
Real-Time Systems

Anno accademico 2009/10
Laurea magistrale in informatica
Dipartimento di Matematica Pura e Applicata
Università di Padova
Tullio Vardanega

2009/10 UniPD, T. Vardanega Real-time systems 2 of 37

Outline

1. Introduction
2. Dependability issues
3. Scheduling issues
4. More on fixed-priority scheduling
5. Task interactions and blocking
6. System issues
7. Multi-cores and distribution
Bibliography

• J. Liu, "Real-Time Systems", Prentice Hall, 2000
• A. Burns, A. Wellings, “Concurrent and Real-Time Programming in Ada”,

Cambridge University Press, 2007
• A. Burns, A. Wellings, "Real Time Systems and Programming Languages: Ada

95, Real-Time Java and Real-Time C/POSIX", Addison-Wesley, 2009

4. More on Fixed-Priority
Scheduling

Credits to A. Burns and A. Wellings

2009/10 UniPD, T. Vardanega Real-time systems 4 of 37

Simple workload model

The application is assumed to consist of a fixed set of tasks
All tasks are periodic with known periods

This defines the periodic workload model
The tasks are completely independent of each other
All system overheads (context-switch times and so on) are
ignored

Assumed to have zero cost or otherwise negligible
All tasks have a deadline equal to their period

Each task must complete before it is next released
All tasks have a fixed WCET

Operation modes are not considered

2009/10 UniPD, T. Vardanega Real-time systems 5 of 37

Standard notation

B: Worst-case blocking time for the task (if applicable)
C: Worst-case computation time (WCET) of the task
D: Deadline of the task
I: The interference time of the task
J: Release jitter of the task
N: Number of tasks in the system
P: Priority assigned to the task (if applicable)
R: Worst-case response time of the task
T: Minimum time between task releases (task period)
U: The utilization of each task (equal to C/T)
a-Z: The name of a task

2009/10 UniPD, T. Vardanega Real-time systems 6 of 37

Fixed-priority scheduling (FPS)

Currently this is the most widely used approach
And it is the distinct focus of this segment

Each task has a fixed, static, priority which is
computed off-line
The ready tasks are dispatched to execution in the
order determined by their priority
In real-time systems the “priority” of a task is
derived from its temporal requirements, not its
importance to the correct functioning of the system
or its integrity (!)

2009/10 UniPD, T. Vardanega Real-time systems 7 of 37

Preemption and non-preemption – 1

With priority-based scheduling, a high-priority task may be
released during the execution of a lower priority one
In a preemptive scheme, there will be an immediate switch
to the higher-priority task
With non-preemption, the lower-priority task will be
allowed to complete before the other may execute
Preemptive schemes enable higher-priority tasks to be more
reactive, hence they are preferred

2009/10 UniPD, T. Vardanega Real-time systems 8 of 37

Preemption and non-preemption – 2

Alternative strategies allow a lower priority task to continue
to execute for a bounded time
These schemes are known as deferred preemption or
cooperative dispatching
Schemes such as EDF can also take on a preemptive or
non-preemptive form
Value-based scheduling (VBS) can too

VBS is useful when the system becomes overloaded and some
adaptive scheme of scheduling is needed
VBS consists in assigning a value to each task and then employing
an on-line value-based scheduling algorithm to decide which task to
run next

2009/10 UniPD, T. Vardanega Real-time systems 9 of 37

Rate-monotonic priority assignment

Each task is assigned a (unique) priority based on its period
The shorter the period, the higher the priority
Tasks are assigned distinct priorities (!)

For any two tasks i and j

This assignment is optimal
If any task set can be scheduled (using preemptive priority-based
scheduling) with a fixed-priority assignment scheme, then the given task
set can also be scheduled with a rate monotonic assignment scheme
This is termed rate monotonic scheduling

Nomenclature
Priority 1 as numerical value is the lowest (least) priority but the indices are
still sorted highest to lowest (!)

P jPiT jT i >⇒<

2009/10 UniPD, T. Vardanega Real-time systems 10 of 37

Utilization-based analysis

A simple sufficient but not necessary schedulability
condition exists for rate monotonic scheduling

But only for task sets with D=T

)12(/1

1

−≤≡ ∑
=

N
N

i i

i N
T
CU

∞→≤ NU as 69.0

2009/10 UniPD, T. Vardanega Real-time systems 11 of 37

Example: task set A

The combined utilization is 0.82 (or 82%)
This is above the threshold for three tasks (0.78), hence this
task set fails the utilization test
Then we have no a-priori answer

0.333 (high)1030c

0.2521040b

0.241 (low)1250a

UPCT

UtilizationPriorityComputation TimePeriodTask

2009/10 UniPD, T. Vardanega Real-time systems 12 of 37

Timeline for task set A

0 10 20 30 40 50 60

Task

a

b

c

Task Release Time

Task Completion Time
Deadline Met
Task Completion Time
Deadline Missed

Executing

Preempted

Time

2009/10 UniPD, T. Vardanega Real-time systems 13 of 37

Example: task set B

The combined utilization is 0.775
This is below the threshold for three tasks (0.78), hence this
task set will meet all its deadlines

0.253 (high)416c

0.1252540b

0.401 (low)3280a

UPCT

UtilizationPriorityComputation TimePeriodTask

2009/10 UniPD, T. Vardanega Real-time systems 14 of 37

Example: task set C

The combined utilization is 1.0
This is above the threshold for three tasks (0.78) but the
task set will meet all its deadlines (!)

