reprint/republish this material for advertising or promotional purposes or for creptingProgress Session, Orlando, Florida, November 27-30, 2000, pp. 53-56.
new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.

(© 2000 IEEE. Personal use of this material is permitted. However, permissi Qttn Proc. of the the IEEE Real-Time Systems SympgsWMork-in-

Some Insights on Fixed-Priority Preemptive Non-Partitioned
Multiprocessor Scheduling

Bjorn Andersson and Jan Jonsson

Department of Computer Engineering
Chalmers University of Technology
SE-412 96 @teborg, Sweden
{ba,janjo} @ce.chalmers.se

1 Introduction with a period ofT;. Each time a task arrives, a némstance
Fixed-priority preemptive scheduling of independent perdf the task is created. Each instance has a constant execution
odic tasks on a homogeneous multiprocessor is solved ustitge of C;. A critical instantfor a taskr; is an arrival time of
one of two different methods based on how tasks are assig@dinstance such that the response time is maximized. Each
to the processors at run-time. In tipartitioned method, task has a deadline, which is the time of the next arrival of
all instances of a task are executed on the same procestis,task. Each task has a global, unique and fixed priority.
where the processor used for each task is determined befbhe tasks in- are numbered in the order of decreasing prior-
run-time by a partitioning algorithm. In theon-partitioned ity, that is,7; has the highest priority. Of all tasks that have
method, a task is allowed to execute on any processor, ewrived, but not completed, the highest-priority tasks are
when resuming after having been preempted. Two fundexecuted in parallel on then processors.
mental properties have been shown for the addressed probThe utilization of a task is the ratio of the task’s execu-
lem [1]. First, the problem of deciding whether a task set t#on time to its period. The utilizatioy of a task set is then
schedulable is NP-hard for both methods. Second, there &re=). C;/T;. To express the average utilization per pro-
task sets which are schedulable with an optimal priority asessor for a task set executing @nprocessors, we use the
signment with the non-partitioned method, but are unschedsystem utilizatiorU; = U/m. A task isschedulablef all
lable with an optimal partitioning algorithm and converselyits instances complete no later than their deadlines. A task
Among the two methods, the non-partitioned method hast is schedulable if all its tasks are schedulable. A tagk
received considerably less attention, mainly because it is lsaturatedif it is schedulable, but any increase @)y makes
lieved to suffer from several scheduling-related shortcom; unschedulable. A task setfislly utilizedif the task set is
ings. The most well-known of these Bhall's effect a schedulable, but there is at least one task such that if it in-
scheduling dilemma wherein some task sets may be wreases its execution time, then the task set is unschedulable.
schedulable on multiple processors even though they havewe consider a system where tasks are independent, arrive
a low utilization [2]. Another shortcoming is that exist-periodically, require no other resources than the processors,
ing necessary and sufficient schedulability tests all have exad can always be preempted. The cost of preemption is as-
ponential time complexity [3], and existing sufficient testsumed to be zero, even if a task is resumed on another pro-
have polynomial complexity but are pessimistic. It hasessor than the task was preempted on (that is, the cost of
also been shown that the RM (rate-monotonic) prioritymigration is also assumed to be zero).
assignment scheme is not optimal [1, 2], and no optimal
priority-assignment schemes with polynomial time complexd Task Interference and its Implications

ity have been found. , , For both uniprocessor and non-partitioned multiprocessor
In this paper, we present an in-depth analysis of the nofiked-priority scheduling, the execution of a task is only de-
partitioned method in terms of its scheduling-related propayed by its higher-priority tasks. The amount of this de-
erties. We (i) identify a set of anomalies for preemptiveyy is denotednterference The interference on a task
scheduling with migration, which are the first ever reportedthe intersection of execution of its higher-priority tasks
in the open research literature, (ii) identify several d|ff|cul%1,72, ...,T;_1. For uniprocessor scheduling this interfer-
ties in con.veying techniques from uniprocessor schedulig@ce can be computed by knowing how many instances of
to Fhe rr)ultllproce.ssor case, and (iii) conjecture thé}t there MAjher-priority tasks execute during a time interval. For non-
exist priority-assignment schemes that can contribute to Gartitioned multiprocessor scheduling this interference only
cumventing Dhall’s effect, something that has believed to bgcyrs fOrTy 41, Tmi2, - .. and can be computed as the sum

inherently impossible with the non-partitioned method. of g intervals whenm higher-priority tasks execute in par-

