
European Space Agency Contract Report

The work described in this report was performed under ESA
contract. Responsibility for the contents resides in the au-
thor or organisation that prepared it.

Open Ravenscar Real-Time Kernel
ESTEC/Contract No.13863/99/NL/MV

Design Definition File

Software Design Document
Version 1.9 — 20 November, 2001

FOR OPENRAVENSCAR 2.2B

UNIVERSIDAD POLITÉCNICA DE MADRID

DEPARTAMENTO DE INGENIERÍA DE SISTEMAS TELEMÁTICOS

UNIVERSITY OF YORK

DEPARTMENT OFCOMPUTER SCIENCE

CONSTRUCCIONESAERONÁUTICAS, S.A.
DIVISIÓN ESPACIO

Copyright c© The authors 1999-2001.

This document may only be reproduced in whole or in part, or stored in a retrieval system, or transmitted
in any form, or by any means electronic, mechanical, photocopying or otherwise, either with the prior
permission of the authors or in accordance with the terms of ESTEC/Contract No. 13863/99/NL/MV.

Status: Final

Authors: José F. Ruiz
Juan A. de la Puente
Juan Zamorano
Jesús González-Barahona
Ramón Fernández-Marina

Revised by: Ángel Álvarez
Alejandro Alonso

History
Version Date Comments
1.1 1999-11-24 First version issued for revision
1.2 1999-12-03 Revised after comments from reviewers
1.3 2000-01-20 Changes made according to PDR action items.
1.4 2000-02-25 Issued for internal revision before CDR.
1.5 2000-03-07 Revised after comments from reviewers.

Submitted to CDR.
1.6 2000-05-12 Changes made according to CDR action items.

Glossary made a separate document.
1.7 2000-07-29 Changes made according to QR&AR action items.
1.8 2001-02-20 Changes made for ORK v2.2.
1.9 2001-11-20 Minor changes made for ORK v2.2b.

UPM Development team Juan Antonio de la Puente
Juan Zamorano
José F. Ruiz
Jesús González-Barahona
Vicente Matellán
Ramón Fernández
Rodrigo García
Andrés Arias
Juan Manuel Dodero
Alejandro Alonso
Ángel Álvarez
José Centeno
Pedro de las Heras

Project consortium: Universidad Politécnica de Madrid
Real-Time Systems Group
Department of Telematic Systems Engineering (DIT/UPM).

University of York
Real-Time Systems Group
Department of Computer Science.

Construcciones Aeronáuticas, S.A. (CASA)
Space Division.

Contents

1 Introduction 1
1.1 Purpose . 1
1.2 Scope . 1
1.3 Glossary . 2
1.4 References . 2

1.4.1 Applicable documents . 2
1.4.2 Reference documents . 2

1.5 Document overview . 2

2 Software overview 3
2.1 The Open Ravenscar Real-Time Kernel 3
2.2 The GNU Ada Run-Time Library (GNARL) 3
2.3 The GNU Lower-Level (GNULL) Library 4
2.4 The C interface layer . 5
2.5 The kernel layer . 5
2.6 The GNU debugger . 6

3 System interfaces context 7

4 Design standards, conventions, and procedures 9
4.1 Architectural design method .. 9
4.2 Detailed design method . 9
4.3 Code documentation standards .. 9
4.4 Naming conventions . 9
4.5 Programming standards . 9

5 Software top-level architectural design 13
5.1 Overall architecture .13
5.2 Software item components . 15

5.2.1 The package Kernel.Threads . 15
5.2.2 The package Kernel.Interrupts16
5.2.3 The package Kernel.Time . 19
5.2.4 The package Kernel.Memory . 19
5.2.5 The package Kernel.Serial_Output 20
5.2.6 The package Kernel.Parameters 20
5.2.7 The package Kernel.CPU_Primitives21
5.2.8 The package Kernel.Peripherals21

5.3 Internal Interfaces Design .. . 22
5.3.1 The package Kernel.Threads.Queues 23
5.3.2 The package Kernel.Threads.ATCB 24
5.3.3 The package Kernel.Threads.Protection 25

i

5.3.4 The package Kernel.Parameters 25
5.3.5 The package Kernel.Peripherals26
5.3.6 The package Kernel.Peripherals.Registers 28
5.3.7 The package Kernel.CPU_Primitives28

6 Software components detailed design 31
6.1 Kernel.Threads . 31

6.1.1 Kernel.Threads.Protection .36
6.1.2 Kernel.Threads.Queues . 37
6.1.3 Kernel.Threads.ATCB . 38

6.2 Kernel.Interrupts . 38
6.3 Kernel.Time . 39
6.4 Kernel.Memory . 40
6.5 Kernel.Serial_Output .41
6.6 Kernel.Parameters . 41
6.7 Kernel.CPU_Primitives .41

6.7.1 Fast context switch . 42
6.8 Kernel.Peripherals .43

7 Software code listings 45

Bibliography 46

ii

Chapter 1

Introduction

1.1 Purpose

The purpose of this document is to describe the design of theOpen Ravenscar Real-Time
Kernelsoftware.

The Open Ravenscar Real-Time Kernel (ORK) is an open-sourcereal-time kernel of
reduced size and complexity, for which users can seek certification for mission-critical
space applications. The kernel supports Ada 95 applications on an ERC32 based com-
puter. A C interface is also provided.

1.2 Scope

This document applies toork-erc32, a software package based on ORK, a compact real-
time kernel for the ERC32 processor with programming interfaces for GNAT, the GNU
Ada Compiler, andgcc, the GNU C compiler. Debugging of real-time programs using the
kernel is based ongdb, the GNU debugger, and a graphical front-end to interact with it.

Theork-erc32 package includes:

• ORK, the Open Ravenscar Real-Time Kernel itself.

• An adapted cross-development version of GNAT 3.13 targetedto ORK on the
ERC32 (SPARC V7) architecture. This version is built from the following com-
ponents:

– GNAT 3.13 sources with ORK-ERC32 patches, and special versions of some
GNARL (GNU Ada Runtime Library) and all of the GNULL (GNU Lower
Level) packages.

– binutils-2.9.1 sources with ORK-ERC32 patches.

– newlib-1.8.2 sources with ORK-ERC32 patches.

– gcc-2.8.1 sources with ORK-ERC32 patches.

• GDB-ORK, an adapted version of GDB 4.17 with ORK-ERC32 patches.

• DDD-ORK, an adapted version of DDD 3.2 with ORK-ERC32 patches.

• MKPROM-ORK, an adapted version of MKPROM for ERC32 with ORK patches.

• RMON-ORK, an adapted version of Remote Debugger Monitor forERC32 with
ORK patches.

1

2 CHAPTER 1. INTRODUCTION

• ORK-CIL, the ORK C Interface Library.

1.3 Glossary

Acronyms and definitions related to ORK can be found in a separate document,Open
Ravenscar Real-Time Kernel Glossary and documentation guide, to which the reader is
referred.

1.4 References

1.4.1 Applicable documents

1. ECCS-E40A. Space Engineering — Software [1].

2. Ada 95 Reference Manual [2].

3. Ada 95 — Guidance for High Integrity Systems [3].

4. Alan Burns. The Ravenscar profile [4].

5. C Programming Language [5].

6. POSIX Real-Time Standards [6].

1.4.2 Reference documents

1. ERC-32 Manuals [7, 8, 9, 10].

2. ERC-32 GCC Manual [11].

3. Ada 95 — Quality and Style [12].

4. HOOD Reference Manual 3.1 [13].

5. GNAT Manuals [14, 15].

6. Debugging with GDB [16].

Additional references can be found in the bibliography at the end of this volume.

1.5 Document overview

This document is organised as follows: chapter 2 makes a general description of the kernel
architecture. Chapter 3 describes the top-level design of the system interfaces. Chapter 4
contains the standards, conventions and procedures followed in the design of this product.
Chapter 5 provides the software top-level architectural design of the product. Chapter 6
contains a detailed description of each software package. Finally, chapter 7 shows where
the code listings are available.

Chapter 2

Software overview

2.1 The Open Ravenscar Real-Time Kernel

The Open Ravenscar Real-Time Kernel (ORK) is a tasking kernel for the Ada language
[2] which provides full conformance with the Ravenscar profile [3, 4] on ERC32-based
computers. The kernel has been designed for efficient support of Ada tasking constructs,
but it can also be used with C programs. A C interface layer (ORK-CIL) is available for
this purpose.

ORK supports the restricted version of Ada tasking defined bythe profile, which in-
cludes static tasks (with no entries) and protected objects(with at most one entry), a
real-time clock anddelay until statements, and protected interrupt handler procedures, as
well as other tasking features.

The kernel is fully integrated with the GNAT compilation system. The restrictions of
the Ravenscar profile are enforced on Ada application programs by means of appropriate
restriction pragmas. In this way, conformance with the profile can be secured almost
entirely at compile time. The only exceptions are task termination and protected entry
call by more than one task, which can only be detected at run time [4].

Debugging support for the ORK kernel, including tasking, isbased on an enhanced
version of the GDB debugger. A graphical front-end for the debugger is also provided.

Theork-erc32 software has the following components (figure 2.1):

• A specialized version of GNARL, the GNU Ada Runtime Library,from GNAT 3.13 .

• A specialized version of GNULL, the GNU Low-Level Layer, from GNAT 3.13 .

• A C interface layer, based on a subset ofpthreads (part of ORK-ERC32 1.0).

• The ORK kernel itself (the main part of ORK-ERC32 1.0).

• An adapted version of GDB 4.17 and DDD 3.2.

2.2 The GNU Ada Run-Time Library (GNARL)

The GNU Ada Runtime Library (GNARL) [17] provides tasking support to Ada pro-
grams, and is part of the GNAT compilation system. Most of it is independent of the
underlying OS and hardware, so that it can be easily ported tonew platforms.

GNARL offers a procedural interface (GNARLI) to Ada programs. This interface
should not be changed, or the compiler itself would have to bemodified.

3

4 CHAPTER 2. SOFTWARE OVERVIEW

Hardware

GNARL

Ada Application

GNULL C Interface layer

ORK

C Application

G
D

B
 /

D
D

D

Kernel interface

GNULLI C interface

GNARLI

Figure 2.1: Architecture of ORK and main interfaces. The components inside the dotted
line are part of theork-erc32 distribution.

The GNARL packages implement the full Ada tasking model. However, enforcing the
Ravenscar profile on a program makes some of GNARL packages unnecessary, and allows
simplified versions of others to be used. From GNAT 3.12 on, a simpler implementation
of tasks and protected objects for Ravenscar compliant programs is automatically selected
when the pragmaRavenscar is in effect.

The specialized version of GNARL for ORK consists of three kinds of packages:

• Standard GNARL packages. These packages are taken unchanged. Most of the
GNARL packages are in this category, including all the specifications that make up
GNARLI.

• Specific GNARL packages. These packages have been modified inorder to adapt
them to the Ravenscar profile and ORK specific characteristics.

• New packages that have been added to GNARL in order to supportORK-specific
features.

In addition to this, there are some GNARL packages that are not used under the Raven-
scar profile restrictions.

2.3 The GNU Lower-Level (GNULL) Library

The purpose of GNULL (GNU Low-Level library) is to provide the implementation of
low-level services that GNARL needs to request from the underlying operating system.