0.253 (high)520c

0.2521040b

0.501 (low)4080a

UPCT

UtilizationPriorityComputation TimePeriodTask

2009/10 UniPD, T. Vardanega Real-time systems 15 of 37

Timeline for task set C

0 10 20 30 40 50 60

Task

a

b

c

70 80
Time

2009/10 UniPD, T. Vardanega Real-time systems 16 of 37

Critique of utilization-based tests

They are not exact
They are not general
But they are Ω(N)

Which makes them interesting for a large class of users

The test is said to be sufficient but not necessary
and as such falls in the class of “schedulability tests”

2009/10 UniPD, T. Vardanega Real-time systems 17 of 37

Response time analysis – 1

The worst-case response time R of task i is
calculated first and then checked (trivially) with its
deadline

Where I is the interference from higher priority tasks

iii ICR +=

R ≤ Dii

2009/10 UniPD, T. Vardanega Real-time systems 18 of 37

Calculating R

During R, each higher priority task j will execute a
number of times

The ceiling function gives the smallest integer
greater than the fractional number on which it acts

E.g., the ceiling of 1/3 is 1, of 6/5 is 2, and of 6/3 is 2

The total interference is given by

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
=

j

i

T
R ReleasesofNumber

⎡ ⎤

j
j

i C
T
R
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡

2009/10 UniPD, T. Vardanega Real-time systems 19 of 37

Response time equation

Where hp(i) is the set of tasks with priority higher than task i
Solved by forming a recurrence relationship

The set of values is monotonically non-decreasing
when the solution to the equation has been found, must not be
greater than (e.g. 0 or)

j
ihpj

j

i
ii C

T
RCR ∑ ⎥
⎥

⎤
⎢
⎢

⎡
+=

∈)(

j
ihpj

j

n
i

i
n
i C

T
wCw ∑ ⎥

⎥

⎤
⎢
⎢

⎡
+=

∈

+

)(

1

,..,...,,, 210 n
iiii wwww

1+= n
i

n
i ww

0
iw

iC

2009/10 UniPD, T. Vardanega Real-time systems 20 of 37

Response time algorithm
for i in 1..N loop -- for each task in turn

n := 0

loop
calculate new
if then

exit value found
end if
if then

exit value not found
end if
n := n + 1

end loop
end loop

i
n
i Cw =:

1+n
iw

n
i

n
i ww =+1

n
ii wR =

i
n
i Tw >+1

2009/10 UniPD, T. Vardanega Real-time systems 21 of 37

Example: task set D

0.251 (low)520c
0.252312b

0.4285…3 (high)37a
UPCT

UtilizationPriorityComputation TimePeriodTask

3=aR

6

63
7
63

63
7
33

3

2

1

0

=

=⎥⎥
⎤

⎢⎢
⎡+=

=⎥⎥
⎤

⎢⎢
⎡+=

=

b

b

b

b

R

w

w

w

2009/10 UniPD, T. Vardanega Real-time systems 22 of 37

Example (cont’d)

173
12
143

7
145

143
12
113

7
115

113
12
53

7
55

5

3

2

1

0

=⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

=⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

=⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

=

c

c

c

c

w

w

w

w

20

203
12
203

7
205

203
12
173

7
175

5

4

=

=⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

=⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

c

c

c

R

w

w

2009/10 UniPD, T. Vardanega Real-time systems 23 of 37

Revisiting task set C

The combined utilization is 1.0
This is above the utilization threshold for three tasks (0.78)
hence the utilization-based schedulability test failed
But response time analysis shows that the task set will meet
all its deadlines

53 (high)520c

1521040b

801 (low)4080a

RPCT

Response TimePriorityComputation TimePeriodTask

2009/10 UniPD, T. Vardanega Real-time systems 24 of 37

Response time analysis – 2

RTA is sufficient and necessary
Hence it falls by right in the class of feasibility tests

If the task set passes the test its tasks will meet all
their deadlines
If it fails the test then, at run time, a task will miss
its deadline

Unless the computation time estimations (the WCET)
themselves turn out to be pessimistic

2009/10 UniPD, T. Vardanega Real-time systems 25 of 37

Sporadic tasks

Sporadic tasks have a minimum inter-arrival time
Which must be preserved at run time if schedulability is to be
ensured, but how can it ?