2 Concepts and System model allel on them processors, thus delaying the execution of the
We consider the problem of scheduling a task set émaining tasks.
{71, 72, ..., } Of nindependent, periodically-arriving real-

. . . . 1At each instant of time, the processor chosen for each ofithtasks
time tasks onm identical processors. Each task€ 7S s arbitrary. If less thamn tasks should be executed simultaneously, some

described by the paif7;, C;). A task arrives periodically processors will be idle.

task set: schedulable task set: schedulable

o B o P e o B - o " [E s A [[s e e

T T T T T | el e o) [a] [,

7'1 I I I I I Tl I 4\ 8\ 1\2 1\6 2\0 \24

3 | 3 | | | |

task set: unschedulable task set: unschedulable

- o el P . SR ENENEE NN A B R BN

S I T I I N S P Y P 2 B P
T T T T T T T T T T T T O 4 8 12 16 20 24

:% 1 : : : :; : ‘ | ‘ | ‘ | ‘ : ‘

T3 1 | T3 ! | |

T3 needs to execute
two more time units. T3 needs to execute
one more time unit.

Figure 1. Wherr, increases its period to 4; becomes un- g re 2: Whenr; increases its period to 11, the second in-
schedulable. TTS is becausgis saturated and its interfer- giance ofr, misses its deadline. This is because the interfer-
ence increases frorto 6. ence increases frofito 5 andr; is already saturated.

For uniprocessor scheduling, every increase in proces
demand (for example increasing’; or decreasing;) of a
higher-priority taskr; causes the same interference or le
interference on a lower-priority task. However, for multipro
cessor scheduling, the interference is not only dependent
the processor demand of higher-priority tasks, but also on ffh

time when they execute. This latter phenomenon gives rise) . . i

3.1 Scheduling anomalies priority preemptive non-partitioned multiprocessor schedul-
' In real-time scheduling, it is often the case that the deaié]-g' there exist schedulable task sets such that if the period of

line miss ratio highly depends on the system load, that g,taskri increases, the same taskwill be unschedulable.

the requested processor utilization of tasks in the system. A _ . .
commonly-used conclusion from this is that increasing tfexample 2 (See Figure 2)Consider the following schedu-
period will decrease the utilization, which in turn decreaséable task set (with priorities assigned according to RM):
the deadline miss ratio. Below, we present the first sched@t = 4, C1 = 2), (T2 = 5,C5 = 3), (T5 = 10,C3 = 7). If

ing anomaly for preemptive real-time scheduling with migrae increasd 3, the resulting task set becomes unschedulable.

tion (anomalies have previously only been shown for non- Note that, in the examples above, the relative priorities

preemptive scheduling [4] and preemptive non-migratingr tasks do not change as a result of the increased periods.

scfz)egru flilrnsgt] gi]g’ngg?t g?cler:\;gllgztiteuz%gz 'Vr\]laué?gg' decreas e'I'i erefore, the presented anomalies are true anomalies in the
Y pse that they are directly triggered by changes in period.

Tk itself. When the period of the task changes, the arrival
é'g‘nes of the task also change. As a consequence, the time
interval within which we need to accumulate interference by
Qj her-priority tasks may change. In some cases, the new
i gerference may be larger than before.

processor demand from higher-priority tasks can, because® . ; . 9=
One way of circumventing the anomalies is to use a

the change in the time when the tasks execute, increase thﬁ 7
interference on a lower-priofity task schiedulability test that only accepts task sets that cannot suf-
P y ' fer from the anomalies. Theorem 1 provides such a schedu-

Observation 1 (Preemptive anomaly, directed)For fixed- 'ability test (proof in [6]).
priority preemptive non-partitioned multiprocessor schedul-
ing, there exist schedulable task sets such that if the peridieorem 1 (Circumventing anomalies) If for each taskr;
of a taskr; increases, a task; with a lower priority will be in a task set there existsi; UB < T such that:
unschedulable.

