_Block are:

e Common. The common part described above.

e Entry Call. This field is used on entry call “queues” associated withgutad ob-
jects.

The operations that can be performed on a thread are:

e Creation. This procedure returns the identifier of the nesgatl. The data that
must be passed to the procedure are the code and argumehésfohttion to be
executed by the thread (passedsgstem.Address to facilitate the use of the kernel
by C applications), the priority of the thread and the stazk& for this thread.

¢ Identification. There is a function to query the identifiertioé currently running
thread.

e Setting the priority. Even when the Ravenscar profile dogsatiow any form
of dynamic priority changes other than caused by the celtaging policy, the
initialization of a thread needs to modify the priority ofetlthread to allow the
correct initialization of the system.

e Getting the priority. There is a function to query the basergy of a thread.

e Yield. A thread can voluntarily transfer the ownership o ffrocessor to the next
ready thread within its active priority queue.

This package also contains the synchronization elemeatsdad by the kernel (mu-
texes and condition variables), as well as the primitivesed to them.

ORK only needs and implements one type of mutex to suppofththeediate Priority
Ceiling Protocol. Therefore, just two fields are needed:

e The ceiling priority of the mutex.

e The active priority of the thread just prior to acquiring thatex. This is the priority
that must be returned to when releasing the mutex.
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As we are using a strictly preemptive scheduling policy female processor scheme
which does not allow priority ceiling violations, [25, 28j@w that the scheduling policy
guarantees that there is no way a task can attempt to seizek dhlat is held by an-
other suspended or preempted task. Hence, no explicitigakiechanism is required.
Operations of high-priority tasks automatically appeandt to low-priority tasks. No
provision has to be made for queue management inside thelsewhile the procedures
to seize and release the locks can also be lightened. We deeadtto check if the lock
is free or not, because if we attempt to seize a lock it willata/be free.

From these observations we can derive that the operatiansan be performed on
mutexes are described as:

e Initialization. This procedure sets the value of the cgilpmiority of the mutex.

e Locking. This procedure is used to acquire the mutex. It sedfto simply update
the active priority of the current task to the ceiling prigrof the lock used.

e Unlocking. This primitive is used to release the mutex. Tb&va priority of the
task needs to be restored, and preemption could occur # ikeany other ready
task with a higher priority.

The Ravenscar profile does not allow finalization of objeststhere is no kernel
primitive for the finalization of mutexes.

LIFO order of unlocking is required (GNARL always followsigtpolicy). It allows
a more efficient implementation of mutexes, through the dsestack structure to save
and restore active priorities, and to prevent long-duralilocking through “chaining” of
overlapping critical sections.

In the case of condition variables, space would be needetbtte the thread that is
waiting for the condition to be signaled. As the Ravenscafilgrdoes not allow more
than one thread to be waiting on the same condition, no suebejis needed anyway.

If the kernel detects that a thread tries to queue on a conditiat is already used
by another one, the thread is suspended forever. HowevV@RK is used together with
GNARL (not by a C application), any attempt to queue on arealyaised condition raises
Program_Error, because this situation is checked by GNARL.

The operations provided for the condition variables are:

e Initialization. The only thing to do for the initializatias to set that there is not any
thread waiting.

e Condition_Wait. This procedure suspends the calling thread until anotireat
signals the condition. Waiting on a condition is always asged to a mutex. The
thread must hold that mutex when calliggndition_Wait. The effect of this call
is to atomically release the lock and to suspend the threde identifier of the
calling thread is stored inside the condition variable stodshow which thread to
wake up when the condition is signaled. When the thread ikemed the mutex
that the thread was holding when the calldondition_Wait was made is acquired
again atomically.

e Condition_Signal. This procedure becomes ready the thread that was walitirilggo
condition to be signaled, if any. If there is no thread watithis call has no effect;
this is the semantic implemented by POSIX and thereforebémaviour expected
by GNARL.
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Even when the visibility for condition variables should Hamgnated and replaced
by Sleep andWakeup operations (for performance and avoidance of error-prqrezas
tions) at the GNULL layer [19], support for a semanticallgwueed condition variables
implementation should be provided at least for use by C aafins.