They also require D≤T
The response time algorithm for fixed-priority scheduling works
perfectly for D<T as long as the stopping criterion becomes

Interestingly this also works perfectly well with any priority
ordering

i
n

i DW >+1

2009/10 UniPD, T. Vardanega Real-time systems 26 of 37

Hard and soft tasks

In many situations the WCET for sporadic tasks are
considerably higher than the average case
Interrupts often arrive in bursts and an abnormal
sensor reading may lead to significant additional
computation
Measuring schedulability with WCET may lead to
very low processor utilizations being observed in
the actual running system

2009/10 UniPD, T. Vardanega Real-time systems 27 of 37

General guidelines

Rule 1
All tasks should be schedulable using average execution
times and average arrival rates

There may therefore be situations in which it is not possible to meet
all current deadlines
This condition is known as a transient overload

Rule 2
All hard real-time tasks should be schedulable using WCET
and worst-case arrival rates of all tasks (including soft)

No hard real-time task will therefore miss its deadline
If Rule 2 incurs unacceptably low utilizations for “normal
execution” then WCET values or arrival rates must be reduced

2009/10 UniPD, T. Vardanega Real-time systems 28 of 37

Handing aperiodic tasks – 1

These do not have minimum inter-arrival times
But also no deadline
However we may be interested in the system being responsive to them

We can run aperiodic tasks at a priority below the priorities
assigned to hard tasks

In a preemptive system they therefore cannot steal resources from the
hard tasks

This does not provide adequate support to soft tasks which
will often miss their deadlines
To improve the situation for soft tasks, a server can be
employed
Servers protect the processing resources needed by hard tasks
but otherwise allow soft tasks to run as soon as possible

2009/10 UniPD, T. Vardanega Real-time systems 29 of 37

Handing aperiodic tasks – 2

Polling server (PS)
A fixed priority periodic task serves the aperiodic
tasks requests
It is given a fixed computing time quantum that uses
to serve aperiodic task requests
If no aperiodic tasks require execution the server
time quantum is given over to execute periodic tasks
The time quantum is reallocated to the server at the
start of the new period

2009/10 UniPD, T. Vardanega Real-time systems 30 of 37

Handing aperiodic tasks – 3

Deferrable Server (DS)
High-priority periodic server handles aperiodic requests
Similar in principle to PS
However, if no aperiodic tasks require execution, the
server retains its time quantum

Hence if an aperiodic task requires execution during the server
period, it can be served immediately

In the absence of pending requests the server does not sleep but
just waits for any incoming one

The time quantum is reallocated to the server at the start of the
new period

2009/10 UniPD, T. Vardanega Real-time systems 31 of 37

Handing aperiodic tasks – 4

Priority Exchange (PE)
High-priority periodic server serves aperiodic tasks, if any
Similar in principle to DS
If no aperiodic tasks require execution

PE exchanges its own priority with that of the pending (soft)
periodic task with priority lower than that of itself (the server)
and highest amongst all other pending periodic tasks
Hence the selected periodic task inherits a priority higher than
its own

2009/10 UniPD, T. Vardanega Real-time systems 32 of 37

Handing aperiodic tasks – 5

Sporadic Server (SS)
High-priority periodic server activated (enabled) at a
sufficiently high rate to server requests from sporadic
tasks
SS ≠ DS

The time quantum is replenished only when exhausted, rather
than at each server activation
This places a tolerable bound on the overhead caused by the
server

The SS is the default server policy in POSIX

2009/10 UniPD, T. Vardanega Real-time systems 33 of 37

Task sets with D < T

For D = T, Rate Monotonic priority assignment
(a.k.a. ordering) is optimal
For D < T, Deadline Monotonic priority assignment
(ordering) is optimal

jiji PPDD >⇒<

2009/10 UniPD, T. Vardanega Real-time systems 34 of 37

DMPO is optimal – 1

Deadline monotonic priority ordering (DMPO) is optimal

if any task set Q that is schedulable by priority-driven scheme W it is
also schedulable by DMPO

The proof of optimality of DMPO involves transforming
the priorities of Q as assigned by W until the ordering
becomes as assigned by DMPO
Each step of the transformation will preserve schedulability

2009/10 UniPD, T. Vardanega Real-time systems 35 of 37

DMPO is optimal – 2

Let i, j be two tasks with adjacent priorities in Q such that
under W

Define scheme W’ to be identical to W except that tasks i and j
are swapped
Now consider the schedulability of Q under W’
All tasks with priorities greater than j will be unaffected by this
change to lower-priority tasks
All tasks with priorities lower than i will be unaffected as they
will experience the same interference from i and j
Task j, which was schedulable under W, now has a higher
priority, suffers less interference, and hence must be schedulable
under W’

jiji DDPP >∧>

2009/10 UniPD, T. Vardanega Real-time systems 36 of 37

DMPO is optimal – 3

All that is left is the need to show that task i, which has had its
priority lowered, is still schedulable
Under W

Hence task j only interferes once during the execution of task i
It follows that:

Hence task i is still schedulable after the switch
Priority scheme W’ can now be transformed to W" by choosing
two more tasks that are in the wrong order for DMP and
switching them

iiijjj TDandDDDR ≤<< ,

ijji DDRR <≤='

2009/10 UniPD, T. Vardanega Real-time systems 37 of 37

Summary

A simple (periodic) workload model
Delving into fixed-priority scheduling
A (rapid) survey of schedulability tests
Some extensions to the workload model
Priority assignment techniques