2.4. THE C INTERFACE LAYER 5

GNULL provides an interface to the GNARL upper layers calledGNULLI (GNULL
Interface) which is intended to be OS and hardware independent. Modifying this interface
would require changing the upper layer GNARL packages.

The specific version of GNULL for ORK consists of:

• The specifications of some packages which define the GNULL interface (GNULLI).
All the interface elements in these specifications have beenleft unchanged with re-
spect to the current GNAT distribution so that most of the GNARL can be used “as
is” (see 2.2 above.).

• The bodies of the GNULL packages, which have been rewritten in order to adapt
them to ORK.

The GNULL interface provides much more than is actually needed to implement the
restricted Ravenscar tasking functionality. However, in order not to modify the GNARL
upper level components and avoid compilation errors, the GNULLI for ORK still contains
the full set of operation specifications. The bodies of the superfluous operations raise an
exception in order to properly signal violations of the profile at execution time. Notice
that this is mainly useful for debugging purposes, as the Ravenscar restrictions should be
checked at compilation time by means of appropriate pragmas.

2.4 The C interface layer

The purpose of the C interface layer is to provide an application program interface (API)
to kernel that can be used from C programs. The interface replicates the functionality of
the kernel by means of a set of C type definitions and procedures.

The C interface layer consists of a number of C header (.h) andprogram (.c) files.

2.5 The kernel layer

The kernel layer provides all the required functionality tosupport real-time programming
on top of the ERC32 hardware architecture. The kernel functions can be grouped as
follows:

1. Task management, including task creation, synchronization, and scheduling.

2. Time services, including absolute delays and real-time clock.

3. Memory management. The only kinds of dynamic storage allocation supported by
the kernel are those required to allocate task control blocks (TCBs) and stack space
for tasks at system startup. Deallocation is not supported.

4. Interrupt handling.

The kernel interface to these functions consists of the specifications of some Ada
packages, which together make up the kernel interface.

6 CHAPTER 2. SOFTWARE OVERVIEW

2.6 The GNU debugger

The Open Ravenscar Kernel is provided with debugging facilities, based on GDB (GNU
debugger.) GDB is widely known as a very portable and powerful debugger, available on
many hosts, and capable of debugging many targets. It currently supports source level
debugging in various languages, including C, C++ and Ada.

For the purposes of debugging ORK-based programs, some facilities for debugging
Ada tasks implemented using ORK have been included in GNARL.Task level debugging
is very platform dependent, and therefore specific support for a given task implementation
has to be built into GDB. This support is implemented with a set of GDB scripts, provid-
ing new task debugging functions. The scripts require support from the kernel, either
directly or by means of some GNARL packages which use the kernel information. The
debugging interface consists of these GNARL packages, plussome operations defined in
the specifications of the GNULLI and kernel interface packages.

A graphical front-end is provided on top of GDB, based on DDD (Data Display De-
bugger.) DDD is a program designed to act as a simple to use, yet complete, debugging
graphic interface, which can interact with several debuggers (including GDB). Some new
functionality has been added to it in order to make it a suitable graphical debugger for
ORK. This functionality is mainly implemented as a set of patches which enable DDD to
support task-level debugging.

Chapter 3

System interfaces context

The Open Ravenscar Real-Time Kernel (ORK) provides supportfor the restricted version
of Ada tasking defined by the Ravenscar profile. There are two blocks which are supposed
to use these services: the GNULL Layer and the C Interface Layer (see figure 2.1). Both
layers use the kernel services through the kernel interfaceoffered by ORK.

The purpose of GNULL is to isolate GNARL from the underlying kernel or operating
system. GNULL provides an interface called GNULLI which is assumed to be OS in-
dependent. When porting GNARL on top of ORK the GNULL layer translates GNARL
calls into ORK primitives.

A C Interface is provided to make ORK callable from C programs. The C Interface
Layer provides the appropriate conversion mechanisms to routine calling and parameter
passing conventions, to allow C applications to use the ORK primitives easily.

This document is focused on ORK itself, and the kernel internal interface. A detailed
description of all the external interfaces can be found in the Interface Control Document
of this project.

7

8 CHAPTER 3. SYSTEM INTERFACES CONTEXT

Chapter 4

Design standards, conventions, and
procedures

4.1 Architectural design method

The graphical HOOD notation [13] is used for architectural design and interface descrip-
tion.

According to the small size of the project, the details of theinterfaces are written
directly in Ada instead of the HOOD textual notation.

4.2 Detailed design method

The graphical HOOD notation is also used to represent the system dependencies and its
hierarchy.

Names and comments are written in English.

4.3 Code documentation standards

The code formatting of Ada source code follows the guidelines described in Ada 95 Qual-
ity and Style Guide [12]. This format is also used with assembly code as appropriate.

4.4 Naming conventions

Following the guidelines defined in Ada 95 Quality and Style Guide [12], the selection of
names is made to clarify the object’s or entity’s intended use.

4.5 Programming standards

ORK is implemented mainly in Ada 95. Assembly language is used for the lowest-level
operations.

The guidelines defined in Ada 95 Quality and Style Guide [12] are followed for the
code written in Ada 95. The guidelines are also applied to assembly code as far as possi-
ble.

The safe subset of Ada used for the implementation of the kernel is defined from the
recommendations made by the Ada High Integrity Systems Standard [3]. Notice that the
following restrictions apply only to the kernel, not to GNARL or GNULL packages.

9

10 CHAPTER 4. DESIGN STANDARDS, CONVENTIONS, AND PROCEDURES

Ada features are split into fourteen groups. These groups are categorized into three
types:

1. Fully used. The Ada features that were used without any restriction are:

• Packages (child and library).

2. Partially used. Now it will be listed the groups that are partially used, with a brief
description of the concrete features that are forbidden or not used:

• Types with static attributes.

– Discriminated records are not allowed, because they can be used to create
unconstrained objects, to make some components inaccessible in some
variants, and to define indefinite generic formal parametersand private
types.

– Tagged types, and therefore class wide operations, are alsoforbidden, to
avoid the difficulty involved with dispatching operations.

• Declarations.

– Complex definitions of aliased objects or components are notused. These
are definitions which could render properties of the object inconsistent
with non-aliased objects of the same type. Examples of this occur when
the original type is indefinite, unconstrained, or modified by representa-
tion clauses.

– Declarative parts in block statements are not used. This feature presents
some drawbacks to Flow Analysis and Symbolic Analysis as well as to
structural coverage.

• Names, including scope and visibility.

– Complex forms of renaming (i.e., those which require run-time evaluation
of bounds or object components, or those which extend component life-
time) are forbidden because they hinder Symbolic Analysis,Flow Anal-
ysis and Range Checking, and complicate Object Code Analysis as they
embed run-time code that has no associated visible source code.

– Overloading of subprogram is not used to facilitate Flow Analysis, Sym-
bolic Analysis, and Object Code Analysis.

– Package nesting is not used, because it makes difficult coverage-based
testing, and Range Checking becomes problematic.

• Expressions.

– Slices of arrays are not used to ease the understanding of thecode.

– Type conversions are only allowed for numeric types. More complex
conversions can either generate additional code, or require a temporary
object, or require dynamic checks.

• Statements.

– goto statements are forbidden, because their use is contrary to all princi-
ples of structured programming.

• Subprograms.

4.5. PROGRAMMING STANDARDS 11

– Indefinite formal parameters are not used because they may need dynamic
storage.

– Complex return types (indefinite types, unconstrained types, and tagged
types) are forbidden because they require dynamic storage techniques.

– Return statements in procedures are not allowed because they can obscure
and cause difficulties for Flow Analysis, Object Code Analysis, etc.

• Arithmetic types

– Modular integer types are not used, because their predefinedoperations
are not those of classical mathematics, and care is needed toensure that
the operations perform the intended function.

• Low level and interfacing.

– Unchecked access is forbidden, because it can lead to dangling references
or corruption of data.

– Streams are not used. They require class wide types and access parame-
ters, and are therefore difficult to analyse.

• Access types and types with dynamic attributes.

– Unconstrained array types are not used.

– Full access types are forbidden. They need to allocate memory from the
heap and other storage areas, making memory use unpredictable, timing
analysis problematic, and heap exhaustion and fragmentation a significant
risk. It can also create unbounded aliasing problems.

– Restricted storage pools are not allowed. They are not needed for ORK,
and require careful implementation and use to ensure the algorithms are
predictable.

– Controlled types are not used because they introduce hiddencontrol flows
due to user-defined initialisation, assignment and finalisation.

– Indefinite objects are forbidden. They consume time and storage in ways
which are difficult, if not impossible, to predict.

– Non-static array objects are not allowed because time and memory used
depends on dynamic bounds.

3. Not used. Finally, it will be shown the features that are not used in the implemen-
tation of the kernel. Some of them were not needed at all, and some others were
forbidden because they were not considered safe:

• Generics. Generics are not used, because they are not needed.

• Exceptions. Exceptions are not used within the kernel.

• Tasking. Not used.

• Distribution. Not used within the kernel.

12 CHAPTER 4. DESIGN STANDARDS, CONVENTIONS, AND PROCEDURES

Chapter 5

Software top-level architectural design

5.1 Overall architecture

The functionality provided by ORK can be divided into the following sets of services:

• Thread management

• Synchronization

• Scheduling

• Storage allocation

• Time-keeping and delays

• Interrupt handling

• Serial output

These sets of functions are defined in different Ada packages. There are also some
more packages in the kernel which are used to isolate the hardware dependent aspects.
These packages are shown in figure 5.1.

Only five of these packages are designed to be visible to the upper layers. They are:
Kernel.Interrupts, Kernel.Time, Kernel.Memory, Kernel.Threads, andKernel.Serial_Output.
The other three packages (Kernel.CPU_Primitives, Kernel.Peripherals, andKernel.Parame-
ters) are used to implement internal services not available to the external world, isolating
machine dependent issues and implementation defined restrictions. The only exception is
that packageSystem (which contains the definition of system dependent types andcon-
stants) imports some values fromKernel.Parameters.

Kernel primitives in ORK are always non-threaded (interrupts are disabled while ac-
cessing the kernel), so that kernel operations are only executed on behalf of a specific
user-level thread to which the relevant overhead can thus becharged. There are no im-
plicit threads hidden within the kernel (e.g. to support I/Ooperations). Actually, there is
a thread (calledDummy_Thread) which is automatically created by the kernel to be exe-
cuted when there is not any other ready thread to execute (seesection 5.2.1). However,
this thread does not interfere with any other thread in the system, because as soon as there
is any ready thread to execute, theDummy_Thread is immediately preempted.

13

14 CHAPTER 5. SOFTWARE TOP-LEVEL ARCHITECTURAL DESIGN

Kernel.ParametersE

Kernel.Peripherals

Kernel.CPU_Primitives

Kernel.Time

Kernel.Memory

Kernel.Threads

Kernel.Interrupts
{Time Keeping and Delays}

{Storage Allocation}

{Thread Management}

{Synchronization}

{Scheduling}

{Interrupt Handling}

Kernel

{Serial Output}

Kernel.Serial_Output

Figure 5.1: Open Ravenscar Real-Time Kernel

5.2. SOFTWARE ITEM COMPONENTS 15

Kernel.Threads

Kernel.Threads.Protection

Kernel.Threads.ATCB

Kernel.Threads.Queues

{Queue Handling}

{ATCB Management}

{Kernel Protection}

{Thread Management}

{Synchronization}

Figure 5.2:Kernel.Threads hierarchy

5.2 Software item components

The sets of functions identified in the ORK architecture are implemented by different Ada
packages. This section describes the different kernel modules depicted in figure 5.1.