This package has an internally defined proceduhesad_Caller) that acts as a wrap-
per for the function to be executed by the thread. This proeet also responsible for
extracting the thread from the ready queue if it tries to fagal Task finalization is a
bounded error in the Ravenscar profile and the default acsiao suspend the thread
forever. GNULL layer can change the actions to take upon tiashization using the
procedureSet_Exit_Task_Procedure from packageSystem.Task_Primitives_Operations.
This procedure requires an argument which is the pararssteprocedure to be executed
upon any task finalization.

6.1.1 Kernel.Threads.Protection

The variables inside the kernel must be updated in mutudlisin. There are two pro-
cedures to signal that these data are being moditi@te(_Kernel and Leave_Kernel).
The first procedure just disables interrupts, so that thieviahg execution cannot be
preempted at least untibave_Kernel is called. The procedunesave_Kernel enables in-
terrupts to the level corresponding to the currently agbikierity. Leave_Kernel is also
in charge of finding out if as a result of the changes made t&é¢heel data, the highest
priority thread is no longer the same as before. If so, thesithis dispatched.

A dispatching call can be requested by four reasons:

e The thread executing within the processor calls an operattoch changes its state
to blocked.

e The currently running thread voluntarily transfer the ovaigp of the processor to
the next ready thread within its active priority queue.

e The running thread lowers its priority (when releasing aewpaind there is a ready
thread with a priority higher than the new active prioritytieé running thread.

e A thread with an active priority higher than the currentlyiee priority becomes
ready.

The first three cases are easy to handle, because the thrézdtvidpgers the con-
text switch (by calling_eave_Kernel) is the thread that is executing within the processor.
When a thread with a higher priority than the currently aepviority becomes ready there
are some difficulties, because there are two different wagsvaking a thread:

e From the currently running thread.

e From an interrupt handler.

Again, the first case is easy, because the running threadhsymausly calls the con-
text switch routine. However, when a thread is awaken frormgrrupt handler it must
be noticed that the hardware context of the thread that wasuéixng was modified by
the Interrupt Service Routine (ISR). Therefore, even ifteghswitches may result from
the execution of nested interrupts, their effect is deteustil completion of the inter-
rupt processing (to preserve the context to be saved), aldighest priority thread will
acquire the processor on exit from the chain of all nestestinpt handlers.
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Figure 6.1: Structure of the ready queue

6.1.2 Kernel.Threads.Queues

This package is in charge of handling the two different gseawailable for threads: the
ready queue and the timer queue.

The ready queue is modelled as a priority queue, and intgrmaplemented as a
doubly linked list. Each element of the list is a thread diggor pointing to the previous
and the next element of the queue. The queue is null-terednab the previous element
of the first element (or head) of the queue and the next eleafi¢iné last element (or tail)
of the queue are thsul | identifier. The design of this queue can be seen in figure 6.1.

Space for the maximum number of threads that can exist iny$ters (256 by default
configuration) is statically reserved at initialization.

The primitives that can be executed on the queue are:

e Create a thread descriptor. The first preallocated fre@athdescriptor is assigned
to the caller.

¢ Insertathread inthe ready queue, either at the head or t@&itbéits active priority.

e Remove the thread from the ready queue. The Ravenscar pestlections only
allow the currently running thread to be removed.

¢ Get the identifier of the first thread with the highest priprit

This package also stores the identifier of the currently ingnthread. This variable
changes its value whenever a thread is dispatched.

With respect to the alarm queue, it is implemented as a sipggele ordered by its
expiration time. The first place in the queue is occupied leyaflarm which expires first.
An internally defined variable is used to store the pointehisfirst thread.

