
Real-Time Systems

Anno accademico 2009/10
Laurea magistrale in informatica
Dipartimento di Matematica Pura e Applicata
Università di Padova
Tullio Vardanega

2009/10 UniPD, T. Vardanega Real-time systems 2 of 59

Outline

1. Introduction
2. Dependability issues
3. Scheduling issues
4. More on fixed-priority scheduling
5. Task interactions and blocking
6. System issues
7. Multi-cores and distribution
Bibliography

• J. Liu, "Real-Time Systems", Prentice Hall, 2000
• A. Burns, A. Wellings, “Concurrent and Real-Time Programming in Ada”,

Cambridge University Press, 2007
• A. Burns, A. Wellings, "Real Time Systems and Programming Languages: Ada

95, Real-Time Java and Real-Time C/POSIX", Addison-Wesley, 2009

2. Dependability issues

Credits to A. Burns and A. Wellings

2009/10 UniPD, T. Vardanega Real-time systems 4 of 59

Characteristics of a RTS

Complex and multidisciplinary
Concurrent control of separate system components
Interaction with special-purpose hardware
Predictability

Guaranteed response times

Domain-specific dependability
Reliability, safety, …

Efficient implementation

2009/10 UniPD, T. Vardanega Real-time systems 5 of 59

Dependability: ramifications

Dependability

Availability Reliability Safety Confidentiality Integrity Maintainability

Readiness
for Usage

Continuity of
Service

Delivery

Non-occurrence
of Catastrophic
Consequences

Non-occurrence
of unauthorized

disclosure of
information

Non-occurrence
of improper
alteration of
information

Aptitude to
undergo
repairs or
evolutions

2009/10 UniPD, T. Vardanega Real-time systems 6 of 59

Dependability: terminology

Dependability

Attributes

Means

Impairments

Availability

Confidentiality

Reliability
Safety

Integrity
Maintainability

Fault Prevention

Fault Tolerance

Fault Removal

Fault Forecasting
Faults

Errors

Failures

2009/10 UniPD, T. Vardanega Real-time systems 7 of 59

Safety – 1

General definition
Safety is freedom from conditions that can cause death, injury,
occupational illness, damage to (or loss of) equipment (or property),
or environmental harm

Most systems which have an element of risk associated with
their use are therefore unsafe by definition!
A mishap is an unplanned event or series of events that can
result in unacceptable effect (death, injury, etc.)
Safety is expressed as the probability that conditions which
can lead to mishaps do not occur regardless of whether the
intended function is performed
How does that relate to reliability?

2009/10 UniPD, T. Vardanega Real-time systems 8 of 59

Safety – 2

Paradox
Measures taken to increase the likelihood of a weapon firing when
required may increase the possibility of its accidental detonation
Aiming at better reliability may decrease safety

In many ways, the only safe airplane is one that never takes
off, however, not very reliable

Aiming at greater safety may decrease reliability

As with reliability, to ensure the safety requirements of an
embedded system, system safety analysis must be
performed throughout all stages of its development

2009/10 UniPD, T. Vardanega Real-time systems 9 of 59

Reliability

The reliability of a system is a measure of the success
with which it conforms to the specified behavior

May vary with time
Very solid metrics exist for hardware components

Electronic components are observed to fail at a constant rate
Reliability at time t for those components is modeled by

R(t) = Ge-λt

where G is a component-specific constant and λ is the sum of
the failure rates of all its constituent components

The mean time between failures (MTBF) is a
commonly used metric (time to failure + time to repair)

For a system without redundancy MTBF = 1 / λ

2009/10 UniPD, T. Vardanega Real-time systems 10 of 59

Reliability and fault tolerance

Goal of this segment
To understand the factors (faults) which affect the reliability of a
system and how faults can be tolerated

Topics in scope of this segment
Reliability, failure and faults
Failure modes
Fault prevention and fault tolerance
Software static redundancy (N-version programming)
Software dynamic redundancy
The recovery block approach to software fault tolerance

A comparison between N-version programming and recovery blocks
Dynamic redundancy and exceptions

2009/10 UniPD, T. Vardanega Real-time systems 11 of 59

Scope of discussion

Four sources of faults that can result in system
failure

Inadequate specification
Not covered here

Erroneous software design
Covered in this segment

Processor failure
Not covered here, see B&W book

Interference on the communication subsystem
Not covered here, see B&W book

2009/10 UniPD, T. Vardanega Real-time systems 12 of 59

Failure and Faults – 1

A failure is when the behavior of a system deviates from
what is specified for it
Failures result from unexpected problems internal to the
system which eventually manifest themselves in the system's
external behavior
These problems are called errors and their mechanical or
algorithmic or conceptual cause are termed faults

Errors are states of the system
Faults are what causes the error to exist

Systems are composed of components which are
themselves systems: hierarchically therefore

Failure} → {Fault → Error → Failure} → {Fault

2009/10 UniPD, T. Vardanega Real-time systems 13 of 59

Failure and Faults – 2

S1

Failure
(black-box view of S1)

S2

Fault
(the outer view of S1 in S2)

?