5.2.1 The package Kernel.Threads

This package implements the primitives related to thread management, synchronization,
and scheduling; it also contains the data definitions related to these services. This package
does not depend on the target machine. The data and primitives defined here are visible
to both C applications and GNULL.

Kernel.Threads uses three children packages (see figure 5.2) to implement the func-
tionality provided.

This package defines the thread identifiers used both by GNULLand C applications.
These identifiers are required by some low-level tasking functions, such as those related
to synchronization.

The specification of this package also contains the synchronization elements required
by GNULL, not only for the runtime internal data protection,but also for the implemen-
tation of protected objects. The types of synchronization elements needed by GNULL
are:

• Mutexes. Mutexes are objects which provide access with mutual exclusion to
shared data. They implement the Immediate Priority CeilingProtocol.

• Condition Variables. These objects provide the functionality required by a thread
to voluntarily suspend itself to wait for some condition to be satisfied.

The functions implemented by this package are:

• Creation of a concurrent thread of execution to execute the code of an Ada or C
task.

• Identification of the currently executing thread.

• Operations to insert, remove, and change the position of a thread within the list of
ready threads. These are internal services that cannot be used by any other package
or layer.

16 CHAPTER 5. SOFTWARE TOP-LEVEL ARCHITECTURAL DESIGN

• Synchronization. The kernel provides primitives to allow thread synchronization
using both mutexes and condition variables. Other synchronization methods can be
easily implemented using these two objects.

The synchronization primitives provided by ORK are briefly explained in the follow-
ing paragraphs.

ORK provides operations to acquire and release mutexes following the Immediate
Priority Ceiling Protocol. GNULL defines two different procedures to acquire a mutex
(Read_Lock andWrite_Lock), depending on the kind of access required; several threads
can acquire a mutex for reading at a time, but just one thread is allowed to lock a mutex for
writing. In a monoprocessor system, such as ORK/ERC32, having different implementa-
tions for reading and writing is an unnecessary overhead [18]. Therefore, ORK provides
only one primitive to acquire a mutex withWrite_Lock semantics.Read_Lock operations
are mapped to the same primitive, so that the effect of both operations is exactly the same.

ORK takes great advantage of being targeted primarily to a monoprocessor system,
and its implementation of mutexes is very simple and efficient. In case of migration to a
multiprocessor, the synchronization primitives should bereimplemented to allow efficient
concurrent reading accesses to mutexes.

The kernel protects its internal data avoiding kernel operations to be disturbed by
any external interrupt. This way, kernel operations are atomic. GNARL also needs to
protect its internal data, but this library relies on kernelprimitives (mutex operations) to
guarantee the atomic access. As runtime operations are performed at the highest priority,
the priority ceiling checking would be unnecessary and thisoverhead is avoided by using
a simpler mutex (calledRTS_Lock) with the highest priority, which does not check for
ceiling priority violations. However, ORK implements onlyone type of mutex which
always checks ceiling priority violations. Avoiding just one check is not a strong enough
reason to implement two different types of mutexes.

The semantics of condition variables have also been dramatically simplified with re-
spect to POSIX [19]. The simplifications are motivated by:

• The maximum number of waiting threads is one.

• There are no timed-wait operations.

• The Ravenscar profile does not allow any other form of awakening threads than sig-
naling a condition variable. Select statements and abortions in the full Ada language
make it possible to cancel a waiting operation before signaling the condition.

Therefore, the mechanisms implemented by condition variables to suspend and re-
sume a thread are very simple, without even requiring any queue for storing waiting tasks.

5.2.2 The package Kernel.Interrupts

This package is visible both to C applications and GNULL. Theimplementation of this
package is very simple because all the hardware related issues are managed inside the
packageKernel.CPU_Primitives.

The interface offered by this package contains the functions to:

• Install interrupt handlers.

• Detach interrupt handlers.

5.2. SOFTWARE ITEM COMPONENTS 17

• Obtain the current handler for any interrupt.

An interrupt represents a class of events that are detected by the hardware or the sys-
tem software. When an interrupt occurs anInterrupt Service Routine(ISR) (implemented
by packageKernel.CPU_Primitives, see section 5.2.7) is invoked to make the interrupt
available to the kernel. The following paragraphs describethe mechanism used by the
kernel to handle interrupts.

Protected procedures have appropriate semantics for fast interrupt handlers; they can
be directly invoked by the hardware and share data with tasksand other interrupt handlers.
The Ravenscar profile does not allow any other form of interrupt handlers.

The typeSystem.Any_Priority represents all the possible priorities in the system. The
highest priorities in this range are used to represent the interrupt priorities (typeSys-
tem.Interrupt_Priority). Therefore, hardware priorities are mapped to software priority,
providing a unified priority model [20]. This model also implies that tasks with priorities
in the range ofSystem.Interrupt_Priority block interrupts with lower priorities.

The SPARC architecture has 15 different interrupt levels which are mapped to the 15
elements of the typeSystem.Interrupt_Priority. Therefore, when a thread executes with
a priority within this interrupt range, the interrupts corresponding to the levels below
the current interrupt level are disabled by ORK. When a thread changes its currently
active priority (due, for example, to the execution of a mutex primitive) the level to which
interrupts are enabled also change.

When attaching a protected procedure to an interrupt, once the interrupt handler begins
to execute its priority is raised to the ceiling of the protected object. Thus, the handler
can only be preempted by other interrupt with a priority higher than the ceiling of the
protected object; on the other hand while any shared data (within the protected object
which provides the protected procedure handler) is being accessed by other threads of
control, all interrupts attached to this protected object are disabled [21], and obvioulsly
all the interrupts with a lower priority than the ceiling of that protected object.

This way, ORK schedules interrupt handlers like any other thread in the system; in-
terrupts have the peculiarity that the Immediate Priority Ceiling Protocol guarantees that
whenever an interrupt is acknoledged (that is, this is not currently masked) it begins to ex-
ecute its attached protected procedure being sure that the protected object is always free,
as it has been explained in the previous paragraphs.

One important thing that must be taken into account is that when updating internal
kernel data, interrupts are disabled (see section 6.1.1). This way the kernel protects all its
critical sections, except for non-maskable interrupts, which are used to signal fatal system
failures and must be handled immediately.

Notice that the blocking time for interrupts can be easily analysed, accounting the
blocking effects due to higher priority tasks and interrupts. The blocking time caused by
the execution of kernel operations (mentioned in the previous paragraph) can be modeled
the same as accesses to a protected object with the highest priority.

According to the current GNARL implementation, interrupt handlers are executed
within the context of especially dedicated “server” tasks,one of them associated to each
interrupt. In this way, GNARL implements a unified priority model in which interrupts
have their own priorities (in fact the priorities assigned to the respective interrupt han-
dlers). Hence, all interrupt handlers having priorities lower than the active priority of the
currently executing task (or interrupt handler) are effectively inhibited. Inhibition will
remain while the current active priority is maintained higher or equal to the priority of the
interrupt handler.

Ada 95 allows an implementation to handle an interrupt efficiently by arranging for
the interrupt handler to be invoked directly by the hardware[2]. Since interrupts may

18 CHAPTER 5. SOFTWARE TOP-LEVEL ARCHITECTURAL DESIGN

Interrupt Service Routine
S

Wakeup

Pr Protected Object

Handler

Server Task

Figure 5.3: Interrupt handling in GNARL

occur very frequently and require fast response, the unnecessary overhead of using server
tasks, as mentioned in the previous paragraph, may be intolerable. Attaching protected
procedures directly to ISR’s would seem at first to be the bestsolution, however it is
not possible to call a protected procedure from an interrupthandler that is not executing
within a server task context. Therefore, even if it may appear to be wasteful to interpose
a separate task for each interrupt handler, this approach solves the mutual exclusion prob-
lem of preventing concurrent execution of the handler procedure with other operations of
the same protected object [22], but with a very expensive mechanism. It will be shown
later that the ORK kernel can solve the mutual exclusion problem with a much simpler
model.

Using server tasks, priorities and mutual exclusion are handled in the standard way
for tasks and protected objects. Server tasks also give a clean execution model compared
to other approaches in which the handler is executed in the context of the interrupted task.
Figure 5.3 shows the mechanism used to call interrupt handlers following this scheme.

Server tasks move the problem of how to ensure mutual exclusion from interrupt han-
dlers to kernel synchronization primitives. They could also increase the level of concur-
rency allowed inside the kernel.

We could also think about dedicating one server task for all the possible interrupts or
providing a server task for each interrupt. Although the former approach saves runtime
space, it would block other interrupts during the protectedprocedure call. For this reason
GNARL provides a separate server task for each interrupt which would eliminate the
problem of delaying or losing interrupts [22].

This is a good approach for a generic run-time system which must support the full Ada
language. But the implementation of this scheme in packageSystem.Interrupts (a member
of GNARL) contains tasks with entries which violate the Ravenscar profile. Moreover, in
the case of a Ravenscar compliant kernel there are several restrictions that make interrupt
handling much simpler:

1. Only protected procedures can be used as interrupt handlers.

2. The only locking policy accepted within protected objects is Ceiling locking.

These simplifications, together with the fact that within our kernel all the interrupts
with a lower priority than the currently active priority aremasked, make impossible that
an interrupt handler is blocked waiting for a protected object to be free. Therefore, there is
not need for any server task context to allow the interrupt towait. The protected procedure
can be installed as a low-level asynchronous handler procedure, callable directly from the
hardware (see figure 5.4). The effect is that interrupt handlers are executed as if they were
directly invoked by the interrupted task, but using the interrupt stack that was mentioned
in the begining of this section.

5.2. SOFTWARE ITEM COMPONENTS 19

Pr Protected Object

Handler

Interrupt Service Routine

Figure 5.4: Interrupt handling in ORK

This design simplifies not only the conceptual mechanism butalso the performance of
the system. Obviously, the portability of this solution is reduced as it can not be used for
POSIX compliant operating systems. However, as it was mentioned before our target is a
bare single processor system and we believe that this solution is fast enough for embedded
systems to account for the lack of portability. The current GNARL implementations rely
on POSIX signals to handle interrupts although signal semantics are too expensive [23,
24]. Our approach is to directly attach the user handler to the interrupt.

5.2.3 The package Kernel.Time

Kernel.Time provides primitives for getting the time from the underlying hardware clock,
and the mechanisms for delaying threads until some specifiedtime. These services can
be directly used by both the GNULL layer and C applications.

This package is independent from the machines to which the kernel is ported. The
implementation of the hardware dependent issues is left to the packageKernel.CPU_Primi-
tives andKernel.Peripherals.

Delaying mechanisms are quite complex in the full GNARL (that is, the runtime li-
brary for the full Ada language), but this has been largely simplified in the restricted
kernel.

The current GNARL implementation uses condition variable operations to execute all
kinds of delays. This scheme allows timed calls to be canceled before the expiration of
the timer. The use of condition variables to implement delayoperations in ORK would
be unnecessarily expensive, as the profile does not allow forany means of canceling a
delay. Therefore, ORK furnishes a simpler way to read the hardware clock and to share
the timers among threads. Threads will wait inside the timerqueue until their respective
expiration time, and there will not be any other event to awake threads.