The operations implemented for this queue are:

¢ Insert a new alarm in the queue. This procedure needs théfidenf the thread
that is going to wait and the absolute time when the thread briswaken. This
procedure also has an output argument which signal if tleathhas been inserted
as first within this queue. This value is used to know if thegpaonmed alarm must
be changed.

e Extract the first element from the queue. When the timer egpihe element must
be deleted. Moreover, the identifier of the thread that waisinvgais returned to
allow the thread to be reinserted in the ready queue.

e Query the time when the first pending alarm expires.
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6.1.3 Kernel.Threads.ATCB

The GNULL layer needs to store within each thread describpmpointer to the Ada Task
Control Block associated to the respective thread. Thistpois used for an efficient
implementation of th&elf function required by GNULL.

There are two procedures to read and to write the ATCB stonganithe thread
descriptor. These primitives have been placed in this gralkckage because the ATCB is
only needed by GNULL. Thus, when the kernel is being used bypglication it should
not be disturbed by GNULL specific issues.

When using GNARL on top of POSIX threads, the functions ezldb Ada task iden-
tification are commonly very inefficient. This is due to thetf¢hat POSIX threads are
not specifically designed to execute Ada tasks; the relstiprto Ada task is usually im-
plemented using functions to set/query thread-specifi, adtich impose a big overhead
to the widely usedelf operation.

6.2 Kernel.Interrupts

Our solution to interrupt handling is based on the fact thabwly support the Ravenscar
profile, and that we do not run on top of a POSIX operating sydtet on bare hardware.
In addition, on the fact that ORK is targeted to a single psgoe system.

The problem to solve derives from the way GNARL implementaAaterrupt sup-
port. It uses tasks with entries, which violate the Ravenguaatile, and the implementa-
tion is conditioned by the fact that the caller can get blackden invoking a protected
procedure, so the caller needs to be an Ada task in order ¢& bhdely.

Fortunately, thanks to the useladcking_Policy (Ceiling_Locking), the Ravenscar pro-
file prevents the caller from getting blocked when invokingratected procedure. The
priority of a protected object which has a procedure attddieean interrupt must be
at least the hardwanaterrupt_Priority of that interrupt (otherwise either the program is
erroneous oProgram_Error is raised if the priority given falls outside the rangelmtér-
rupt_Priority), as it is stated in the Systems Programming Annex of the Aefer@nce
Manual (ALRM C.3.1 par. 14) [2].

As a result, for as long as the active priority of the runniasktis equal to or greater
than the one of an interrupt, that interrupt will not be regagd by the processor. On
the contrary, the interrupt will remain pending until theiae priority of the running
task becomes lower than the priority of the interrupt, anky tmen will the interrupt be
recognized. It follows that if an interrupt is recognizelden the caller of the protected
procedure attached to that interrupt will not be blockedthasprotected object cannot
be in use. Otherwise the active priority of the running taglulad be at least equal to
the priority ceiling of the protected object, which cannet llecause the interrupt was
recognized.

To sum up, the kernel uses protected procedures (togettiesame kernel prologue
and epilogue) as low level interrupt handlers.

Another important implication from this interrupt modeltfgat users should always
use distinct priorities for tasks and protected objecté pibtected handlers; otherwise,
tasks could unnecessarily delay the interrupt handling.

The user of packageernel.Interrupts (whether direct, as for C applications, or indi-
rect, viaAda.Interrupts, as for Ada applications) must provide the address of a paterm
less procedure as handler.

This package provides operations to:
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e Attach a handler to an interrupt. Each time the interruptebvdred the handler
is executed. If the currently active priority is lower thdretinterrupt priority the
interrupt is immediately delivered to the processor.

e Detach a handler. The previously attached handler is deth@mnd a default inter-
rupt handler is installed. This default handler is an indéprocedure which does
nothing.

e Return the current handler for an interrupt.

6.3 Kernel.Time

This package is in charge of handling the time keeping analydaimitives.