S3

2009/10 UniPD, T. Vardanega Real-time systems 14 of 59

Dependability means

Fault prevention attempts to eliminate any possibility of faults
creeping into a system before it goes operational

Fault avoidance
Fault removal

Fault tolerance enables a system to continue functioning even
in the presence of faults

Hardware / software fault tolerance
Static / dynamic fault tolerance

Both approaches attempt to produces systems which have
well-defined failure modes
Fault forecasting is of no interest here

2009/10 UniPD, T. Vardanega Real-time systems 15 of 59

Fault types

Permanent faults remain in the system until they are repaired
E.g., a broken wire or a software design error

Transient faults start at a particular time, remain in the system
for some period and then disappear

E.g., HW components with adverse reaction to radioactivity
Only fails when exposed

Many faults in communication systems are transient (e.g., congestion)

Intermittent faults are transient faults that occur from time to
time

E.g., a HW component that is heat sensitive, it works for a time, stops
working, cools down and then starts to work again

2009/10 UniPD, T. Vardanega Real-time systems 16 of 59

Software Faults

Colloquially called “bugs”
Bohr-bugs: consistently reproducible and identifiable

Pun on Bohr’s atom model
E.g., a division by zero, an out-of-bound access to an array

Heisen-bugs: extremely difficult or impossible to reproduce exactly
Pun on Heisenberg’s uncertainty principle of quantum mechanics
E.g., a race condition, …

Software doesn’t deteriorate with age
It is either correct or incorrect
But its faults can remain dormant for long periods so that errors are
not activated

2009/10 UniPD, T. Vardanega Real-time systems 17 of 59

Failure modes
Failure mode

Value domain Timing domain Arbitrary
(fail uncontrolled)

Constraint
error

Value
error

Early Omission Late

Fail silent Fail stop Fail controlled

2009/10 UniPD, T. Vardanega Real-time systems 18 of 59

Fault prevention: fault avoidance

Fault avoidance attempts to limit the introduction of faults
during system construction by

Use of the most reliable components within the given cost and
performance constraints
Use of thoroughly-refined techniques for interconnection of components
and assembly of subsystems
Packaging the hardware to screen out expected forms of interference
Rigorous, if not formal, specification of requirements
Use of proven design methodologies
Use of languages with facilities for data abstraction and modularity
Use of software engineering environments to help manipulate software
components and thereby manage complexity

2009/10 UniPD, T. Vardanega Real-time systems 19 of 59

Fault prevention: fault removal

In spite of fault avoidance, design faults may still inject errors in both
hardware and software components
Fault removal uses procedures for finding errors and removing their
causes

E.g., design reviews, program verification, code inspection, system testing
System testing however can never be exhaustive and remove all potential
faults

A test can only be used to show the presence of faults, not their absence
It is sometimes impossible to test under realistic conditions
Most tests are done with the system in simulation mode and it is difficult
to guarantee that the simulation is accurate
Errors that have been introduced at the requirements stage of the system
development may not manifest themselves until the system goes
operational

2009/10 UniPD, T. Vardanega Real-time systems 20 of 59

Limits of fault prevention approach

In spite of all the testing and verification techniques,
hardware components will certainly decay and fail

Even if all software design faults were removed
The fault prevention approach will therefore be
unsuccessful when

The frequency of failure or the duration of repair times are
unacceptable (too high, too long)
The system is inaccessible for maintenance and repair activities

An extreme example of such system is Voyager, the crewless
spacecraft currently 10 billions km from the sun!