Delay statements are transformed by GNULL into direct callsto the ORK timer mod-
ule.

ORK represents the typeTime as a signed 64-bit value which represents a number of
nanoseconds. The range of time values can uniquely represents the range of real times
from program start-up to almost 300 years later, which is consistent with the Real-Time
Annex of the Ada Reference Manual (ALRM D.8) [2].

5.2.4 The package Kernel.Memory

This package is in charge of the dynamic memory management, and its functionality is
visible both to GNULL and C applications. At the initialization of the system, the size
and number of some objects (such as stacks or TCB’s) are fixed;space for these objects

20 CHAPTER 5. SOFTWARE TOP-LEVEL ARCHITECTURAL DESIGN

Interrupt StackProtectionProtection Task1 Stack Protection Environment StackProtection Taskn Stack ·······

Figure 5.5: Stack layout

is requested at the initialization, but the allocation mechanism is very simple. ORK does
not allow for freeing memory, and so memory space is assignedin a contiguous manner
without any need to find the right hole for allocating objects.

The Ravenscar profile does not explicitly disallow the use ofdynamic memory as this
profile only covers tasking related issues, but it seems natural that an application designed
following the Ravenscar restrictions should also follow the sequential restrictions defined
by the Ada HIS standard [3]. Therefore, these memory functions should only be used at
start-up time. However, there is no compiler check for this,and also no runtime check, so
it is up to the user not to use dynamic memory after initialization.

The different stacks associated to each task are protected to avoid stack overflow.
When a task tries to request more stack than allowed,Storage_Error is raised. The ex-
ception is raised when the task performs a write operation within the area named as “pro-
tected” in figure 5.5. Read operations within the protected areas do not raise any excep-
tion, because unfortunately the ERC32 hardware only implements write access protection.

The MEC in ERC32 allows two different segments to be write protected. One of them
is moved when the running thread changes, and the other is fixed to protect always the
interrupt stack.

Tasks are therefore allowed to read/write inside the stack space of any other task. At
first, ORK was designed to allow task to move its stack pointeronly within the bounds
of its own stack. But the mechanism used with protected objects did not work with this
restriction, because one task may execute a protected entrybody on behalf of another
task, and the former may modify data that is stored in the latter’s stack. This is the model
implemented by GNARL for servicing entry queues (allowed byALRM 9.5.3 par. 22) to
minimize unnecessary context switches.

5.2.5 The package Kernel.Serial_Output

This package allows applications to display the application output on the user screen. The
application sends characters (and strings) through UART channel A, which is connected
to the user screen when using the simulator (SIS or TSIM).

Under real targets, using the remote target monitor, an alphanumeric terminal or a
communication software (like kermit or tip) can also be attached to UART channel A to
show the application output. Remote target monitor uses UART channel B as host-target
link.

5.2.6 The package Kernel.Parameters

This package contains some types and constants exclusivelyused by the kernel (and the
packageSystem). This package is not visible to GNULL or C programs; GNULL layer
uses the packageSystem to extract target dependent information. Here we can find:

• Maximum number of threads allowed.

• The default stack size.

5.2. SOFTWARE ITEM COMPONENTS 21

• Maximum space available for the dynamic data to be defined at initialization.

• The priority range, including the band used for interrupt priorities.

• The clock frequency.

This package has no body, and it is used byKernel.Threads, Kernel.Memory and
Kernel.CPU_Primitives.

These parameters are user configurable to allow the kernel tobe taylored to a concrete
board or application.

5.2.7 The package Kernel.CPU_Primitives

The implementation of this package is strongly processor dependent, while it offers the
same interface to the rest of kernel packages, providing a machine independent interface.
This scheme simplifies porting the kernel to other targets. This package encapsulates
functions to:

• Save and restore the machine state for context switches.

• Install trap and interrupt handlers. This function is in charge of inserting the low
level Interrupt Service Routine (ISR) within the trap table. The functionality pro-
vided by packageKernel.Interrupts uses this target dependent function to isolate
dependencies on the target.

• Enable and disable interrupts, as well as changing the levelto which interrupts are
allowed.

These functions are implemented in assembler. This packageis not visible either to
GNULL or to C applications.

The main duties of the ISR are changing to the interrupt stackand handling the nesting
of interrupts. The ISR implemented by this package is commonto all interrupts.

When executing interrupt handlers ORK provides an interrupt stack. The other option
is to leave the interrupt to use the stack of the interrupted thread; but this would artificially
inflate the stack requirements for each thread, since every thread would have to include
enough space to account for the worst case interrupt stack requirements in addition to its
own worst case usage. When processing a non-nested interrupt the kernel should switch
to the interrupt stack before invoking the handler.

This package also isolates the definition of some target dependent constants:

• Size of the buffer to store the context of the threads.

• Register window size.

5.2.8 The package Kernel.Peripherals

This package provides the interface to the peripherals available in the system. It makes
easier the porting of the kernel to another target board withdifferent peripherals.

It can be found here the interrupt names related to the different peripherals in the board
used.

The peripherals currently handled by ORK are:

• TheGeneral Purpose Timer.

22 CHAPTER 5. SOFTWARE TOP-LEVEL ARCHITECTURAL DESIGN

Kernel.Peripherals

Kernel.Peripherals.Registers

Figure 5.6:Kernel.Peripherals hierarchy

• TheReal Time Clock.

• The memory controller.

• UART

A child package (Kernel.Peripherals.Registers) is used to isolate the kernel mappings
to the different peripheral registers (see figure 5.6).

5.3 Internal Interfaces Design

The external interface of the kernel is defined by the specifications of the following Ada
packages:

• Kernel.Threads

• Kernel.Time

• Kernel.Interrupts

• Kernel.Memory

• Kernel.Serial_Output

This external interface is largely explained in theInterface Control Documentof this
project.

The kernel also contains some more packages (see figure 5.1) which provide the in-
ternal primitives required to implement the kernel functionality. These packages are:

• Kernel.Threads.Queues

• Kernel.Threads.ATCB

• Kernel.Threads.Protection

• Kernel.Parameters

• Kernel.Peripherals

• Kernel.Peripherals.Registers

• Kernel.CPU_Primitives

The specifications of these packages are described in the next sections.

5.3. INTERNAL INTERFACES DESIGN 23

5.3.1 The package Kernel.Threads.Queues

The kernel needs two different queues to keep the threads ordered. One of them is the
ready queue, where the kernel keeps the ready threads ordered by its priority. The other
queue is the one used for timer handling, where all threads that have requested a delay,
and are still waiting for it, are ordered by its expiration time. This package provides the
functionality required to handle the ready queue and the alarm queue.

with Kernel.Time;
−− Used for Time

packageKernel.Threads.Queuesis
5

−− thread descriptors

function Dummy ThreadId return Thread Id;

function EnvironmentThreadId return Thread Id; 10

function Get New ThreadDescriptorreturn ThreadId;

−− Ready list
15

procedure Insert At Head (Thread: ThreadId);

procedure Insert At Tail (Thread: ThreadId);

procedure Extract From Ready(Thread: ThreadId); 20

function Next Runningreturn ThreadId;

Running Thread: ThreadId;
25

−− Alarm list

procedure Insert Alarm (T : Kernel.Time.Time;
Thread: ThreadId;
Is First : out Boolean); 30

function Extract First Alarm return ThreadId;

function Get Next Alarm Time return Kernel.Time.Time;
35

end Kernel.Threads.Queues;

The variableRunning_Thread defined in this package contains the identifier of the
thread that is currently executing. Its value is updated each time a new thread acquire the
processor.

This variable is declared in the specification of this package to make it visible to the
debugger. Therefore, even if maintaining a shared variableis not the most “elegant”
way of providing this information (it would be preferable toprovide a function which
returns theRunning_Thread value) the scripting language used by the debugger places
this limitation.

The set of operations related to the ready queue provided by this package are the
following:

Dummy_Thread_Id. Get the thread identifier associated to theDummy_Thread. This
thread is executed when there is no other ready thread.

24 CHAPTER 5. SOFTWARE TOP-LEVEL ARCHITECTURAL DESIGN

Environment_Thread_Id. Get the identifier for the environment thread. This thread ex-
ecutes the code of the main procedure of the program.

Insert_At_Head. Insert the thread in the ready queue, at the head of its activepriority.

Insert_At_Tail. Insert the thread in the ready queue, at the tail of its activepriority.

Extract_From_Ready. Remove the thread from the ready list.

Next_Running. Get the identifier of the thread that is placed at the head of the highest
active priority in the ready queue.

The alarm queue is handled using the following primitives:

Insert_Alarm. Insert the thread in the alarm queue. The queue is ordered by its absolute
expiration time. The first place is occupied by the first alarmto be raised.

Extract_First_Alarm. Get the identifier of the thread placed at the head of the alarm
queue. The thread is also extracted from the alarm queue.

Get_Next_Alarm_Time. Return the absolute delay of the first alarm in the queue.

5.3.2 The package Kernel.Threads.ATCB

This package is used by GNULL layer to store and get the ATCB associated to each
thread. This interface has been moved outside the packageKernel.Threads because these
procedures should not be used by C applications.

with System;

−− Used for Address

packageKernel.Threads.ATCBis
5

procedure Set ATCB (ATCB : System.Address;
ThreadId : Kernel.Threads.ThreadId :=

Kernel.Threads.Queues.RunningThread);

function ThreadSelf ATCB return System.Address; 10

end Kernel.Threads.ATCB;

The operations provided are:

Set_ATCB. Store the pointer to the ATCB which owns the thread inside thethread de-
scriptor. It is used to extract Ada task information from a thread identifier.

Thread_Self_ATCB. Get the ATCB associated to the currently running thread. This func-
tion returnsNull_Thread_Id when the thread does not belong to an Ada task.

5.3. INTERNAL INTERFACES DESIGN 25

5.3.3 The package Kernel.Threads.Protection

This package is in charge of providing the procedures to allow access with mutual exclu-
sion to the kernel internal data.

The procedures exported by this package are:

Enter_Kernel. Get exclusive read/write access to the kernel data. All interrupts are dis-
abled.

Leave_Kernel. Finish the exclusive access to the kernel. This procedure performs a con-
text switch if necessary, and restores the level to which interrupts are disabled (it
depends on the active priority of the currently executing thread).

Dispatch. Notify to the kernel that the highest priority ready thread could have changed,
therefore the dispatcher must be called when leaving the kernel.

5.3.4 The package Kernel.Parameters

This package contains types and constants which can be modified by the user to tailor the
kernel to a concrete board or application.

Some of these definitions are dependent on the application. They are:

• Maximum number of tasks.

• Space reserved for stacks. This value has been calculated assuming that it will be
used the maximum number of allowed tasks (with the default stack space), and
adding the space required for interrupts.

• Default stack size for threads.

• Stack size reserved for the interrupts.

• Range of priorities supported by the kernel.

• The period of the interrupts generated by theReal Time Clock.

There is another value dependent on the board:

• Clock frequency.

The constants dependent on the processor are:

• Number of interrupt levels supported by the processor.

• Maximum value of the interrupt priority range. This value depends on the previ-
ously defined number of interrupt levels.