1 R"" UB
Example 1 (See Figure 1)Taskrs misses its deadline when Ci+ m Z ((T, 1G5 + Cj) < R
task 7, increases its period. This can happen for the fol- J€hp(i) !

!ﬁg’ﬂ)géﬁ,,hf?;l'age;ag'f S:etQ(;,YI(t%pioltlecsz ais%??%gaicor?ﬁen the task will still be schedulable regardless of whether

_ ~ the task’s own period7, or a higher-priority task’s period
12,C5 = 8). .
o T}, increases.
The second anomaly concerns a situation where a deé-
crease in processor demand of a task negatively affects thean R, Y can be obtained by inserting; “® = 0 in the
2We defingorocessor demanaf a task in a time interval as the maximumle‘ct'hajrld S"_je of Eq_uat'on [}]'3 and use fix-point iteration, until
amount of processing time required by the task’s instances in the intervalEquation 1 is satisfied aR; > T;.

These two anomalies have two major implications. Firsé Circumventing Dhall’s effect
if a task arrives sporadically, less frequently tha_m a certain Wwhile the partitioned method relies on well-known opti-
bound, the task set may be unschedulable even if the taski&@l uniprocessor priority-assignment schemes, it is not clear
would be schedulable if the task arrived periodically. Secongls to what priority-assignment scheme should be used for the
higher-level adaption techniques, such as feedback contfgh-partitioned method. It is known that RM does not work

scheduling, can no longer assume that a task set will contingg| for the non-partitioned method [2]. Assume that the task
to be schedulable when a period of a task increases. A pggt(Ty, = 1,0, = 2¢),(Ty = 1,05 = 26),..., (T =

sible remedy is to adjust the execution times of tasks rathgro, — 2€), (Trns1 = 1 + €, Cimy1 = 1) should be sched-
than their periods, or use the schedulability test in Theoremjjieq using RM onn processors. In this case,; will have
3.2 Absence of transitivity the lowest priority and will only be scheduled after all other

Another difficulty with the non-partitioned method is thatasks have executed in parallel. The task set is unschedula-
some basic assumptions in uniprocessor scheduling no longlker and as — 0, the utilization become& = 1 no matter
hold for the multiprocessor case. Below, we present two ohew many processors are used, that is, the system utilization
servations associated with such non-transitivity. Us; = U/m decreases towards zerorasncreases.

The first observation concerns when a critical instant of We observe that if,,,; could somehow be assigned a
a task will occur. For the uniprocessor case, a critical imigher priority, the given task set would be schedulable. To
stant occurs when a task arrives at the same time asdtstain such a priority assignment, assign task priorities ac-
higher-priority tasks, which means that both the processesrding to the difference between period and execution time
demand and the interference from higher-priority tasks agg each task. Then;,, ,; would be assigned the highest pri-
maximized. For the multiprocessor case, the fact that the pesrity, and the task set would still be schedulable even if the
cessor demand from higher-priority tasks is maximized in axecution time of any single task would increase slightly.
interval does not imply that the corresponding interference is Based on this observation, we propose a new priority as-
maximized. signment scheme, call&kC, where the priority of a task;

is assigned according to the weighted difference between its

Observation 3 (Critical instant [7, 8]) For fixed-priority period and its execution time, that §,— k - C; (ties are bro-
preemptive non-partitioned multiprocessor scheduling, theken arbitrarily), wherek is a globalslack factor Note that
exist task sets where a critical instant of one of the tasR&C (whenk = 0) can also represent RM.
does not occur when it arrives at the same time as 'Eﬁl The basic problem

higher-priority tasks.]

For k < 0, we recognize Dhall's effect. Even for all

The second observation concerns the complexity of find-< & < 1, something similar to Dhall’s effect can occur.