In those cases fault tolerance is the necessary complement

2009/10 UniPD, T. Vardanega Real-time systems 21 of 59

Levels of fault tolerance

Full fault tolerance
The system continues to operate in the presence of faults, albeit for a
limited period, with no significant loss of functionality or performance

Graceful degradation (fail soft)
The system continues to operate in the presence of errors, accepting a
partial degradation of functionality or performance during recovery or
repair

Fail safe
The system maintains its integrity while accepting a temporary halt in
its operation (which must be fail silent or fail stop or fail controlled)

The level of fault tolerance required will depend on the
domain of application
Most safety-critical systems require full fault tolerance,
however in practice many settle for graceful degradation

2009/10 UniPD, T. Vardanega Real-time systems 22 of 59

Graceful degradation in ATC system

Full functionality within required
response times

Minimum functionality required
to maintain basic air traffic
control

Emergency functionality to provide
separation between aircraft only

Adjacent facility backup: used in the event of a
catastrophic failure, e.g., earthquake

2009/10 UniPD, T. Vardanega Real-time systems 23 of 59

Redundancy

All fault tolerance techniques rely on extra elements
introduced into the system to detect errors and faults and to
recover from them
Those extra elements are redundant as they are not required in
a perfect system

Technique often called protective redundancy
Minimize redundancy while maximizing reliability, subject to
the cost and size constraints of the system

The added components increase the complexity of the system
Can decrease reliability!

The common practice is to separate out the fault-tolerant
components from the rest of the system

2009/10 UniPD, T. Vardanega Real-time systems 24 of 59

Hardware fault tolerance

Static redundancy (error masking)
Redundant components in a system are used to hide the effects of faults
E.g., Triple Modular Redundancy (TMR)

3 identical subcomponents and majority voting circuits
The outputs are compared and if one differs from the other two that output is
masked out

Assumes the fault is not common (such as a design error) but is either
transient or due to component deterioration
To mask faults from multiple components requires NMR

Dynamic redundancy (error detection)
Error detection facility supplied inside a component indicates that the
output is in error
Recovery must be provided by another component
E.g., communication checksums and memory parity bits

2009/10 UniPD, T. Vardanega Real-time systems 25 of 59

Software fault tolerance

Used for detecting errors that result from design
faults or environmental failures
Static fault tolerance

N-Version programming
Software equivalent to NMR

Dynamic fault tolerance
Detection and recovery
Recovery blocks: backward error recovery
Exceptions: forward error recovery

2009/10 UniPD, T. Vardanega Real-time systems 26 of 59

N-Version Programming – 1

Design diversity
The independent generation of N (N > 2) functionally
equivalent programs from the same initial specification
No interactions between development groups
The programs execute concurrently with the same inputs
and their results are compared by a driver process
The results (assimilated to votes) should be identical
If they are not the consensus result – assuming there is
one – is taken to be correct

2009/10 UniPD, T. Vardanega Real-time systems 27 of 59

N-Version Programming – 2

Version 2Version 1

Driver

vote

Invoke
Inquire status

Invoke
Inquire status

Invoke
Inquire status

Version 3

vote
vote

2009/10 UniPD, T. Vardanega Real-time systems 28 of 59

Vote comparison

To what extent can votes be compared?
Far from obvious

Text or integer or Boolean arithmetic will produce
identical results

Can vote on equality
Real numbers will produce different values

Need inexact voting techniques
User defined types outside of numeric will need
their own equality

E.g., limited types in Ada

2009/10 UniPD, T. Vardanega Real-time systems 29 of 59

Consistent comparison problem

> T

Temperature (A/D) reading

> TTrue

P1

V1

> T
True

> P

V2 V3

Each version
will produce a
different result,
but correct within
finite-precision
arithmetic

Even using
inexact voting,
the problem occurs
when the values
are close to the
decision threshold

T1 T3T2

Pressure (A/D) reading

> P

P2

True False

False

2009/10 UniPD, T. Vardanega Real-time systems 30 of 59

N-Version Programming – 3

Initial specification
The majority of software faults stem from inadequate specification
A specification error will manifest itself in all N versions of the implementation

Independence of effort
Experiments produce conflicting results.
A complex part of a specification leads to lack of understanding of the
requirements
If poorly specified requirements also refer to rarely occurring input data, common
design errors may not be caught during system testing

Adequate budget
The predominant cost in real-time embedded systems is software
A 3-version system will triple the budget requirement and complicate maintenance
Would a more reliable system be produced if the resources potentially available for
constructing an N-versions were instead used to produce a better single version?