Time is represented at this level as a 64-bit integer numberanoseconds. The
interval of time values that can be represented in this wap@oximately -292..+292
years.

The alarm queue used by this package, as well as the prisiitacpiired for its han-
dling, are defined in packag&@rnel. Threads.Queues (See section 6.1.2).

The implementation of this package was made to provide a teghblution clock
with low overhead in timer handling; the combination of agstamp counter and a high
resolution timer contributes to improve the performanca granularity of the time man-
agement.

A timestamp counter, built into most modern CPUs, providesdtandard time to
be used. The representation of time for using in accountimgsaheduling is based on
the values from this timestamp counter. Linux, as well astratser operating systems
maintain a sense of time using a periodic interrupt from atiohip, which is known as
the “heartbeat” of the system. The heartbeat of the Linurdlas usually 10 ms. Such a
coarse grained timing mechanism is insufficient for mani+tieze applications.

It is very common to implement timers based on a periodiainp. For example,
when using RTEMS [27] on top of the ERC32, timers are alsodbasea periodic inter-
rupt (with a user configurable period). In order to provide @enprecise timer support,
a high resolution timer can usually be implemented by udiegsingle-shot mode of the
hardware timers. Therefore, the interrupts are generatemand, and not periodically.

One of the ways to increase the temporal granularity of aoderibased timer would
be to program the timer chip to interrupt the kernel at higihequencies. This is not
an acceptable solution as the overhead increase due testtrsmendous. In fact, we
need to program the timer chip to generate interrupts ongnithere is some scheduled
work that needs to be accomplished. The key observationaiseven when we want
a microsecond resolution, we do not expect to have timingtsvevery microsecond.
We therefore need a mechanism by which timer interrupts lkove/ed to occur at any
microsecond, not necessarily every microsecond. ThisififzLinux [28], KURT [29]
and Linux/RK [30] way of handling high resolution timers.

The ERC32 hardware provides two timers (apart from the sp®¢atchdogtimer)
which can be programmed to be either of single-shot type gueoiodical type [31].
We use one of them (thReal Time Clockas a timestamp counter and the other (called
General Purpose Timgms a high-resolution timer. The former timer provides thei®
for a high resolution clock, while the latter offers the reqd support for precise alarm
handling. Both timers are clocked by the internal systentlgl@and they use a two-
stage counter which is shown in figure 6.2. If we call GPTCG@mmeral Purpose Timer
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Counterand GPTS th&caler and SYSCLK the system clock frequency, the timeout for
theGeneral Purpose Timdrefore the interrupt occurs is calculated as:
(GPTC+1)(GPTS+1)
SY SCLK

The previous formula has a factor which is (GPTS+1). The #hie there because
the test for zero occurs before the decrement on SYSCLK. Agrtimimum value for
GPTC is 1 and for GPTS is 0, the minimum Timeout delay is thetiom of one clock
period.

Timeout=

Set Preload Set Preload

SYSCLK Zero indication Interrupt
The Scaler The @—I))

‘ Control (Enable, Load, Reload, Hold, Stop at zero) ‘

Figure 6.2: Timer design

The Real Time Clocks programmed by ORK to interrupt periodically, updating th
most significant part of the clock. The less significant parthe clock is held in the
hardware clock register. This periodic interrupt is neaggsbecause of the maximum
time space that can be represented using the hardware candtecaler. This maximum
value can be obtained using the highest values foRém Time Clock ScaldRTCS) and
Real Time Clock CountgiRTCC), which are 255 (8-bits register) and 4_294 967 295
(32-bits register) respectively. Using a 10 MHz ERC32, treximum time value that
could be represented without using any software register is

: (RTCC+1)(RTCSH1) 232x28
Time= SVSCLK =g - 109_95%keconds

This amount of time is obviously too short, and requires the af a software register
to store the most significant part of the clock.

