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5.2 Task interactions and
blocking

| Inhibiting preemption — 2

m A higher-priority job ], that on release finds a
lower-priority job J; executing with disabled
preemption gets blocked for a B,(np) time duration
o Under FPS this is a flagrant case of priority

inversion

m The feasibility of ], now depends on B,(np) too

0 Under FPS we have By(np) = max,; _, 8, where
B, < ¢, is the longest non-preemptable execution of
job Jy

0 This cost is paid by of J, only once per activation
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| Inhibiting preemption — 1

m In many real-life situations (some parts of) jobs
should not be preempted

m Typically during mutually exclusive use of non-
reentrant (hence shared) resources
0 Whether directly or indirectly (e.g., within a system call

primitive)

m Considerations of data integtity and/or efficiency
require that some system level activities must not be
preempted
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Self suspension

= Ajob J; that invokes suspending operations or that self suspends
worsens its response time

m The time penalty B,(ss) that it incurs may be captured as a
degenerate form of blocking
o Bj(ss) = max(d) + ZO:L_”,,U min(e;, 5])
o With 5J the longest duration of self suspension of job J;

0 J; may suffer from the self suspension of higher priority jobs ()
m For a job J; that may self suspend K times during execution
o B, = B(ss) + (K+1) By(np)

0 At every resumption J; may incur B;(np) again
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| Example | Access contention

T,=1{0,4,25,4},T,={3,7,2,7} = U =091
under RM scheduling

m Access to shared resources causes potential for
contention that must be controlled by specialized
protocols

w A resource access control protocol specifies

o When and under what condition a resource access request
may be granted

0 The order in which requests must be serviced

m Access contention situations may cause priority
inversion to arise

34
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| Example — 1 | Example — 2
¢ Max use of shared resource per execution
T,={~218, RA} T, ={2,- 3,17, R@)}, T; = {6, -, 3, 14, R(2)} T,={-2,18, R2.5)}, T, = {2, -, 3,17, R(4)} , T; = {6, -, 3, 14, R(2)}
o under EDF under EDF
T:e;R@);e. Tyee;R(4);e. T;: e 5 R2)5 e Same as before except with shorter use of R by T,

Rin use by T, Rinuseby T,  RinusebyT,

T, completes T, completes
T : deadline miss!
T, completes ’
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| As sumptions and notations | Example
m It is safer for real-time design to require that IR (e
nits require Duration of use
o All jobs do not self suspend (directly or indirectly) T v -:L ¢ o
! @&3)

o All jobs can be preempted Units available
m We say that job ], is directly blocked by a lower-priority T,0 ; R,5*
job J, when :

o J,is granted exclusive access to a shared resource R

0 J,, has requested R and its request has not been granted

m To study the problem we may want to use a wait-for graph
1;2)
]

Obviously!
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Resource access control — 1

m Inhibiting preemption in critical sections
o A job that requires access to a resource is always granted it

0 A job that has been assigned a resource runs at a priority
higher than any other job
m  These two clauses imply each other
m  They jointly prevent deadlock situations from occurring

m They cause bounded priority inversion
o At most once per job
= Reason is obvious
o For a maximum duration By(rc) = max; .y, C,
m For job indices in monotonically non-increasing order and C,,
worst-case duration of ctritical-section activity by job J,
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Resource access control — 2

m Basic priority inheritance protocol (BPIP)
0 The priority of a job vaties over time from that initially assigned
0 The variation follows inheritance principles
= Protocol rules
0 Scheduling: jobs are dispatched by preemptive priority-driven
scheduling; at release time they take on their assigned priority
0 Allocation: when job ] requires access to resource R at time t
= IfRis free, R is assigned to J until release
= If Ris busy, the request is denied and ] becomes blocked