2009/10 UniPD, T. Vardanega Real-time systems 31 of 59

Software dynamic redundancy

Error detection
No fault tolerance scheme can be utilized until the associated error is
detected

Damage confinement and assessment
To what extent has the system been corrupted?
The delay between fault occurrence and error detection means that
erroneous information could have spread throughout the system

Error recovery
Techniques should aim to transform the corrupted system into a state
from which it can continue its normal operation (perhaps with
degraded functionality)

Fault treatment and continued service
An error is a symptom/manifestation of a fault
Although the damage is repaired the fault may still exist

2009/10 UniPD, T. Vardanega Real-time systems 32 of 59

Error detection

Environmental detection
Hardware

E.g., illegal instruction
OS / run-time support

E.g., null pointer
Application detection

Replication checks
Timing checks
Reversal checks
Coding checks
Reasonableness checks
Structural checks
Dynamic reasonableness check

2009/10 UniPD, T. Vardanega Real-time systems 33 of 59

Damage confinement and assessment

Damage assessment is closely related to damage confinement
techniques used

Damage confinement is concerned with structuring the system
so as to minimize the damage caused by a faulty component
(a.k.a. firewalling)

Modular decomposition provides static damage confinement
Allows data to flow through well-defined pathways

This needs a strongly typed language

Atomic actions provides dynamic damage confinement
They are used to progress the system from one consistent
state to another

2009/10 UniPD, T. Vardanega Real-time systems 34 of 59

Forward error recovery

Forward error recovery continues on from an erroneous
state by making selective corrections to the system state
This includes making safe the controlled environment after
it may have become hazardous or damaged because of the
activation of the error
It is system specific and depends on accurate predictions of
the location (where to look), cause of errors (how to tell)
and damage assessment
Examples

Redundant pointers in data structures
Use of self-correcting codes such as Hamming Codes

2009/10 UniPD, T. Vardanega Real-time systems 35 of 59

Backward error recovery

Backward error recovery relies on restoring the system to a
previous safe state and executing an alternative section of the
program

This has the same functionality but uses a different algorithm and
therefore no same fault
As in N-Version Programming

The point to which a process is restored is called a recovery
point and the act of establishing it is termed check-pointing

The recovery point contains a trustworthy system state
The erroneous state is cleared and no attempt is made at finding the
location or cause of the fault
Can therefore be used to recover from unanticipated faults including
design errors
But it cannot undo errors in the environment!

2009/10 UniPD, T. Vardanega Real-time systems 36 of 59

The domino effect

With cooperative concurrent processes, Backward
Error Recovery becomes harder

R11

R21

P1

P2

R12

R21

R13

IPC1 IPC2 IPC3 IPC4

Error detection

Time

P1 rolls back to R13
with no adverse effect on P2

If P2 rolls back to R21
IPC4 must be undone

but then we have a domino effect

2009/10 UniPD, T. Vardanega Real-time systems 37 of 59

Fault treatment and continued service

Error recovery returns the system to an error-free state
The error may however recur
The final phase of fault tolerance thus is to eradicate the fault from the system
The automatic treatment of faults is difficult and system specific
Some systems assume all faults are transient; others that error recovery
techniques can cope with staying faults
Fault treatment can be divided into 2 stages

Fault location
System repair

Error detection techniques can help trace the fault to a component
The hardware component can be replaced
A software fault can be removed in a new version of the code

But non-stop applications shall then modify the program while executing!

2009/10 UniPD, T. Vardanega Real-time systems 38 of 59

Recovery block – 1

Language support for backward error recovery
At the entrance to a block is an automatic recovery point and at the exit
an acceptance test
The acceptance test is used to test that the system is in an acceptable state
after the block’s execution

Primary module
If the acceptance test fails, the program is restored to the recovery point at
the beginning of the block and an alternative module is executed
If the alternative module also fails the acceptance test, the program is
restored to the recovery point and yet another module is executed

And so forth
If all modules fail then the block fails and recovery must take place at a
higher level

2009/10 UniPD, T. Vardanega Real-time systems 39 of 59

Recovery block – 2

Recovery blocks can be
nested

If all alternatives in a
nested recovery block fail
the acceptance test, the
outer level recovery point
will be restored and an
alternative module to that
block will be executed

ensure <acceptance test>
by

<primary module>
else by

<alternative module>
else by

<alternative module>
...
else by

<alternative module>
else error

2009/10 UniPD, T. Vardanega Real-time systems 40 of 59

Recovery block – 3

Establish
Recovery

Point
Alternatives?