• The range of interrupts supported by the target architecture. There is a one-to-one
correspondence between these hardware interrupt levels and software priorities in
the range ofSystem.Interrupt_Priority.

• SubtypeRange_of_Vector defines the union of external (asynchronous) interrupts
and software generated (synchronous) interrupts. This type is used to index the
handler table.

26 CHAPTER 5. SOFTWARE TOP-LEVEL ARCHITECTURAL DESIGN

5.3.5 The package Kernel.Peripherals

This package provides the interface to the peripherals available in the target board. The
required types and primitives are defined here.

with System;
−− used for System.Address

with Kernel.Parameters;
−− used for ClockInterrupt Period 5

−− Interrupt Level

packageKernel.Peripheralsis

packageKPa renamesKernel.Parameters; 10

−−——————–
−− Initialization –
−−——————–

15

procedure Init Board;

−−———————
−− Clock and timer –
−−——————— 20

type Timer Interval is
range 0 . . Kernel.Parameters.ClockInterrupt Period− 1;

Clock Freq Hz : constant Integer := Integer (KPa.Clock Frequency* 10**6); 25

procedure Set Alarm (nanoseconds: Timer Interval);

procedure CancelAnd Set Alarm (nanoseconds: Timer Interval);
30

function Read Clock return Timer Interval;

procedure Clear Alarm Interrupt;

procedure Clear Clock Interrupt; 35

−−—————-
−− Interrupts –
−−—————-

40

function To Vector (Level : KPa.InterruptLevel) return KPa.RangeOf Vector;

function Priority Of Interrupt (Level : KPa.InterruptLevel) return
System.AnyPriority;

45

Watch Dog Time Out : constant Interrupt Level := 15;
External Interrupt 4 : constant Interrupt Level := 14;
Real Time Clock : constant Interrupt Level := 13;
GeneralPurposeTimer : constant Interrupt Level := 12;
External Interrupt 3 : constant Interrupt Level := 11; 50

External Interrupt 2 : constant Interrupt Level := 10;
DMA Time Out : constant Interrupt Level := 9;
DMA AccessError : constant Interrupt Level := 8;
UART Error : constant Interrupt Level := 7;
CorrectableError In Memory : constant Interrupt Level := 6; 55

5.3. INTERNAL INTERFACES DESIGN 27

UART B Ready : constant Interrupt Level := 5;
UART A Ready : constant Interrupt Level := 4;
External Interrupt 1 : constant Interrupt Level := 3;
External Interrupt 0 : constant Interrupt Level := 2;
MaskedHardwareErrors : constant Interrupt Level := 1; 60

−−———————–
−− Memory protection –
−−———————–

65

type ProtectionSegmentId is (Segment1, Segment2);

procedure ProtectSegment(base: System.Address;
ending : System.Address;
id : ProtectionSegmentId); 70

−−——————-
−− Serial output –
−−——————-

75

type UART Baudrateis
range Clock Freq Hz / (32 * 255 * 2) − 1 . . Clock Freq Hz / 32 − 1;

type UART Parity is (None, Even, Odd);
80

type UART Stop Bits is (One, Two);

type UART Channelis (A, B);

procedure Init UART (baudrate: UART Baudrate; 85

parity : UART Parity;
stop bits : UART Stop Bits);

procedure UART Send(char : Character;
channel: UART Channel); 90

end Kernel.Peripherals;

There is one procedure to initialize the board:

Init_Board. Initialize the hardware available in the board. This procedure must be in-
voked when booting the system.

There are also definitions used for time keeping and delays. The typeTimer_Interval
defines the range of nanoseconds used to represent the time. The following paragraphs
describe the primitives used to interact with the clock and timer:

Set_Alarm. Arm the timer to raise an interrupt after the number of nanoseconds specified
by the argument of this procedure.

Cancel_And_Set_Alarm. Cancel a previous alarm and set a new one. This procedure
is identical to the previous one (in this implementation), because with the ERC32
setting a new alarm cancel the previous one.

Read_Clock. Return the number of nanoseconds since the last clock interrupt.

28 CHAPTER 5. SOFTWARE TOP-LEVEL ARCHITECTURAL DESIGN

Clear_Alarm_Interrupt. Clear the timer interrupt from the set of pending interrupts. Noth-
ing has to be done in the ERC32, because interrupts are cleared automatically when
they are acknowledged.

Clear_Clock_Interrupt. The same as the previous procedure but with the clock interrupt.
This procedure does nothing in the ERC32 porting of ORK.

The interrupt level for each interrupt is defined here. Interrupt levels are not shared
among interrupts, so the level defines uniquely each hardware interrupt. Two functions
are also defined for the hardware interrupts associated to these peripherals:

To_Vector. This function is used to obtain the right place within the vector table for each
interrupt.

Priority_Of_Interrupt. This function returns the software priority for each interrupt.

The MEC in ERC32 allows the definition of two different segments that can be write
protected. ORK uses this mechanism to protect stack bounds.The typeProtection_Seg-
ment_Id is defined to differentiate the two segments that can be protected. The function
to write-protect segments is:

Protect_Segment. This procedure needs the bounds of the segment to be protected, and
the identifier used to distinguish the two segments that can be protected. After
executing this procedure, if there is any attempt to write within the bounds of any
protected segment, a memory exception occurs.

ORK also provides support for sending characters through a serial line. This capability
requires the use of the UART. Some types are defined to reflect the configuration of the
UART. Type UART_Baudrate defines the range of valid rates. The typeUART_Parity
contains the values for the parity of the UART. TypeUART_Stop_Bits defines whether
there are one or two stop bits. There are two channels in the UART, defined by the type
UART_Channel.

Two procedures are used to manage the UART:

Init_UART. This procedure initializes the UART. The baud rate, parity,and number of
stop bits is set.

UART_Send. This procedure sends the character received as argument through the spec-
ified channel of the UART.

5.3.6 The package Kernel.Peripherals.Registers

This package contains the addresses of the memory mapped registers used to configure
the peripherals, as well as the range of bits which represents each field inside the registers.

5.3.7 The package Kernel.CPU_Primitives

This package isolates the processor dependent primitives.It facilitates the porting to
another target.

with System;
with Kernel.Parameters;

5.3. INTERNAL INTERFACES DESIGN 29

packageKernel.CPUPrimitives is
5

packageKPa renamesKernel.Parameters;

type Context Buffer is private;

procedure Context Switch (Current : accessContext Buffer; 10

Next : accessContext Buffer;
Running ThreadId : System.Address);

procedure Initialize Context (Buffer : accessContext Buffer;
ProgramCounter: System.Address; 15

Priority : System.AnyPriority;
Stack Pointer : System.Address;
Stack Size : Integer);

procedure Install Trap Handler (ServiceRoutine : System.Address; 20

Vector : KPa.RangeOf Vector);

procedure Install Interrupt Handler (ServiceRoutine : System.Address;
Vector : KPa.RangeOf Vector);

25

procedure Disable Interrupts;

procedure Enable Interrupts(Level : in KPa.InterruptLevel);

private 30

subtype RangeOf Context is Natural range 1 . . 54;

type Context Buffer is array (RangeOf Context) of System.Address;

end Kernel.CPUPrimitives; 35

This package defines a private type (Context_Buffer) which stores the contents of the
hardware registers. Two more values (the beginning and end of the stack owned by the
thread) are also stored here, to allow the bounded stack protection. In the case of the
ERC32 the number of 32-bit registers that make up the state for each thread are:

• 2 Program Counter registers (PC, nPC)

• 8 out registers

• 7 global registers (g0 does not need to be stored, because it is a special register,
always returning a zero when read and discarding whatever iswritten to it)

• TheProcessor State register (PSR)

• TheMultiply/Divide register (Y)

• 32Floating Point registers

• TheFPU Control/Status register (FSR)

• The beginning of the task stack

• The end of the task stack

30 CHAPTER 5. SOFTWARE TOP-LEVEL ARCHITECTURAL DESIGN

Therefore, the total amount of 32-bit registers to save per task is 54.
The primitives provided by this package are:

Context_Switch. This procedure saves the hardware context of the thread which is leav-
ing the processor, restoring the context of the thread whichacquires its ownership.
The pointers to the places where storing the context for bothtasks are passed as
the argument of the procedure. The argumentRunning_Thread_Id is used to pass
the thread identifier of the new running thread, so that when this thread actually
acquires the processor, the variableRunning_Thread is updated.

Initialize_Context. This procedure stores the initial value for the registers.

The first time the thread acquires the processor, theProgram Counter, the Stack
Pointer, theFrame Pointer, and theProcessor State Register have the contents re-
quired to execute the code associated to the thread, using its own stack, and exe-
cuting at the interrupt level required by the active priority of the thread. The values
of the beginning and end of the stack are also initialized to allow the stack bounds
protection for this thread.

Install_Trap_Handler. This procedure install the Service Routine passed as argument as
the handler for the synchronous trap specified when calling this procedure.

Install_Interrupt_Handler. This procedure is the same as the previous one, installing the
Interrupt Service Routine for the specified interrupt.

Disable_Interrupts. This procedure disables all the external interrupts, except the non-
maskable interrupt.

Enable_Interrupts. The processor interrupt level is set to the level specified inthis pro-
cedure call.

Chapter 6

Software components detailed design

This chapter describes the detailed implementation of the kernel packages.

6.1 Kernel.Threads

This package is the central component of the ORK architecture. The operations related to
the basic tasking functionality are defined here. The primitives for exclusive use by other
kernel packages are defined in three children packages.

There is a procedure which initializes the thread environment, calledInitialize. Its pur-
pose is to initialize the ready queue, inserting theEnvironment_Thread and theDummy-
_Thread within that queue. TheEnvironment_Thread is the thread which executes the
environment code, that is, the main procedure. TheDummy_Thread is an internally used
thread which is only selected to execute when there is not anyready threads in the system.
As this thread only executes when no other thread is ready to execute, and it is immedi-
ately preempted when any other thread becomes ready, its execution does not interfere
with the rest of threads.

type ThreadDescriptor;
−− This type contains the internal information about each thread.

type ThreadId is access allThreadDescriptor;
−− This type is used as identifier. 5

Null ThreadId : constant Thread Id := null ;

type ThreadBody is access
function (arg : System.Address) return System.Address; 10

−− Pointer to the function that should be executed by the thread.

type ThreadDescriptoris record
Code : ThreadBody := null ;
Args : System.Address:= System.NullAddress; 15

ATCB : System.Address:= System.NullAddress;
Context : aliased Kernel.CPUPrimitives.ContextBuffer;
BasePriority : System.AnyPriority := System.AnyPriority‘First;
Active Priority : System.AnyPriority := System.AnyPriority‘First;
Lock Nesting Level : Natural := 0; 20

Previous: ThreadId := Null ThreadId;
Next : ThreadId := Null ThreadId;
Alarm Time : Kernel.Time.Time:= Kernel.Time.Time‘Last;
Next Alarm : ThreadId := Null ThreadId;

end record; 25

31

32 CHAPTER 6. SOFTWARE COMPONENTS DETAILED DESIGN

The types used for identifying a thread (Thread_Id) and storing the information about
a thread (Thread_Descriptor) are defined in this package. The latter is internally im-
plemented as a pointer to the former. TheThread_Descriptor is a private record which
contains the following fields:

• Code. The pointer to the procedure to be executed by the thread.

