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4. More on Fixed-Priority 
Scheduling

Credits to A. Burns and A. Wellings
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Simple workload model

The application is assumed to consist of a fixed set of tasks
All tasks are periodic with known periods

This defines the periodic workload model
The tasks are completely independent of each other
All system overheads (context-switch times and so on) are 
ignored 

Assumed to have zero cost or otherwise negligible
All tasks have a deadline equal to their period 

Each task must complete before it is next released
All tasks have a fixed WCET

Operation modes are not considered
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Standard notation

B: Worst-case blocking time for the task (if applicable)
C: Worst-case computation time (WCET) of the task
D: Deadline of the task 
I: The interference time of the task
J: Release jitter of the task 
N: Number of tasks in the system 
P: Priority assigned to the task (if applicable)
R: Worst-case response time of the task
T: Minimum time between task releases (task period)
U: The utilization of each task (equal to C/T)
a-Z: The name of a task
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Fixed-priority scheduling (FPS)

Currently this is the most widely used approach
And it is the distinct focus of this segment

Each task has a fixed, static, priority which is 
computed off-line
The ready tasks are dispatched to execution in the 
order determined by their priority
In real-time systems the “priority” of a task is 
derived from its temporal requirements, not its 
importance to the correct functioning of the system 
or its integrity (!)
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Preemption and non-preemption – 1

With priority-based scheduling, a high-priority task may be 
released during the execution of a lower priority one
In a preemptive scheme, there will be an immediate switch 
to the higher-priority task
With non-preemption, the lower-priority task will be 
allowed to complete before the other may execute
Preemptive schemes enable higher-priority tasks to be more 
reactive, hence they are preferred
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Preemption and non-preemption – 2

Alternative strategies allow a lower priority task to continue 
to execute for a bounded time
These schemes are known as deferred preemption or 
cooperative dispatching
Schemes such as EDF can also take on a preemptive or 
non-preemptive form
Value-based scheduling (VBS) can too

VBS is useful when the system becomes overloaded and some 
adaptive scheme of scheduling is needed
VBS consists in assigning a value to each task and then employing 
an on-line value-based scheduling algorithm to decide which task to 
run next
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Rate-monotonic priority assignment

Each task is assigned a (unique) priority based on its period
The shorter the period, the higher the priority
Tasks are assigned distinct priorities (!)

For any two tasks i and j

This assignment is optimal
If any task set can be scheduled (using preemptive priority-based 
scheduling) with a fixed-priority assignment scheme, then the given task 
set can also be scheduled with a rate monotonic assignment scheme
This is termed rate monotonic scheduling

Nomenclature
Priority 1 as numerical value is the lowest (least) priority but the indices are 
still sorted highest to lowest (!)

P jPiT jT i >⇒<

2009/10 UniPD, T. Vardanega Real-time systems 10 of 37

Utilization-based analysis

A simple sufficient but not necessary schedulability 
condition exists for rate monotonic scheduling 

But only for task sets with D=T
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Example: task set A

The combined utilization is 0.82 (or 82%)
This is above the threshold for three tasks (0.78), hence this 
task set fails the utilization test
Then we have no a-priori answer

0.333 (high)1030c

0.2521040b

0.241 (low)1250a

UPCT

UtilizationPriorityComputation TimePeriodTask

2009/10 UniPD, T. Vardanega Real-time systems 12 of 37

Timeline for task set A
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Task
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Task Completion Time
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Executing

Preempted

Time
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Example: task set B

The combined utilization is 0.775 
This is below the threshold for three tasks (0.78), hence this 
task set will meet all its deadlines

0.253 (high)416c

0.1252540b

0.401 (low)3280a

UPCT

UtilizationPriorityComputation TimePeriodTask
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Example: task set C

The combined utilization is 1.0
This is above the threshold for three tasks (0.78) but the 
task set will meet all its deadlines (!)

0.253 (high)520c

0.2521040b

0.501 (low)4080a

UPCT

UtilizationPriorityComputation TimePeriodTask
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Timeline for task set C
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Critique of utilization-based tests

They are not exact
They are not general
But they are Ω(N)

Which makes them interesting for a large class of users

The test is said to be sufficient but not necessary 
and as such falls in the class of “schedulability tests”
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Response time analysis – 1

The worst-case response time R of task i is 
calculated first and then checked (trivially) with its 
deadline

Where I is the interference from higher priority tasks

iii ICR +=

R  ≤ Dii
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Calculating R

During R, each higher priority task j will execute a 
number of times

The ceiling function        gives the smallest integer 
greater than the fractional number on which it acts

E.g., the ceiling of 1/3 is 1, of 6/5 is 2, and of 6/3 is 2

The total interference is given by
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Response time equation

Where hp(i) is the set of tasks with priority higher than task i
Solved by forming a recurrence relationship

The set of values                                   is monotonically non-decreasing 
when                  the solution to the equation has been found, must not be 
greater than      (e.g. 0 or     )
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Response time algorithm
for i in 1..N loop -- for each task in turn

n := 0

loop
calculate new
if         then

exit value found
end if
if then

exit value not found
end if
n := n + 1

end loop
end loop
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Example: task set D

0.251 (low)520c
0.252312b

0.4285…3 (high)37a
UPCT

UtilizationPriorityComputation TimePeriodTask

3=aR

6

63
7
63

63
7
33

3

2

1

0

=

=⎥⎥
⎤

⎢⎢
⎡+=

=⎥⎥
⎤

⎢⎢
⎡+=

=

b

b

b

b

R

w

w

w

2009/10 UniPD, T. Vardanega Real-time systems 22 of 37

Example (cont’d)
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Revisiting task set C