In order to obtain the highest possible resolution, ORK #et&RTCS preload value to
zero. As a result, the resolution Kérnel. Time.Clock is the same as the SYSCLK period,
that is 100 ns. The periodic interrupt period (which is gisrthe RTCC preload value)
can be up to 429 s<{2%2/107). These values are valid for the usual ERC32 system clock
frequency of 10 MHz.

The Real Time Cloclkperiod can be modified by changing the valuekefnel.Pa-
rameters.Clock_Interrupt_Period, which represents the integer number of nanoseconds of
the desired clock period. Depending on the selected peapthe clock interrupt, the
overhead imposed to the system changes.

TheGeneral Purpose Timer Counterreprogrammed on demand every time an alarm
is set, to signal the time when the alarm expires. It does ramtyze periodic interrupts,
but when needed. ORK sets also the GPTC Scaler preload wahezd. As a result, the
resolution ofKernel. Time.Delay_Until is the same as the SYSCLK period, that is 100 ns
for the usual ERC32 system clock frequency of 10 MHz.

6.4 Kernel.Memory

This package is in charge of reserving space for the objeatate known at the initializa-
tion of the system. At this point, the size and number of sohjeats (such as stacks) are
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fixed; space for these objects is dynamically requestedthieugdllocation mechanism is
very simple because ORK allocates memory statically andgl as¢raightforward sequen-
tial and contiguous allocation strategy. Memory deallmeats not supported by ORK,
so if a program continuously consumes heap it could exaastyhamic memory.

A contiguous array is defined to store all the stacks in theegsysas well as another
array to store the rest of the dynamic data. The default sizalf the stacks is set to
1 325 056 bytes. This size is calculated assuming thatewesang the default maximum
number of threads (256 plus the environment and the dumragdhmith the default stack
size (5_120 bytes). That value also includes the defawdtriapt stack size (2_048 bytes)
and the protection regions for each stack (256 bytes pen edtivse default values are
defined inKernel.Parameters.

It can be specified a different stack size for each task by fimgdihe Storage_Size
attribute of the tasks. Thgragma Storage_Size sets the value oftorage_Size to be at
least the value specified in the pragma [2, ch. 13.3]. Themmim value for the stack
size is defined irkernel.Parameters.Default_Stack_Size. This value overrides the value
specified by the pragma if this were lower.

As it was explained in section 5.2.4 dynamic memory shoulg be used at start-up,
and without allowing deallocation.

6.5 Kernel.Serial Output

This package is in charge of sending characters to the renostemachine. The appli-
cation output is sent through the UART A, from which the hosicitine can extract the
application output by using a terminal emulator software.

6.6 Kernel.Parameters

This package only contains constants to be used interngalthdokernel. The kernel can
be adapted to the user needs modifying the values defined here

6.7 Kernel.CPU_Primitives

This package contains the primitives which are dependetiteofinderlying processor.
There is another packagernel.Peripherals which isolates the kernel from the peripherals
installed in the target machine.

The functionality provided by this package is:

e Save and restore the machine state for context switches.
¢ Install the low level Interrupt Service Routine for trap antérrupt.

e Enable and disable interrupts, as well as changing the tewehich interrupts are
allowed.

Those functions are implemented in assembler, and imptytéee Ada code.

Stack checking mechanism is provided. When a task triegjioess more stack than
allowed an exceptiorsforage_Error) is raised. The mechanism is implemented using the
memory access protection functionality provided by the MEERC32. Two different
segments can be write protected; one of them is placed atwres bound of the currently
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active stack to detect any request of stack outside its,liamtl the other protects the
interrupt stack.

The kernel inserts a small prologue and epilogue to the ngerupt handler, to allow
the correct execution of the interrupted thread. As nestingiterrupts is allowed (an
interrupt can be recognized while processing a lower pgyiariterrupt), the prologue
changes the current stack to the interrupt stack, if thermpe is not nested, and stores
the floating point context. The epilogue is in charge of peniog a context switch to the
highest priority thread (if this is not the currently rungithread) when the most external
interrupt has finished its execution.