• Args. The arguments required by the procedure defined above.

• ATCB. The address of the Ada Task Control Block associated to the relevant thread.
This field is meaningless when the kernel is used by C applications. The ATCB
structure will be described in detail later in this section.

• Context. The space to save the hardware context (stack pointer, program counter,
etc.) of the thread when was last preempted. This array also contains the beginning
and end of the stack space reserved for each thread, so that each time the running
thread changes, the right stack space is write protected (see section 6.7).

• Base_Priority. The base priority of the thread. This priority corresponds to the
priority of the thread when it was created, and does not change along the lifetime
of the thread because the Ravenscar profile does not allow dynamic priorities.

• Active_Priority. The active priority of the thread. Active priority differs from the
base priority due to dynamic priority changes caused by the ceiling locking policy.

• Lock_Nesting_Level. The number of mutexes held by the thread. It is used to know
when the base priority must be restored after anMutex_Unlock operation.

• Previous. Pointers to the revious thread in the ready queue. If the thread is at the
head of the queue, this pointer is null.

• Next. Pointers to the next thread in the ready queue. If the thread is at the tail of the
queue, this pointer is null. The ready queue is implemented as a doubly linked list,
hence the need for two pointers in the thread descriptor.

• Alarm_Time. The time when the alarm expires. If the thread has not a pending
alarm the value of this field is set to the maximum time value.

• Next_Alarm. Pointer to the next thread within the alarm queue. The queue is ordered
by its absolute expiration time. The first place is occupied by the nearest alarm to
expire.

The ATCB definition can be found in packageSystem.Tasking. This type contains the
information about Ada tasks.

type CommonATCB is record
State : Task States:= Unactivated;
Parent: Task ID;
BasePriority : System.AnyPriority;
Current Priority : System.AnyPriority := 0; 5

Task Image : System.TaskInfo.Task Image Type;
Call : Entry Call Link;
LL : aliased Task Primitives.PrivateData;
Task Arg : System.Address;
Stack Size : System.Parameters.SizeType; 10

6.1. KERNEL.THREADS 33

Task Entry Point : Task ProcedureAccess;
Compiler Data : System.SoftLinks.TSD;
All TasksLink : Task ID;
Activation Link : Task ID;
Activator : Task ID; 15

Wait Count : Integer := 0;
Elaborated: AccessBoolean;
Activation Failed : Boolean:= False;

end record;
20

type RestrictedAda Task Control Block (Entry Num : Task Entry Index) is
record

Common: CommonATCB;
Entry Call : Entry Call Record;

end record; 25

The typeCommon_ATCB is used to hold information common to both the restricted
GNARL (used for implementing the Ravenscar profile) and the regular version of it.

• State. Encodes the information about the current state of the task.The possi-
ble states for a restricted task areUnactivated, Runnable, Activator_Sleep, andEn-
try_Caller_Sleep.

• Parent. The task on which this task depends. In a Ravenscar compliantprogram,
the only parent allowed is theEnvironment_Task, because there is no hierarchy of
tasks.

• Base_Priority. Base priority of the task. The Ravenscar profile does not allow this
value to change.

• Current_Priority. This field is equal to the active priority of the task, except that the
effects of protected objects priority ceilings are not reflected.

• Task_Image. Holds an access to string that provides a readable identifierfor task,
built from the variable of which it is a value or component.

• Call. The entry call that has been accepted by this task. This field should not be
placed here (in the common part), because the Ravenscar profile forbids task entries.
However, the debugger needs to access to this field easily. Moving this to a different
location would require a non trivial amount of work in the debugger.

• LL. Control block used by the underlying low-level tasking service (GNULL).

• Task_Arg. The argument to task procedure. This field is currently unused, but it
could provide a handle for discriminant information.

• Stack_Size. Requested stack size.

• Task_Entry_Point. Information needed to call the procedure containing the code for
the body of this task.

• Compiler_Data. Task-specific data needed by the compiler to store per-task struc-
tures.

• All_Tasks_Link. Used to link this task to the list of all tasks in the system.

• Activation_Link. Used to link this task to a list of tasks to be activated.

34 CHAPTER 6. SOFTWARE COMPONENTS DETAILED DESIGN

• Activator. The task that created this task. This value is set to null if and only if the
task has completed activation.

• Wait_Count. This count is used by a task that is waiting for other tasks. Atall other
times, the value should be zero. It is used differently in several different states, but
since a task cannot be in more than one of these states at the same time, a single
counter suffices.

• Elaborated. Pointer to a flag indicating that this task body has been elaborated. The
flag is created and managed by the compiler generated code.

• Activation_Failed. Set to True if activation of a chain of tasks fails, so that the
activator should raiseTasking_Error.

TypeRestricted_Ada_Task_Control_Block needs significantly less memory than reg-
ular Ada Task Control Block. TheEntry_Num discriminant has not been deleted (even
when task entries are not allowed in the restricted run time)to keep the same interface as
the regular ATCB. This way, minor changes have to be made to the compiler.

The components of theRestricted_Ada_Task_Control_Block are:

• Common. The common part described above.

• Entry_Call. This field is used on entry call “queues” associated with protected ob-
jects.

The operations that can be performed on a thread are:

• Creation. This procedure returns the identifier of the new thread. The data that
must be passed to the procedure are the code and arguments of the function to be
executed by the thread (passed asSystem.Address to facilitate the use of the kernel
by C applications), the priority of the thread and the stack size for this thread.

• Identification. There is a function to query the identifier ofthe currently running
thread.

• Setting the priority. Even when the Ravenscar profile does not allow any form
of dynamic priority changes other than caused by the ceilinglocking policy, the
initialization of a thread needs to modify the priority of the thread to allow the
correct initialization of the system.

• Getting the priority. There is a function to query the base priority of a thread.

• Yield. A thread can voluntarily transfer the ownership of the processor to the next
ready thread within its active priority queue.

This package also contains the synchronization elements provided by the kernel (mu-
texes and condition variables), as well as the primitives related to them.

ORK only needs and implements one type of mutex to support theImmediate Priority
Ceiling Protocol. Therefore, just two fields are needed:

• The ceiling priority of the mutex.

• The active priority of the thread just prior to acquiring themutex. This is the priority
that must be returned to when releasing the mutex.

6.1. KERNEL.THREADS 35

As we are using a strictly preemptive scheduling policy for asingle processor scheme
which does not allow priority ceiling violations, [25, 26] show that the scheduling policy
guarantees that there is no way a task can attempt to seize a lock that is held by an-
other suspended or preempted task. Hence, no explicit locking mechanism is required.
Operations of high-priority tasks automatically appear atomic to low-priority tasks. No
provision has to be made for queue management inside these locks while the procedures
to seize and release the locks can also be lightened. We do notneed to check if the lock
is free or not, because if we attempt to seize a lock it will always be free.

From these observations we can derive that the operations that can be performed on
mutexes are described as:

• Initialization. This procedure sets the value of the ceiling priority of the mutex.

• Locking. This procedure is used to acquire the mutex. It suffices to simply update
the active priority of the current task to the ceiling priority of the lock used.

• Unlocking. This primitive is used to release the mutex. The active priority of the
task needs to be restored, and preemption could occur if there is any other ready
task with a higher priority.

The Ravenscar profile does not allow finalization of objects,so there is no kernel
primitive for the finalization of mutexes.

LIFO order of unlocking is required (GNARL always follows this policy). It allows
a more efficient implementation of mutexes, through the use of a stack structure to save
and restore active priorities, and to prevent long-duration blocking through “chaining” of
overlapping critical sections.

In the case of condition variables, space would be needed to store the thread that is
waiting for the condition to be signaled. As the Ravenscar profile does not allow more
than one thread to be waiting on the same condition, no such queue is needed anyway.

If the kernel detects that a thread tries to queue on a condition that is already used
by another one, the thread is suspended forever. However, ifORK is used together with
GNARL (not by a C application), any attempt to queue on an already used condition raises
Program_Error, because this situation is checked by GNARL.

The operations provided for the condition variables are:

• Initialization. The only thing to do for the initializationis to set that there is not any
thread waiting.

• Condition_Wait. This procedure suspends the calling thread until another thread
signals the condition. Waiting on a condition is always associated to a mutex. The
thread must hold that mutex when callingCondition_Wait. The effect of this call
is to atomically release the lock and to suspend the thread. The identifier of the
calling thread is stored inside the condition variable so asto know which thread to
wake up when the condition is signaled. When the thread is awakened the mutex
that the thread was holding when the call toCondition_Wait was made is acquired
again atomically.

• Condition_Signal. This procedure becomes ready the thread that was waiting for the
condition to be signaled, if any. If there is no thread waiting, this call has no effect;
this is the semantic implemented by POSIX and therefore, thebehaviour expected
by GNARL.

36 CHAPTER 6. SOFTWARE COMPONENTS DETAILED DESIGN

Even when the visibility for condition variables should be eliminated and replaced
by Sleep andWakeup operations (for performance and avoidance of error-prone opera-
tions) at the GNULL layer [19], support for a semantically reduced condition variables
implementation should be provided at least for use by C applications.

This package has an internally defined procedure (Thread_Caller) that acts as a wrap-
per for the function to be executed by the thread. This procedure is also responsible for
extracting the thread from the ready queue if it tries to finalize. Task finalization is a
bounded error in the Ravenscar profile and the default actionis to suspend the thread
forever. GNULL layer can change the actions to take upon taskfinalization using the
procedureSet_Exit_Task_Procedure from packageSystem.Task_Primitives_Operations.
This procedure requires an argument which is the parameterless procedure to be executed
upon any task finalization.

6.1.1 Kernel.Threads.Protection

The variables inside the kernel must be updated in mutual exclusion. There are two pro-
cedures to signal that these data are being modified (Enter_Kernel and Leave_Kernel).
The first procedure just disables interrupts, so that the following execution cannot be
preempted at least untilLeave_Kernel is called. The procedureLeave_Kernel enables in-
terrupts to the level corresponding to the currently activepriority. Leave_Kernel is also
in charge of finding out if as a result of the changes made to thekernel data, the highest
priority thread is no longer the same as before. If so, the thread is dispatched.

A dispatching call can be requested by four reasons:

• The thread executing within the processor calls an operation which changes its state
to blocked.

• The currently running thread voluntarily transfer the ownership of the processor to
the next ready thread within its active priority queue.

• The running thread lowers its priority (when releasing a mutex) and there is a ready
thread with a priority higher than the new active priority ofthe running thread.

• A thread with an active priority higher than the currently active priority becomes
ready.

The first three cases are easy to handle, because the thread which triggers the con-
text switch (by callingLeave_Kernel) is the thread that is executing within the processor.
When a thread with a higher priority than the currently active priority becomes ready there
are some difficulties, because there are two different ways of awaking a thread:

• From the currently running thread.

• From an interrupt handler.

Again, the first case is easy, because the running thread synchronously calls the con-
text switch routine. However, when a thread is awaken from aninterrupt handler it must
be noticed that the hardware context of the thread that was executing was modified by
the Interrupt Service Routine (ISR). Therefore, even if context switches may result from
the execution of nested interrupts, their effect is deferred until completion of the inter-
rupt processing (to preserve the context to be saved), and the highest priority thread will
acquire the processor on exit from the chain of all nested interrupt handlers.