0 Priority inheritance: when job J becomes blocked, job J that blocks
it takes on J’s current priority as its inberited priority and retains it until R
is released; at that point J; reverts to its previous priority
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Resource access control — 3

m Basic priority ceiling protocol (BPCP)
0 As BPIP but with the additional constraint that all
resource tequirements must be statically known
0 Every resource R is assigned a priority ceiling attribute set
to the highest priority of the jobs that require R

m At time t the system has a ceiling () attribute set to the
highest priotity ceiling of all resources currently in use

m Otherwise it defaults to Q < the lowest priority of all jobs

2009/10 UniPD, T. Vardanega Real-time systems 170f57

Critique — 1

m This strategy causes distributed overhead

0 All jobs — including those that do not compete for
resource access — incur some time penalty

0 Very unfair hence not desirable

m Better if time overhead is solely incurred by the jobs
that actually compete for resource access

0 The priority of the job that is granted the resource must
only be higher than that of its competitor jobs

m The principle of the ceiling priority: we shall return to it

0 The resource requirements must be statically known
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Critique — 2

= BPIP incurs two forms of blocking
0 Direct blocking: owing to resource contention
Q Inheritance blocking: owing to priority raising
m  Priority inheritance is transitive
0 Direct blocking is transitive because jobs may need to acquire multiple resources
= BPIP does not prevent deadlock as cyclic blocking is a devious form of
transitive direct blocking
w  BPIP incurs reducible distributed overhead (i.e., that can be dispensed with)
0 Under BPIP a job may become blocked multiple times when competing for more
than one shared resource
m BPIP does not need to have a-priori knowledge of the shared resources
0 Itis inherently dynamic
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Resource access control — 4

= Protocol rules
0 Scheduling: jobs are dispatched by preemptive priority-driven
scheduling; at release time they take on their assigned priority
0 Allocation: when job J requests access to resource R at time t
= If Ris assigned to another job, the request is denied and ] becomes
blocked
m  IfRis free and J’s priority TT(t) is > (t), the request is granted
= If ] owns the resource that has priority ceiling = [1(t), the request is
granted
m  Otherwise the request is denied and J becomes blocked
0 Priority inheritance: when job J becomes blocked, job J; that blocks it
takes on ]’s current priority TI(t) until it releases all resources with
priotity ceiling = M(t); then J;’s priority reverts to the level that
preceded resource access
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| Critique — 3

m BPCP is not greedy (whereas BPIP is)
0 Under BPCP a request for a free resource may be denied

m Under BPCP each job J incurs three distinct forms of
blocking caused by lower-priority job J,

O—-®—-® OO0

1. Direct blocking 2. Priority-inheritance blocking

- @—® @ no=nx>no

3. Avoidance blocking
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Critique — 5

m BPCP does not incur reducible distributed overhead because it does
not permit transitive blocking

m Theorem [Sha & Rajkumar & Lehoczky, 1990]: under BPCP a job
may become blocked for at most the duration of one critical section

0 Under BPCP when a job becomes blocked, its blocking can only be
caused by a single job

0 The job that causes others to block cannot itself be blocked
m  Hence BPCP does not permit transitive blocking
0 Demonstration: by exercise
® The maximum possible value of that duration is termed the blocking
time By(rc) due to resource contention

0 Bj(rc) must be accounted for in the schedulability test for J;

2009/10 UniPD, T. Vardancga Real-time systems 210f57

Computing the BPCP blocking time — 2

m Table “directly blocked by” is straightforward
u Table “priority-inberitance blocked by’

0 The value set in cell [i, k] is the maximum value found in rows
1, ..., i-1; column k in Table “directly blocked by”

m Table “avoidance blocked by’

0 In the (desirable) case that jobs are assigned distinct priorities, the
cells here are identical to those in Table “priority-inheritance blocked by”
except for the jobs that do not request resources (whose cell value
is set to zero)
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| Critique — 4

» Avoidance blockingis what makes BPCP not greedy and prevents
deadlock from occurting
0 If at time t job J has curtent priority TT(t) > [(t) then it must be that
m ] will never use any of the resoutces currently used at time t
= So won’t all jobs with higher priotity than |
0 The value of the system ceiling [(t) determines the pattition of jobs to
which a resource free at time t can be assigned without risk of deadlock
= Alljobs with priority higher than the system ceiling [(t)
= Caveat
0 To stop job ] from blocking itself in the attempt of acquiring multiple
resources, BPCP must grant its request if T(t) < [1(t) but J holds the
resources {X} with priority ceiling = T1(t)
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Computing the BPCP blocking time — 1