Execute
Next

Alternative

T

Fail
Recovery

Block

F

Acceptance
Test

Restore
Recovery

Point

F

Discard
Recovery

Point

2009/10 UniPD, T. Vardanega Real-time systems 41 of 59

The acceptance test

The acceptance test provides the error detection mechanism which
enables the redundancy in the system to be exploited
The design of the acceptance test is crucial to the efficacy of the Recovery
Block scheme
There is a trade-off between providing comprehensive acceptance tests
and keeping overhead to a minimum, so that fault-free execution is not
affected
Note that the term used is acceptance, not correctness

This allows a component to provide a degraded service
All the previously discussed error detection techniques can be used to
form the acceptance tests
However, care must be taken as a faulty acceptance test may lead to
residual errors going undetected

2009/10 UniPD, T. Vardanega Real-time systems 42 of 59

N-Version Programming vs. Recovery
Blocks

Type of redundancy
NVP is static, RB is dynamic

Design overheads
Both require alternative algorithms

NVP requires driver, RB requires acceptance test
Run-time overheads

NVP requires ×N resources
RB requires establishing recovery points

Diversity of design
Both are susceptible to errors in requirements

Error detection
Vote comparison (NVP) vs. acceptance test (RB)

Atomicity
NVP vote before it outputs to the environment
RB must be structured to only output after passing an acceptance test

2009/10 UniPD, T. Vardanega Real-time systems 43 of 59

Dynamic redundancy and exceptions

An exception can be defined as the occurrence of an error
Bringing an exception to the attention of the invoker of the
operation which caused the exception, is called raising
(signaling, throwing) the exception
The invoker's response is called handling (catching) the
exception
Exception handling is a forward error recovery mechanism as
there is no rollback to a previous state

Control is passed to the handler for it initiate the recovery procedures
However, the exception handling facility can also be used as
an element of backward error recovery

Technically possible but awkward without language support

2009/10 UniPD, T. Vardanega Real-time systems 44 of 59

Exceptions – 1

Exception handling can be used to
Cope with abnormal conditions arising in the
environment

The original motivation
Enable program design faults to be tolerated

Not the original intent with exceptions!
Provide a general-purpose error detection and
recovery facility

2009/10 UniPD, T. Vardanega Real-time systems 45 of 59

Exceptions – 2

Requirements for an exception handling facility
The facility must be simple to understand and use
The code for exception handling should not obscure
understanding of the program's nominal operation
The mechanism should be designed so that run-time
overheads are incurred only when handling an exception
The mechanism should allow uniform treatment for
exceptions detected by the environment and by the program
The exception mechanism should allow recovery actions to be
programmed

2009/10 UniPD, T. Vardanega Real-time systems 46 of 59

Exceptions – 3

Two sources of detection
Environmental detection
Application error detection

A synchronous exception is raised as an immediate
result of a process attempting an inappropriate
operation
An asynchronous exception is raised some time after
the operation causing the error

It may be raised in the process which executed the operation
or in another process
Asynchronous exceptions are often called asynchronous
notifications or signals

2009/10 UniPD, T. Vardanega Real-time systems 47 of 59

Exceptions – 4

Detected by the environment and raised synchronously
E.g. array bounds error or divide by zero

Detected by the application and raised synchronously
E.g. the failure of a program-defined assertion check

Detected by the environment and raised asynchronously
E.g. an exception raised due to the failure of some health monitoring
mechanism

Detected by the application and raised asynchronously
E.g. one process may recognise that an error condition has occurred which
can effect another process

Causing it to miss its deadline or not to terminate correctly

2009/10 UniPD, T. Vardanega Real-time systems 48 of 59

Exceptions – 5

Within a program, there may be several handlers for
a particular exception
Associated with each handler is a domain which
specifies the region of computation during which, if
an exception occurs, the handler will be activated

A block in Ada, a try block in Java

The accuracy with which a domain can be specified
will determine how precisely the source of the
exception can be located

2009/10 UniPD, T. Vardanega Real-time systems 49 of 59

Exceptions – 6

If no handler is associated with the block or procedure
May regard it as a programmer error to be reported at compile time
An exception raised in a procedure and not handled in it can only be
handled within the context the procedure was called from

E.g., an exception raised in a procedure as a result of a failed assertion
involving the parameters

CHILL requires that a procedure specifies which exceptions it
may raise (that it does not handle locally)

The compiler can then check the calling context for the presence of an
appropriate handler

Java allows a function to define which exceptions it can raise
However, unlike CHILL, it does not require a handler to be available in
the calling context