6.1. KERNEL.THREADS 37

Previous Previous Previous

Next Next Next

TailHead

Null

Figure 6.1: Structure of the ready queue

6.1.2 Kernel.Threads.Queues

This package is in charge of handling the two different queues available for threads: the
ready queue and the timer queue.

The ready queue is modelled as a priority queue, and internally implemented as a
doubly linked list. Each element of the list is a thread descriptor pointing to the previous
and the next element of the queue. The queue is null-terminated, so the previous element
of the first element (or head) of the queue and the next elementof the last element (or tail)
of the queue are theNull identifier. The design of this queue can be seen in figure 6.1.

Space for the maximum number of threads that can exist in the system (256 by default
configuration) is statically reserved at initialization.

The primitives that can be executed on the queue are:

• Create a thread descriptor. The first preallocated free thread descriptor is assigned
to the caller.

• Insert a thread in the ready queue, either at the head or at thetail of its active priority.

• Remove the thread from the ready queue. The Ravenscar profilerestrictions only
allow the currently running thread to be removed.

• Get the identifier of the first thread with the highest priority.

This package also stores the identifier of the currently running thread. This variable
changes its value whenever a thread is dispatched.

With respect to the alarm queue, it is implemented as a singlequeue ordered by its
expiration time. The first place in the queue is occupied by the alarm which expires first.
An internally defined variable is used to store the pointer tothis first thread.

The operations implemented for this queue are:

• Insert a new alarm in the queue. This procedure needs the identifier of the thread
that is going to wait and the absolute time when the thread must be awaken. This
procedure also has an output argument which signal if the thread has been inserted
as first within this queue. This value is used to know if the programmed alarm must
be changed.

• Extract the first element from the queue. When the timer expires, the element must
be deleted. Moreover, the identifier of the thread that was waiting is returned to
allow the thread to be reinserted in the ready queue.

• Query the time when the first pending alarm expires.

38 CHAPTER 6. SOFTWARE COMPONENTS DETAILED DESIGN

6.1.3 Kernel.Threads.ATCB

The GNULL layer needs to store within each thread descriptorthe pointer to the Ada Task
Control Block associated to the respective thread. This pointer is used for an efficient
implementation of theSelf function required by GNULL.

There are two procedures to read and to write the ATCB stored within the thread
descriptor. These primitives have been placed in this childpackage because the ATCB is
only needed by GNULL. Thus, when the kernel is being used by a Capplication it should
not be disturbed by GNULL specific issues.

When using GNARL on top of POSIX threads, the functions related to Ada task iden-
tification are commonly very inefficient. This is due to the fact that POSIX threads are
not specifically designed to execute Ada tasks; the relationship to Ada task is usually im-
plemented using functions to set/query thread-specific data, which impose a big overhead
to the widely usedSelf operation.

6.2 Kernel.Interrupts

Our solution to interrupt handling is based on the fact that we only support the Ravenscar
profile, and that we do not run on top of a POSIX operating system but on bare hardware.
In addition, on the fact that ORK is targeted to a single processor system.

The problem to solve derives from the way GNARL implements Ada interrupt sup-
port. It uses tasks with entries, which violate the Ravenscar profile, and the implementa-
tion is conditioned by the fact that the caller can get blocked when invoking a protected
procedure, so the caller needs to be an Ada task in order to block safely.

Fortunately, thanks to the use ofLocking_Policy (Ceiling_Locking), the Ravenscar pro-
file prevents the caller from getting blocked when invoking aprotected procedure. The
priority of a protected object which has a procedure attached to an interrupt must be
at least the hardwareInterrupt_Priority of that interrupt (otherwise either the program is
erroneous orProgram_Error is raised if the priority given falls outside the range ofInter-
rupt_Priority), as it is stated in the Systems Programming Annex of the Ada Reference
Manual (ALRM C.3.1 par. 14) [2].

As a result, for as long as the active priority of the running task is equal to or greater
than the one of an interrupt, that interrupt will not be recognized by the processor. On
the contrary, the interrupt will remain pending until the active priority of the running
task becomes lower than the priority of the interrupt, and only then will the interrupt be
recognized. It follows that if an interrupt is recognized, then the caller of the protected
procedure attached to that interrupt will not be blocked, asthe protected object cannot
be in use. Otherwise the active priority of the running task would be at least equal to
the priority ceiling of the protected object, which cannot be because the interrupt was
recognized.

To sum up, the kernel uses protected procedures (together with some kernel prologue
and epilogue) as low level interrupt handlers.

Another important implication from this interrupt model isthat users should always
use distinct priorities for tasks and protected objects with protected handlers; otherwise,
tasks could unnecessarily delay the interrupt handling.

The user of packageKernel.Interrupts (whether direct, as for C applications, or indi-
rect, viaAda.Interrupts, as for Ada applications) must provide the address of a parameter-
less procedure as handler.

This package provides operations to:

6.3. KERNEL.TIME 39

• Attach a handler to an interrupt. Each time the interrupt is delivered the handler
is executed. If the currently active priority is lower than the interrupt priority the
interrupt is immediately delivered to the processor.

• Detach a handler. The previously attached handler is detached, and a default inter-
rupt handler is installed. This default handler is an internal procedure which does
nothing.

• Return the current handler for an interrupt.

6.3 Kernel.Time

This package is in charge of handling the time keeping and delay primitives.
Time is represented at this level as a 64-bit integer number of nanoseconds. The

interval of time values that can be represented in this way isapproximately -292..+292
years.

The alarm queue used by this package, as well as the primitives required for its han-
dling, are defined in packageKernel.Threads.Queues (see section 6.1.2).

The implementation of this package was made to provide a highresolution clock
with low overhead in timer handling; the combination of a timestamp counter and a high
resolution timer contributes to improve the performance and granularity of the time man-
agement.

A timestamp counter, built into most modern CPUs, provides the standard time to
be used. The representation of time for using in accounting and scheduling is based on
the values from this timestamp counter. Linux, as well as most other operating systems
maintain a sense of time using a periodic interrupt from a timer chip, which is known as
the “heartbeat” of the system. The heartbeat of the Linux kernel is usually 10 ms. Such a
coarse grained timing mechanism is insufficient for many real-time applications.

It is very common to implement timers based on a periodic interrupt. For example,
when using RTEMS [27] on top of the ERC32, timers are also based on a periodic inter-
rupt (with a user configurable period). In order to provide a more precise timer support,
a high resolution timer can usually be implemented by using the single-shot mode of the
hardware timers. Therefore, the interrupts are generated on demand, and not periodically.

One of the ways to increase the temporal granularity of a periodic based timer would
be to program the timer chip to interrupt the kernel at higherfrequencies. This is not
an acceptable solution as the overhead increase due to this is tremendous. In fact, we
need to program the timer chip to generate interrupts only when there is some scheduled
work that needs to be accomplished. The key observation is that even when we want
a microsecond resolution, we do not expect to have timing events every microsecond.
We therefore need a mechanism by which timer interrupts are allowed to occur at any
microsecond, not necessarily every microsecond. This is the RT-Linux [28], KURT [29]
and Linux/RK [30] way of handling high resolution timers.

The ERC32 hardware provides two timers (apart from the special Watchdogtimer)
which can be programmed to be either of single-shot type or ofperiodical type [31].
We use one of them (theReal Time Clock) as a timestamp counter and the other (called
General Purpose Timer) as a high-resolution timer. The former timer provides the basis
for a high resolution clock, while the latter offers the required support for precise alarm
handling. Both timers are clocked by the internal system clock, and they use a two-
stage counter which is shown in figure 6.2. If we call GPTC theGeneral Purpose Timer

40 CHAPTER 6. SOFTWARE COMPONENTS DETAILED DESIGN

Counterand GPTS theScaler, and SYSCLK the system clock frequency, the timeout for
theGeneral Purpose Timerbefore the interrupt occurs is calculated as:

Timeout=
(GPTC+1)(GPTS+1)

SYSCLK
The previous formula has a factor which is (GPTS+1). The +1 term is there because

the test for zero occurs before the decrement on SYSCLK. As the minimum value for
GPTC is 1 and for GPTS is 0, the minimum Timeout delay is the duration of one clock
period.

Set Preload Set Preload

The Scaler The Counter

Control (Enable, Load, Reload, Hold, Stop at zero)

Zero indication InterruptSYSCLK

Figure 6.2: Timer design

TheReal Time Clockis programmed by ORK to interrupt periodically, updating the
most significant part of the clock. The less significant part of the clock is held in the
hardware clock register. This periodic interrupt is necessary, because of the maximum
time space that can be represented using the hardware counter and scaler. This maximum
value can be obtained using the highest values for theReal Time Clock Scaler(RTCS) and
Real Time Clock Counter(RTCC), which are 255 (8-bits register) and 4_294_967_295
(32-bits register) respectively. Using a 10 MHz ERC32, the maximum time value that
could be represented without using any software register is:

Time=
(RTCC+1)(RTCS+1)

SYSCLK
=

232×28

107 = 109_951seconds

This amount of time is obviously too short, and requires the use of a software register
to store the most significant part of the clock.

In order to obtain the highest possible resolution, ORK setsthe RTCS preload value to
zero. As a result, the resolution ofKernel.Time.Clock is the same as the SYSCLK period,
that is 100 ns. The periodic interrupt period (which is givenby the RTCC preload value)
can be up to 429 s (= 232/107). These values are valid for the usual ERC32 system clock
frequency of 10 MHz.

The Real Time Clockperiod can be modified by changing the value ofKernel.Pa-
rameters.Clock_Interrupt_Period, which represents the integer number of nanoseconds of
the desired clock period. Depending on the selected period for the clock interrupt, the
overhead imposed to the system changes.

TheGeneral Purpose Timer Counteris reprogrammed on demand every time an alarm
is set, to signal the time when the alarm expires. It does not produce periodic interrupts,
but when needed. ORK sets also the GPTC Scaler preload value to zero. As a result, the
resolution ofKernel.Time.Delay_Until is the same as the SYSCLK period, that is 100 ns
for the usual ERC32 system clock frequency of 10 MHz.

6.4 Kernel.Memory

This package is in charge of reserving space for the objects that are known at the initializa-
tion of the system. At this point, the size and number of some objects (such as stacks) are

6.5. KERNEL.SERIAL_OUTPUT 41

fixed; space for these objects is dynamically requested, butthe allocation mechanism is
very simple because ORK allocates memory statically and uses a straightforward sequen-
tial and contiguous allocation strategy. Memory deallocation is not supported by ORK,
so if a program continuously consumes heap it could exaust the dynamic memory.

A contiguous array is defined to store all the stacks in the system, as well as another
array to store the rest of the dynamic data. The default size for all the stacks is set to
1_325_056 bytes. This size is calculated assuming that we are using the default maximum
number of threads (256 plus the environment and the dummy thread) with the default stack
size (5_120 bytes). That value also includes the default interrupt stack size (2_048 bytes)
and the protection regions for each stack (256 bytes per each). Those default values are
defined inKernel.Parameters.

It can be specified a different stack size for each task by modifing theStorage_Size
attribute of the tasks. Thepragma Storage_Size sets the value ofStorage_Size to be at
least the value specified in the pragma [2, ch. 13.3]. The minimum value for the stack
size is defined inKernel.Parameters.Default_Stack_Size. This value overrides the value
specified by the pragma if this were lower.