Directly blocked b’
J5
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Resource access control — 4

n (Stack-based) ceiling priority protocol
o Improves over BPCP in terms of
= Saving resources especially precious to embedded systems by
sharing stack space across jobs
0 To prevent preemption from ever fragmenting a job’s stack space
we must ensure that no job request for resources may be denied
during execution
= Which BPCP instead allows
0 And of course we must require that jobs do not self suspend
= Lower algorithmic complexity
0 To reduce the run-time overhead in space and time (e.g., from the
dynamic computation of the system ceiling)
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| Ceiling priority protocol — 1

m Stack-basedversion [Baker, 1991]

o Computation of and updates to ceiling [1(t): when all
resources are free, [1(t) evaluates to Q; the ceiling value is

updated any time a resource is assigned or released
0 Scheduling: on its release time a job stays blocked until its
assigned priority T(t) > M(t)
m  Jobs that are not blocked are dispatched to execution by preemptive
priority-driven scheduling
0 Allocation: whenever a job issues a request for a resource, the
request is granted
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| Ceiling priority protocol — 2

m Base version

o CPP does not use the system ceiling M(t) although the resources
continue to have a ceiling priority attribute
0 Scheduling:
= Each job that does not hold any resource executes at the level of its
assigned priority
m  Jobs with the same priority are scheduled in a FIFO ordering
(FIFO_within_priorities)
m  The current priority of a job that holds any resources takes on the
highest value among the ceiling priority of those resources
o Allocation: whenever a job issues a request for a resource, the
request is granted
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5.b Task interactions and blocking
(recap, exercises and extensions)

Credits to A. Burns and A. Wellings

| Comments

m Under SB-CPP a job can only begin execution when the
resources it needs are free

o Otherwise TI(t) > IM(t) could not hold
= Under SB-CPP a job that may get preempted does not
become blocked
0 The preempting job does certainly not share any resources with the
preempted job
m SB-CPP prevents deadlock from occurring

m Under SB-CPP By(rc) is computed in the same way as with
BPCP
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| Summary

m Issues arising from task interactions under
preemptive priority-based scheduling

m Survey of resoutce access control protocols

m Critique of the surveyed protocols
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Task interactions and blocking

m If a task is suspended waiting for a lower-priority
task to complete some required computation then
the priority model is, in some sense, being
undermined

m It is said to suffer priority inversion

m If a task is waiting for a lower-priority task, it is said
to be blocked
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| Priority inversion — 1 | Priority inversion — 2

-Task
m To illustrate an extreme example of priority inversion, L
consider the execution of four periodic tasks: &, b, C and d; d
and two resources: Q and V; under simple locking c il:-)

é

Task | Priority | Execution sequence Release time
a | 1(ow) | EQQQQE 0 a [ T T T T T T T T T T T T T I
b 2 |EE 2 -
0 2 4 6 8 10 12 14 16Time |
c 3 EVVE 2
[ Exccuting [ ] Preempted
d 4 BEQVE 4 |:| Executing with Q locked - Blocked

- Executing with V locked
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| Priority inheritance (basic version) | Calculating BPI blocking
m If task p is blocking task q, then ¢ runs with p's priority m If the system has M critical sections that can lead to a task

being blocked then the maximum number of times that the

Direct blocking  Direct blocking task can be blocked is m

Tom s o sk ¢ » The upper bound on blocking time B for task 1 with K critical
i Inheritance blnckin% sections in the system is given by
Inheritance blocking K .
o — T T T . B, = - usage(k,))C(k)
[ T T T T T T T T T T T T T B : SN : o
» With usage(k, 1)={1 | 0} depending on task i’s use of
0 5 4 6 8 10 12 14 16 the critical section k and C(k) the duration of use
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Incorporating blocking in response time | Ceiling priority protocols

m Two variants
0 Original ceiling priority protocol (basic priority ceiling)