The combined utilization is 1.0
This is above the utilization threshold for three tasks (0.78) 
hence the utilization-based schedulability test failed
But response time analysis shows that the task set will meet 
all its deadlines

53 (high)520c

1521040b

801 (low)4080a

RPCT

Response TimePriorityComputation TimePeriodTask
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Response time analysis – 2

RTA is sufficient and necessary
Hence it falls by right in the class of feasibility tests

If the task set passes the test its tasks will meet all 
their deadlines
If it fails the test then, at run time, a task will miss 
its deadline 

Unless the computation time estimations (the WCET) 
themselves turn out to be pessimistic
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Sporadic tasks

Sporadic tasks have a minimum inter-arrival time
Which must be preserved at run time if schedulability is to be 
ensured, but how can it ?

They also require D≤T
The response time algorithm for fixed-priority scheduling works 
perfectly for D<T as long as the stopping criterion becomes

Interestingly this also works perfectly well with any priority 
ordering

i
n

i DW >+1
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Hard and soft tasks

In many situations the WCET for sporadic tasks are 
considerably higher than the average case
Interrupts often arrive in bursts and an abnormal 
sensor reading may lead to significant additional 
computation
Measuring schedulability with WCET may lead to 
very low processor utilizations being observed in 
the actual running system
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General guidelines

Rule 1
All tasks should be schedulable using average execution 
times and average arrival rates

There may therefore be situations in which it is not possible to meet 
all current deadlines
This condition is known as a transient overload

Rule 2
All hard real-time tasks should be schedulable using WCET 
and worst-case arrival rates of all tasks (including soft)

No hard real-time task will therefore miss its deadline
If Rule 2 incurs unacceptably low utilizations for “normal 
execution” then WCET values or arrival rates must be reduced
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Handing aperiodic tasks – 1

These do not have minimum inter-arrival times
But also no deadline
However we may be interested in the system being responsive to them

We can run aperiodic tasks at a priority below the priorities 
assigned to hard tasks

In a preemptive system they therefore cannot steal resources from the 
hard tasks

This does not provide adequate support to soft tasks which 
will often miss their deadlines 
To improve the situation for soft tasks, a server can be 
employed
Servers protect the processing resources needed by hard tasks 
but otherwise allow soft tasks to run as soon as possible
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Handing aperiodic tasks – 2

Polling server (PS)
A fixed priority periodic task serves the aperiodic
tasks requests
It is given a fixed computing time quantum that uses 
to serve aperiodic task requests
If no aperiodic tasks require execution the server 
time quantum is given over to execute periodic tasks
The time quantum is reallocated to the server at the 
start of the new period
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Handing aperiodic tasks – 3

Deferrable Server (DS)
High-priority periodic server handles aperiodic requests
Similar in principle to PS
However, if no aperiodic tasks require execution, the 
server retains its time quantum

Hence if an aperiodic task requires execution during the server 
period, it can be served immediately

In the absence of pending requests the server does not sleep but
just waits for any incoming one 

The time quantum is reallocated to the server at the start of the 
new period
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Handing aperiodic tasks – 4

Priority Exchange (PE)
High-priority periodic server serves aperiodic tasks, if any
Similar in principle to DS 
If no aperiodic tasks require execution

PE exchanges its own priority with that of the pending (soft) 
periodic task with priority lower than that of itself (the server) 
and highest amongst all other pending periodic tasks
Hence the selected periodic task inherits a priority higher than
its own
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Handing aperiodic tasks – 5

Sporadic Server (SS)
High-priority periodic server activated (enabled) at a 
sufficiently high rate to server requests from sporadic 
tasks
SS ≠ DS

The time quantum is replenished only when exhausted, rather 
than at each server activation
This places a tolerable bound on the overhead caused by the 
server

The SS is the default server policy in POSIX
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Task sets with D < T

For D = T, Rate Monotonic priority assignment 
(a.k.a. ordering) is optimal
For D < T, Deadline Monotonic priority assignment
(ordering) is optimal

jiji PPDD >⇒<
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DMPO is optimal – 1

Deadline monotonic priority ordering (DMPO) is optimal

if any task set Q that is schedulable by priority-driven scheme W it is 
also schedulable by DMPO

The proof of optimality of DMPO involves transforming 
the priorities of Q as assigned by W until the ordering 
becomes as assigned by DMPO
Each step of the transformation will preserve schedulability
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DMPO is optimal – 2

Let i, j be two tasks with adjacent priorities in Q such that 
under W

Define scheme W’ to be identical to W except that tasks i and j
are swapped
Now consider the schedulability of Q under W’
All tasks with priorities greater than j will be unaffected by this 
change to lower-priority tasks
All tasks with priorities lower than i will be unaffected as they 
will experience the same interference from i and j
Task j, which was schedulable under W, now has a higher 
priority, suffers less interference, and hence must be schedulable 
under W’

jiji DDPP >∧>
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DMPO is optimal – 3

All that is left is the need to show that task i, which has had its 
priority lowered, is still schedulable
Under W

Hence task j only interferes once during the execution of task i
It follows that:

Hence task i is still schedulable after the switch
Priority scheme W’ can now be transformed to W" by choosing 
two more tasks that are in the wrong order for DMP and 
switching them

iiijjj TDandDDDR ≤<< ,

ijji DDRR <≤='
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Summary

A simple (periodic) workload model
Delving into fixed-priority scheduling
A (rapid) survey of schedulability tests
Some extensions to the workload model
Priority assignment techniques