As it was explained in section 5.2.4 dynamic memory should only be used at start-up,
and without allowing deallocation.

6.5 Kernel.Serial_Output

This package is in charge of sending characters to the remotehost machine. The appli-
cation output is sent through the UART A, from which the host machine can extract the
application output by using a terminal emulator software.

6.6 Kernel.Parameters

This package only contains constants to be used internally by the kernel. The kernel can
be adapted to the user needs modifying the values defined here.

6.7 Kernel.CPU_Primitives

This package contains the primitives which are dependent ofthe underlying processor.
There is another packageKernel.Peripherals which isolates the kernel from the peripherals
installed in the target machine.

The functionality provided by this package is:

• Save and restore the machine state for context switches.

• Install the low level Interrupt Service Routine for trap andinterrupt.

• Enable and disable interrupts, as well as changing the levelto which interrupts are
allowed.

Those functions are implemented in assembler, and importedto the Ada code.
Stack checking mechanism is provided. When a task tries to request more stack than

allowed an exception (Storage_Error) is raised. The mechanism is implemented using the
memory access protection functionality provided by the MECin ERC32. Two different
segments can be write protected; one of them is placed at the lower bound of the currently

42 CHAPTER 6. SOFTWARE COMPONENTS DETAILED DESIGN

active stack to detect any request of stack outside its limit, and the other protects the
interrupt stack.

The kernel inserts a small prologue and epilogue to the user interrupt handler, to allow
the correct execution of the interrupted thread. As nestingof interrupts is allowed (an
interrupt can be recognized while processing a lower priority interrupt), the prologue
changes the current stack to the interrupt stack, if the interrupt is not nested, and stores
the floating point context. The epilogue is in charge of performing a context switch to the
highest priority thread (if this is not the currently running thread) when the most external
interrupt has finished its execution.

6.7.1 Fast context switch

The SPARC V7 has a total of 167 user-allocable registers and 128 of these are used for
the overlapping register windows. The 128 window registersare grouped into eight sets
of 24 registers called windows (see figure 6.3).

Wn+1
Wn

Wn-1

8 registers

Non-shared registers

Shared registers

L(n-1) L(n) L(n+1)
I(n-1)

O(n-2)

I(n)

O(n-1)

I(n+1)

O(n)

I(n+2)

O(n+1)

Figure 6.3: Overlapping windows (24 registers per window)

The first eight registers in a window are calledin registers, and the last eight are the
out registers, and the eight registers that are between the in and out registers are called
local registers. In figure 6.3, I(n), L(n), and O(n) represent thein, local, andout registers
of window n respectively. At any time, only one window is visible. The other registers
are comprised of 7 global registers and 32 floating-point registers.

When calling a subroutine the visible window changes fromWn to Wn+1 (using the
save instruction) to provide new registers for the new subroutine. On subroutine return,
the previous register mapping is restored (with therestore instruction). As shown in
figure 6.3 adjacent windows have common registers, so that the in registers overlap with
the previous window, and the out registers overlap with the following window.

It can be seen that the first 16 registers in a window are non-scratch since their values
will be retained across function calls; we can be sure that wecan use them safely in our
scope, regardless of the registers used by the functions called. The last 8 are scratch
since their values cannot be guaranteed upon return from thecalled function [32]; if we
call a function which modifies its in registers, the out registers of the caller are therefore
modified.

6.8. KERNEL.PERIPHERALS 43

This overlap of window registers is used as an efficient meansof passing parameters
during procedure calls and returns. There is a 5-bit field in theProcessor State Register
(PSR), calledCurrent Window Pointer(CWP), that points to the currently active window
(the window visible to the programmer).

During a context switch, the register windows of the currentthread must be flushed
onto the thread stack before one window will be loaded with the top frame of the new
thread.

There are two different approaches to follow for the flushingpolicy. You could flush
all register windows or just the windows currently in use [20]. The implementation of
the context switch underSunOS 4.xsimply flushes all register windows of the processor.
For a scheme with frequent context switches it is less likelythat a thread uses all of the
windows, and so it would be useful to implement the context switch such that only the
windows currently in use are flushed to memory. It is a matter of fact that the average
calling depth during the execution of a program is not very large, and therefore the set of
registers that imperatively must be flushed to memory is small.

Taking advantage of the execution points at which it is not necessary to save (and
also not necessary to restore) the entire state of the machine [32], ORK adopts the latter
approach so as to reduce the excessive overhead of saving andrestoring unused window
registers.

Not only efficiency, but also the predictability of execution is a crucial concern to
ORK. The worst case execution time (WCET) of the two alternative approaches is ap-
proximately the same. The adopted implementation however exhibits a better average
execution time. This is of no use for timing and scheduling analysis however, which must
by definition use only WCET values.

Another issue to take into account is that not all the tasks will use the floating point
unit. Thus, the floating point context should not be stored until necessary. It should
remain in the floating point registers and not disturbed until another floating point task
is switched to. The current implementation saves the floating point context only when
necessary.

The same applies for interrupt handlers, the floating point context is saved and restored
only if the interrupt handler uses the floating point context.

6.8 Kernel.Peripherals

In ORK the set of peripherals which are internally managed are:

• TheGeneral Purpose Timer.

• TheReal Time Clock.

• The memory controller.

• The UART

The packageKernel.Peripherals.Registers contains the mappings of the different reg-
isters related to peripherals which make them accessible tothe kernel.

44 CHAPTER 6. SOFTWARE COMPONENTS DETAILED DESIGN

Chapter 7

Software code listings

The source code of ORK is distributed with the GNAT/ORK cross-development system.
The latest available version of the compiler can be found in the software repository of the
Open Ravenscar project athttp://www.openravenscar.org.

45

46 CHAPTER 7. SOFTWARE CODE LISTINGS

Bibliography

[1] ECCS.ECCS-E-40A Space Engineering — Software, 1999.

[2] Ada 95 Reference Manual: Language and Standard Libraries. International Stan-
dard ANSI/ISO/IEC-8652:1995, 1995. Available from Springer-Verlag, LNCS no.
1246.

[3] ISO/IEC/JTC1/SC22/WG9.Guidance for the use of the Ada Programming Lan-
guage in High Integrity Systems, 2000. ISO/IEC TR 15942:2000.

[4] Alan Burns. The Ravenscar profile.Ada Letters, XIX(4):49–52, 1999.

[5] ISO/IEC-9899:1990 — Programming Languages — C, 1990.

[6] IEEE. Portable Operating System Interface (POSIX) — Part 1: System Applica-
tion Program Interface (API) [C Language] (Incorporating IEEE Stds 1003.1-1990,
1003.1b-1993, 1003.1c-1995, and 1003.1i-1995), 1990. ISO/IEC 9945-1:1996.

[7] TEMIC. SPARC V7 Instruction Set Manual, 1996.

[8] TEMIC. TSC691E Integer Unit User s Manual for Embedded Real Time 32 bit
Computer (ERC32), 1996.

[9] TEMIC. TSC692E Floating Point Unit User s Manual for Embedded Real Time 32
bit Computer (ERC32), 1996.

[10] TEMIC. TSC693E Memory Controller User s Manual for Embedded Real Time 32
bit Computer (ERC32), 1996.

[11] Jiri Gaisler. The ERC32 GNU cross-compiler system. Technical report,
ESA/ESTEC, 1999. Version 2.0.6.

[12] Christine Ausnit-Hood, Kent A. Johnson, Robert G. Petit IV, and Steven B. Opdahl,
editors. Ada 95 Quality and Style. Number 1344 in Lecture Notes in Computer
Science. Springer-Verlag, 1995.

[13] HOOD user Group.HOOD Reference Manual, 1993. Version 3.1.

[14] Ada Core Technologies.GNAT User’s Guide. Version 3.13w, November 1999.

[15] Ada Core Technologies.GNAT Reference Manual. Version 3.13w, November 1999.

[16] Richard M. Stallman and Roland H. Pessch.Debugging with GDB. Free Software
Foundation, 5th edition, 1998. For GDB version 4.17.

[17] E.W. Giering and T.P. Baker. The GNU Ada Runtime Library(GNARL): Design
and implementation. InProceedings of the Washington Ada Symposium, 1994.

47

48 BIBLIOGRAPHY

[18] Dong-Ik Oh and T.P. Baker. The Gnu Ada’95 Tasking Implementation: Real-Time
Features and Optimization.SIGPLAN’97, June 1997. Workshop on Compiler and
Language Support for Real-Time Systems.

[19] T.P. Baker, Dong-Ik Oh, and Seung-Jin Moon. Low-Level Ada tasking support for
GNAT - performance and portability problems. InProceedings of the Washington
Ada Symposium, July 1996.

[20] T.P. Baker and Offer Pazy. A unified priority-based kernel for Ada. Technical report,
ACM SIGAda, Ada Run-Time Environment Working Group, March 1995.

[21] Intermetrics.Ada 95 Rationale: Language and Standard Libraries., 1995. Available
from Springer-Verlag, LNCS no. 1247.

[22] Dong-Ik Oh, T.P. Baker, and Seung-Jin Moon. The GNARL implementation of
POSIX/Ada signal services. InProceedings of the Ada-Europe’96, 1996.

[23] José F. Ruiz and Jesús M. González-Barahona. Implementing a new low-level
tasking support for the GNAT runtime system. In Michael González-Harbour and
Juan A. de la Puente, editors,Reliable Software Technologies — Ada-Europe’99,
number 1622 in LNCS, pages 298–307. Springer-Verlag, 1999.

[24] Juan A. de la Puente, José F. Ruiz, and Jesús M. González-Barahona. Real-time
programming with GNAT: Specialised kernels versus POSIX threads.Ada Letters,
XIX(2):73–77, 1999. Proceedings of the 9th International Real-Time Ada Work-
shop.

[25] Intermetrics, Inc.Ada 9X Mapping, August 1991.

[26] H. Shen and T.P. Baker. A Linux kernel module implementation of restricted Ada
tasking. Ada Letters, XIX(2):96–103, 1999. Proceedings of the 9th International
Real-Time Ada Workshop.

[27] OAR. RTEMS SPARC Applications Supplement, 1997.

[28] Michael Barabanov. A Linux-based real-time operatingsystem. Master’s thesis,
New Mexico Institute of Mining and Technology, June 1997. Available athttp:
//www.rtlinux.org/\~baraban/thesis.

[29] Robert Hill, Balaji Srinivasan, Shyam Pather, and Douglas Niehaus. Temporal res-
olution and real-time extensions to linux. Technical Report ITTC-FY98-TR-11510-
03, Information and Telecommunication Technology Center,Department of Electri-
cal Engineering and Computer Sciences, University of Kansas, June 1998.

[30] Shuichi Oikawa and Ragunathan Rajkumar. Linux/RK: A portable resource kernel
in linux. IEEE Real-Time Systems Symposium Work-in-progress Session, Decem-
ber 1998.

[31] Temic/Matra Marconi Space.SPARC RT Memory Controller (MEC) User’s Manual,
April 1997.

[32] J.S. Snyder, D.B. Whalley, and T.P. Baker. Fast contextswitches: Compiler and ar-
chitectural support for preemptive scheduling.Microprocessors and Microsystems,
19(1):35–42, February 1995.