R =C +B +1,

Q Immediate ceiling priority protocol

Ri _ Ci + Bi + z & j m With them on a single processor
jehp(i) T i o A high-priority task can be blocked by lower-ptiority
tasks at most once per job
W' 0 Deadlocks are prevented
n+l i s . .
\/\Ii = Ci + Bi + z i 0 Transitive blocking is prevented
jeto(y| T j 0 Mutual exclusive access to resources is ensured by the

protocol itself so that locks are not needed
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| Original ceiling priority protocol

m Each task has an assigned szatic priority
o Perhaps determined by deadline monotonic assignment

m Each resource has a static ceiling attribute defined as the
maximum priority of the tasks that may use it

m A task has a dynamic priority that is the maximum of its own
static priority and any it inherits due to it blocking higher-
priority tasks

m A task can only lock a resource if its dynamic priority is
higher than the highest ceiling of any currently locked
resource (excluding any that it has already locked itself)

B, = nk1kalx usage(k,i)C(k)
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Immediate ceiling priority protocol

m Hach task has an assigned szatic priority
0 Perhaps determined by deadline monotonic assignment

m Fach resource has a static ceiling attribute defined as the
maximum priority of the tasks that may use it

m A task has a dynamic priority that is the maximum of its own
static priority and the ceiling values of any resources it is
currently using

= Any job of that task will only suffer a block at release
0 Once the job starts executing all the resources it needs must be free

0 If they were not then some task would have priority 2 than the job’s
hence its execution would be postponed
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| OCPP versus ICPP

m Although the worst-case behavior of the two ceiling schemes is
identical (from a scheduling view point), there are some points of
difference
0 ICPP is easier to implement than OCPP as blocking relationships
need not be monitored

o ICPP leads to less context switches as blocking is prior to job
activation

o ICPP requires more priority movements as they happen with all
resource usage

o OCPP changes priority only if an actual block has occurred

m ICPP is called Priority Protect Protocol in POSIX and Priority
Ceiling Emulation in Ada and Real-Time Java
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| Inheritance with OCPP

d

Avoidance blocking

c T T [T T}
Inheritance blocking

b | e - [,

0 2 4 6 8 10 12 14 16
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| Inheritance with ICPP

Task Inheritance

blocking
d
Inheritance blocking
c izzz_
Inheritance blocking
b| T T T T
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| An extendible task model

m Our workload model so far allows
0 Deadlines that can be less than period (D<T)
0 Periodic and sporadic tasks
»  As well as aperiodic tasks under some server scheme

0 Task interactions with the resulting blocking being
factored in the response time equations
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Extensions

m Cooperative scheduling

Release jitter

Arbitrary deadlines
m Fault tolerance

m Offsets

Optimal priority assignment
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| Cooperative scheduling — 2

m et the execution time of the final slot be F|

W =B, +C-F+ ¥ |2%c

' jehp(i) !

m When the response time equation converges, that is,
n n+l . . .
when W, =W, ", the response time is given by
R=w+F
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Release jitter — 2

m Sporadic task S released at 0, T-J, 2T-J, 3T-J
®  Examination of the derivation of the schedulability equation implies that
task ¥ will suffer
a  One interference from task s if R. € [0|T - ‘])
R e[T-J,2T-1J)
R e[2T - 33T -J)

o Two interferences if

a Three interferences if

= This can be represented in the response time equation

R +J
R =C+B+ X L C,
ECI
= If response time is to be measured relative to the real release time then the
jitter value must be added periodic
RP™ =R +J,

2009/10 UniPD, T. Vardanega Real-time systems 470f 57

| Cooperative scheduling — 1

= Unrestrained preemptive behavior is not always acceptable
for safety-critical systems
m Cooperative or deferred preemption splits tasks into slozs
= Mutual exclusion is via non-preemption
m The use of deferred preemption has two important benefits
o Itincreases the timing feasibility of the system as it can lead to
lower response time values
0 With deferred preemption no interference can occur (by definition)
during the last slot of execution
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| Release jitter — 1

m A big issue for distributed systems and now for multi-core too
m Consider a periodic task K with period 20 releasing at end of
job activation a sporadic task on a different processor