ing an optimal priority assignment for the non-partitionedssume that the task séfl}; = 1,C; =€), (7> = 1,03 =
method. Deriving priorities optimally for the uniprocessok), ... (7,, = 1,C,, = €),(Tnys1 = }2 +6Cny =
case can be made according to the “test for lowest priok-(; _ <) wherel is a positive integer, should be scheduled
ity viability” algorithm [9]. A fundamental assumption in ging TkC with0 < k < 1 onm processors. As — 0, the
that algorithm is that, although different priority orderinggasyset is unschedulable with a utilization= 1.
of higher-priority ta§k§ give dlfferent schedules, the mterfey- Selecting a value of which is slightly larger thar, we
ence on a lower-priority task is not affected. For the multisg "oy herience something similar to Dhall's effect. Assume
processor case, different priority orderings of higher-priorit t the task setT, — 1.\ — k=1 T =10 —
tasks also give different schedules. However, the interferenpd! the task setlt = 1,0y = 5 +6),(Tx = 1, 2=
on a lower-priority task may also change and thereby affect + s (T = 1,Cp = 5=+ €),(Tnt1 = 5 +
schedulability. Consequently, even if we could use sched{%%—1 +6Chi1 = }2(1 e 5))s where% is a positive
lability tests that are necessary and sufficient, it is no longiteger, should be schedu’fed using TKC with< k& onm
possible to find an optimal priority assignment by using therocessors. As — 0, the task set is unschedulable with a
“test for lowest priority viability” approach. utilizationU = 1.

On the other hand, selecting a too largés a bad idea
Observation 4 (Dependence on order of higher priority) ~ since task priorities will then be selected such that the tasks
For fixed-priority preemptive non-partitioned multiprocessowith the longest execution time obtains the highest priority.
scheduling, there exist task sets (see Example 3) for whisasume that the task s€; = 1,C; = ﬁ +e),(Ty =
the response time of a task depends not onlffoand C; 1,y = L +¢),..., (), = 1,C,, = = +¢€), (T, =
of its higher-priority tasks, but also on the relative priority 1 -, 7 o TR T

gherp y ! P o ——— Cm+1 = €2) should be scheduled using TkC with

ordering of the those tasks. 1+k .)
9 k — oo onm processors. As — 0, this task set is un-

schedulable with a utilizatio/ = 1 no matter how many
rocessors are used.

Example 3 Consider the following schedulable task se
(Th = 3,C, = 1),(Th = 3,03 = 1),(T5 = 3,C3 = _ _
2),(Ty = 4,C4 = 2). If we assign priorities to these tasks4.2 A simple solution

according to RM (and gives lower priority than bothr, For TKC to be useful we need to select a good valuk. of
andr), the task set is schedulable. Howewerwill be un- we observe that the task sets presented that were unschedula-
schedulable if we swap the priority orderingafand ;. ble with a low system utilization all have in common that: (i)

; to 6 processors. The experimental results, and their theoret-
ical counterparts, are shown in Figure 3. The plot “adap-
tiveTKC (theoretic)” shows the least system utilization of
fully utilized constrained task sets, while the plot “RM (the-
oretic)” shows the system utilization of the task set:=
m+1,T1 :TQ = ... :Tm = 1,01 :CQ = ... =
Cmn =26, Tiny1 = 1+4¢ Cpy1 = 1, whene — 0. The
plots “adaptiveTKC (experimental)” and “RM (experimen-
tal)” show the least system utilization of the unschedulable
experimental (not only constrained) task sets. We draw the
following conclusions. First, both the theoretical and exper-
e S b imental results corroborate the anticipated behavior of RM,
namely that the system utilization should degrade towards
m zero asm increases. More importantly, though, the theoreti-
cal and experimental results indicate that adaptiveTkC seems
Figure 3: Theoretical and experimental results indicate that circumvent Dhall’s effect (since the system utilization is
adaptiveTKC can circumvent Dhall's effect, while RM denever lower than 0.38).
grades towards zero as increases. One may question if it is worth to consider the non-

the number of tasks is one greater than the number of procgg[tmoned method.when the bound of system utilization pro-
sors, and (ii) all highest-priority tasks have the same peridifled by the adaptiveTkC can be as low as 38%. However,
and execution time. Then, it is natural to try to optimize th&€ should have in mind that the best bound of system uti-
value ofk for these task sets (we call them constrained tadgation for the partitioned method is only 41% [10]. Re-

sets). We conjecture that the constrained task sets repre$&hily; we have also shown [11] that adaptiveTkC offers bet-

a worst-case scenario, in the sense that they are the fully $gt average-case performance than the best heuristics for par-
lized task sets with the least system utilization. titioning with similar complexity. This fact gives an incentive

To counter Dhall's effect and their similar effecs o derive a bound of system utilization for general task sets.

k < 1and smallk > 1), we should select a large value/af References

To counter the effect of the task set with a low utilization for[1] J. Y.-T. Leung and J. Whitehead. On the complexity of fixed-priority

largek, we should select a low value b&f scheduling of periodic, real-time tasksPerformance Evaluatign
We select a value of such that the conflicting task sets ~ 2(4):237-250, December 1982.