6.7.1 Fast context switch

The SPARC V7 has a total of 167 user-allocable registers @8l these are used for
the overlapping register windows. The 128 window regiséeesgrouped into eight sets
of 24 registers called windows (see figure 6.3).

< Wn'l N < Wn"’l N
< > Wn < >
I1(n-1) 1(n) 1(n+1) 1(n+2)
L(n-1) L(n) L(n+1)
O(n-2) O(n-1) O(n) O(n+1)
_______________
8 registers

Non-shared registers

Shared registers

Figure 6.3: Overlapping windows (24 registers per window)

The first eight registers in a window are calledregisters, and the last eight are the
out registers, and the eight registers that are between thedimainregisters are called
local registers. In figure 6.3, 1(n), L(n), and O(n) representithéocal, andout registers
of window n respectively. At any time, only one window is Wild. The other registers
are comprised of 7 global registers and 32 floating-poinstegs.

When calling a subroutine the visible window changes finto W1 (using the
save instruction) to provide new registers for the new subraiti®n subroutine return,
the previous register mapping is restored (with tegtore instruction). As shown in
figure 6.3 adjacent windows have common registers, so teahtregisters overlap with
the previous window, and the out registers overlap with ¢heding window.

It can be seen that the first 16 registers in a window are nmatedtsince their values
will be retained across function calls; we can be sure thataveuse them safely in our
scope, regardless of the registers used by the functiofedcallhe last 8 are scratch
since their values cannot be guaranteed upon return froroalhed function [32]; if we
call a function which modifies its in registers, the out régyis of the caller are therefore
modified.
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This overlap of window registers is used as an efficient me&psassing parameters
during procedure calls and returns. There is a 5-bit fielcdh@Processor State Register
(PSR), calledCurrent Window Pointe(CWP), that points to the currently active window
(the window visible to the programmer).

During a context switch, the register windows of the curianéad must be flushed
onto the thread stack before one window will be loaded withttp frame of the new
thread.

There are two different approaches to follow for the flustpogcy. You could flush
all register windows or just the windows currently in use][2The implementation of
the context switch unde8unOS 4.simply flushes all register windows of the processor.
For a scheme with frequent context switches it is less likietit a thread uses all of the
windows, and so it would be useful to implement the contextcwsuch that only the
windows currently in use are flushed to memory. It is a mattdact that the average
calling depth during the execution of a program is not vergdaand therefore the set of
registers that imperatively must be flushed to memory islsmal

Taking advantage of the execution points at which it is natessary to save (and
also not necessary to restore) the entire state of the mad), ORK adopts the latter
approach so as to reduce the excessive overhead of savingstadng unused window
registers.

Not only efficiency, but also the predictability of executis a crucial concern to
ORK. The worst case execution time (WCET) of the two alteweaapproaches is ap-
proximately the same. The adopted implementation howexi@bis a better average
execution time. This is of no use for timing and schedulinglgsis however, which must
by definition use only WCET values.

Another issue to take into account is that not all the taskisuse the floating point
unit. Thus, the floating point context should not be storetll mecessary. It should
remain in the floating point registers and not disturbedl @mother floating point task
is switched to. The current implementation saves the flggbimint context only when
necessary.

The same applies for interrupt handlers, the floating paintext is saved and restored
only if the interrupt handler uses the floating point context

6.8 Kernel.Peripherals

In ORK the set of peripherals which are internally managed ar

e TheGeneral Purpose Timer
e TheReal Time Clock
e The memory controller.

e The UART

The packagé&ernel.Peripherals.Registers contains the mappings of the different reg-
isters related to peripherals which make them accessililetkernel.
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Chapter 7

Software code listings

The source code of ORK is distributed with the GNAT/ORK crdsselopment system.
The latest available version of the compiler can be founténsioftware repository of the
Open Ravenscar projectldtt p: / / ww. openr avenscar. or g.
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