0 What is the time between any two subsequent sporadic releases?

Sporadic release at t+21

Two sporadic releases

Sporadic release at t+15

spaced by 21-15 =6 (1)
R, =t+15 R,,=t+20+C=t+21 ‘The sporadic task has
> D a release jitter | = Ry,
K ]
t t t Time
t +20
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Arbitrary deadlines — 1

m To cater for situations where D > T
n+1 Wlﬂ
W) =B +(@+1C,+ Y T(Q)]c
jehp(i) i
R(@)=w'(a)-qT,

m The number of releases is bounded by the lowest value of

q for which Ri (q) gTi

m The worst-case response time is then the maximum value
found for an = :
va  R= mx R(0)
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| Arbitrary deadlines — 2

m  When formulation is combined with the effect of release jitter, two
alterations to the RTA must be made

m  First, the interference factor must be increased if any higher priority
tasks suffers release jitter:

W@ =B+ (q+DC+ 3 | WO
jehp(i) Tj

m Second, if the task under analysis can suffer release jitter then two

consecutive windows could overlap if response time plus jitter is
greater than period

Ri(q) =w'(a)—-qT; +J;
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| Fault tolerance — 2

m If Fis the number of faults allowed

R=C+B+ ¥ R ,+ max FC/

jehp(i) Tj kehep(i)

m If there is 2 minimum atrival interval T
f

R =C+B+ Y R  +max &Ck’

jehp(i) j kehep(i) Tf
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Non-optimal analysis — 1

m In most realistic systems, task periods are not arbitrary but
are likely to be related to one another

m In the previous example two tasks have a common period

m In these situations we can give one of such tasks an offset
(of T/2) and then we analyze the resulting system using a
transformation technique that removes the offset so that
critical instant analysis applies

m In the example, tasks b and C (which has the offset of 10)
are replaced by a single notional task with period T/2,
computation time 4, deadline equal to period and no offset
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| Fault tolerance — 1

m  Fault tolerance via either forward or backward error recovery always
results in extra computation
0 This could be an exception handler or a recovery block.

= In a real-time fault-tolerant system, deadlines should still be met even
when a certain level of faults occur
a This level of fault tolerance is known as the fault model

. . . = f
m If the extra computation time that results from an error in task 1 is Ci

R=C+B+ = R ,+ max C/

jehp(i) TJ_ 1 kehep(i)

o where hep () is set of tasks with priority equal to or higher than i
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| Offsets

m So far we assumed all tasks share a common release time
(the critical instant)

Task T D C R U=0.9
a 8 5 4 4 . .
b 20 10 4 8 Deadline miss!
c 20 12 4 @6}

m What if we allowed offsets (phase?)

Task T D C O R ]
a 8 5 4 0 4 Arbitrary offsets
are not amenable
b 20 10 4 0 8 to analysis!
& 20 12 4 10 8
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| Non-optimal analysis — 2

m This notional task has two important properties
o Ifitis feasible (when sharing a critical instant with all other tasks) then the
two real tasks that it represents will meet their deadlines when one is given
the half-period offset
o Ifall lower priority tasks are feasible when suffering interference from the
notional task (and all other high-priority tasks) then they will remain
schedulable when the notional task is replaced by the two real tasks (one
of which with the offset)
m These properties follow from the observation that the notional task
always has no less CPU utilization than the two real tasks

Task T D C O R U=09
a 8 5 4 0 4
n 10 10 4 0 8
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| Notional task parameters | Priority assignment (simulated annealing)

T T m  Theorem: If task P is assigned the lowest priority and is feasible then, if a
T =2 = _b feasible priority ordering exists for the complete task set, an ordering exists
n 2 2 with task P assigned the lowest priority
procedure Assign_Pri (Set : in out Task_Set;
Cn = MaX(Ca, Cb) N : Natural; -- number of tasks
OK : out Boolean) is
— H begin
D,-, - Mln(Dal Db) for K in 1..N loop
for Next in K..N loop
P — Max(P P ) Swap(Set, K, Next);
n al' "' b Process_Test(Set, K, OK); -- is task K feasible now?
exit when OK;
end loop;
‘ Can be extended to more than two tasks enzx:sogtjen not OK; -- failed to find a schedulable task

end Assign_Pri;
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| Summary

m Completing the survey and critique of resource access
control protocols using some examples

m Relevant extensions to the simple workload model

m A simulated-annealing heuristic for the assignment of
priorities
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