(small k versus largek) obtain the same system utilization, [2] S.K.Dhalland C. L. Liu. On areal-time scheduling proble@pera-

that is% I Lk _ ﬁ Theorem 2 proposes such a scheme, tions ResearQHZG(l):127—149, January/Februf’:lry 197.8. . .
.m + . . [3] J. Y.-T. Leung. A new algorithm for scheduling periodic, real-time
calledadaptive TkQproof in [6]):

tasks.Algorithmicg 4(2):209-219, 1989.
4] R. L. Graham. Boun n multipr ing timing anomali8§AM
Theorem 2 (Selecting the best k).COI’ISideI‘_m_Z 2 proces- [] Journgl 21‘ prlieglliﬂaizgmatigity(;)?ji;égzg, Mgrcah ?.ggg.sm
sors andn = m + 1 tasks. Then highest priority tasks have [5] R.Haand J.W.-S. Liu. Validating timing constraints in multiprocessor
the same period and execution time. The tasks are sorted with and distributed real-time systems. Rioc. of the IEEE Int| Conf.
respect tal; — k - C; and the task with the leadt — & - C;
obtains the highest priority. The followirigmaximizes the

T T
adaptiveTKC (theoretic)

RM (theoretic)

adaptiveTkC (experimental) ---+---
RM (experimental) >

08 |

system utilization

0.2 |

on Distributed Computing Systensages 162-171, Poznan, Poland,
June 21-24, 1994.

least system utilization of fully utilized task sets: [6] B. Andersson and J. Jonsson. Some insights on fixed-priority pre-
emptive non-partitioned multiprocessor scheduling. Technical Report
\/— 00-10, Dept. of Computer Engineering, Chalmers University of Tech-
_ 2 _
k= 1 . m—1+vom 6m+1 nology, S—412 96 Gteborg, Sweden, April 2000.
2 m [7] S.Lauzac, R. Melhem, and D. MassComparison of global and parti-

: o i tioning schemes for scheduling rate monotonic tasks on a multiproces-
and the cc.)rrespondmg least system utilization of fully utilized " "5, 0 of the EuroMicro Workshop on Real Time Sys{arages
task sets is: 188-195, Berlin, Germany, June 17-19, 1998.

m [8] L.Lundberg. Multiprocessor scheduling of age contraint processes. In
Us =2 5 Proc. of the IEEE Int'l Conference on Real-Time Computing Systems
3m—14++vVbm?—-6m+1

and ApplicationsHiroshima, Japan, October 27-29, 1998.

We see that the theoretically-derived lower bound of thé9] N.C.Audsley. Optimal priority assignment and feasibility of static pri-

system utilization is never lower thdhm,,, ., Us; > 0.38,
which shows that we have managed to circumvent Dhall's
effect for the constrained task set. [10]
In order to further strengthen our hypothesis that Dhall’s
effect can also be avoided for general task sets, we have
performed an extensive experimental study [6] using adaji]
tiveTkC. We simulated millions of randomly-generated task
sets (not only constrained) with varying levels of system uti-
lization (even ones belo38), and assumed system sizes up

ority tasks with arbitrary start times. Technical Report YCS 164, Dept.
of Computer Science, University of York, York, England Y01 5DD,
December 1991.

D. Oh and T. P. Baker. Utilization bounds farprocessor rate mono-
tone scheduling with static processor assignmBeial-Time Systems
15(2):183-192, September 1998.

B. Andersson and J. Jonsson. Fixed-priority preemptive multiproces-
sor scheduling: To partition or not to partition. Pmoc. of the Interna-
tional Conference on Real-Time Computing Systems and Applications
pages 337-346, Cheju Island, Korea, December 12—14, 2000.