2009/10 UniPD, T. Vardanega Real-time systems 50 of 59

Exceptions – 7

Otherwise look for handlers up the chain of invokers
This is called propagating the exception
The Ada and Java approach

A problem occurs where exceptions have scope
An exception may thus be propagated outside its scope
This makes it impossible for a handler to be found

Most languages provide a catch-all exception handler
An unhandled exception causes a sequential program to be
aborted
If the program contains more than one process (thread) and a
particular process does not handle an exception it has raised,
then usually that process (thread) is aborted

However, it is not clear whether the exception should be propagated to
the parent process

2009/10 UniPD, T. Vardanega Real-time systems 51 of 59

Exceptions – 8

Should the invoker of the exception continue its execution after
the exception has been handled?
If the invoker can continue, then it may be possible for the
handler to cure the problem that caused the exception to be
raised and for the invoker to resume as if nothing had happened

This is referred to as the resumption or notify model
Instead the model where control is not returned to the invoker is
called termination or escape
Clearly it is possible to have a model in which the handler can
decide whether to resume the operation which caused the
exception, or to terminate the operation

This is called the hybrid model

2009/10 UniPD, T. Vardanega Real-time systems 52 of 59

The Resumption Model – 1

Hr

P

Q

R

1. P invokes Q

2. Q invokes R

3. R raises r

4. Hr raises q
5. Hq resumes Hr

6. Hr resumes R

Hq

2009/10 UniPD, T. Vardanega Real-time systems 53 of 59

The Resumption Model – 2

It is difficult to repair errors raised by the run-time system
E.g., an arithmetic overflow in the middle of a sequence of complex
expressions results in registers containing partial evaluations: calling the
handler overwrites these registers

The Pearl and Mesa languages (both from around 1980) support the
resumption and termination models

Ada and Java support the termination model
Implementing a strict resumption model is difficult

A compromise possibility is to re-execute the block associated with the
exception handler: Eiffel does that
For such a scheme to work the local variables of the block must not be re-
initialised on a retry (needs a form of non-reentrancy)

The resumption model is useful with asynchronous exceptions when
current execution has little to do with the exception context

2009/10 UniPD, T. Vardanega Real-time systems 54 of 59

The Termination Model
Procedure P

Procedure Q
Procedure RP invokes Q

Q invokes R

Exception r raised

Handler sought

P terminates

Handler for r

2009/10 UniPD, T. Vardanega Real-time systems 55 of 59

Ideal fault-tolerant component

Normal activity Exception handler

Service
request

Normal
response

Interface
exception

Failure
exception

Return to
normal activity

Internal
exception

Service
request

Normal
response

Failure
exception

Interface
exception

2009/10 UniPD, T. Vardanega Real-time systems 56 of 59

Summary – 1

Reliability
A measure of the success with which the system conforms to some
authoritative specification of its behavior

When the behavior of a system deviates from that which is
specified for it, this is called a failure
Failures result from faults
Faults can be accidentally or intentionally introduced into a
system
They can be transient, permanent or intermittent
Fault prevention consists of fault avoidance and fault removal
Fault tolerance involves the introduction of redundant
components into a system so that faults can be detected and
tolerated

2009/10 UniPD, T. Vardanega Real-time systems 57 of 59

Summary – 2

N-version programming
The independent generation of N >= 2 functionally
equivalent programs from the same initial specification

Based on the assumptions that a program can be completely,
consistently and unambiguously specified, and that programs
which have been developed independently will fail
independently
Dynamic redundancy

Error detection, damage confinement and assessment, error
recovery, and fault treatment and continued service

Atomic actions aid damage confinement
Not discussed here

2009/10 UniPD, T. Vardanega Real-time systems 58 of 59

Summary – 3

With backward error recovery it is necessary for
communicating processes to reach consistent recovery points
to avoid the domino effect
For sequential systems, the recovery block is an appropriate
language concept for backward error recovery
Although forward error recovery is system specific, exception
handling has been identified as an appropriate framework for
its implementation
The concept of an ideal fault-tolerant component was
introduced which uses exceptions
The notions of software safety and dependability have been
introduced

2009/10 UniPD, T. Vardanega Real-time systems 59 of 59

Summary – 4

It is not unanimously accepted that exception
handling facilities should be provided in a language

For example, C and occam2 have none

To sceptics an exception is a GOTO where the
destination is undeterminable and the source is
unknown!
They can therefore be considered to be the
antithesis of structured programming
This is not the view taken here!

