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5.a Task interactions and 
blocking
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Inhibiting preemption – 1

In many real-life situations (some parts of) jobs 
should not be preempted
Typically during mutually exclusive use of non-
reentrant (hence shared) resources

Whether directly or indirectly (e.g., within a system call 
primitive)

Considerations of data integrity and/or efficiency 
require that some system level activities must not be 
preempted
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Inhibiting preemption – 2

A higher-priority job Jh that on release finds a 
lower-priority job Jl executing with disabled 
preemption gets blocked for a Bi(np) time duration

Under FPS this is a flagrant case of priority 
inversion

The feasibility of Jh now depends on Bi(np) too
Under FPS we have Bi(np) = max(i+1,…,n) θk where 
θk ≤ ek is the longest non-preemptable execution of 
job Jk
This cost is paid by of Jh only once per activation
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Self suspension

A job Ji that invokes suspending operations or that self suspends 
worsens its response time

The time penalty Bi(ss) that it incurs may be captured as a  
degenerate form of blocking

Bi(ss) = max(δi) + Σ(j=1,..,i-1) min(ej, δj)
With δj the longest duration of self suspension of job Jj

Ji may suffer from the self suspension of higher priority jobs (!)

For a job Ji that may self suspend K times during execution
Bi = Bi(ss) + (K+1) Bi(np)
At every resumption Ji may incur Bi(np) again



2009/10 UniPD, T. Vardanega Real-time systems 7 of 57

Example

T2

T1 = {0, 4, 2.5, 4}, T2 = {3, 7, 2, 7} ⇒ U = 0.91
under RM scheduling

T1

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

T2 : deadline miss!

B2(ss) = 0 + min(2.5, 1.5) = 1.5 > slack(T2) = 0.5

T1 self-suspends for 1.5 T2 : deadline miss!
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Access contention

Access to shared resources causes potential for 
contention that must be controlled by specialized 
protocols
A resource access control protocol specifies

When and under what condition a resource access request 
may be granted
The order in which requests must be serviced

Access contention situations may cause priority 
inversion to arise
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Example – 1

T1T2RT3RT1

2 4 6 8 10 12

T1 = {-, -, 2, 18, R(4)}, T2 = {2, -, 3, 17, R(4)} , T3 = {6, -, 3, 14, R(2)} 
under EDF

T1 :: e; R(4); e. T2 :: e; e; R(4); e. T3 :: e; e; R(2); e.

14 16 18

R T2 R T3 R

Max use of shared resource per execution

R in use by T1

R released by T1

R in use by T3 R in use by T2

R released by T3

T3 completes T2 completes

T1 completes
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Example – 2

T1 = {-, -, 2, 18, R(2.5)}, T2 = {2, -, 3, 17, R(4)} , T3 = {6, -, 3, 14, R(2)} 
under EDF

Same as before except with shorter use of R by T1

T1T2R T3RT1

2 4 6 8 10 12 14 16 18

R T2 R T3R

T3 : deadline miss!
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Assumptions and notations

It is safer for real-time design to require that
All jobs do not self suspend (directly or indirectly)
All jobs can be preempted

We say that job Jh is directly blocked by a lower-priority 
job Jl when

Jl is granted exclusive access to a shared resource R
Jh has requested R and its request has not been granted

To study the problem we may want to use a wait-for graph
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Example

T1

T2

T3

T4

R1, 5

R2, 1

(2; 3)

(1; 1)

(1; 2)

[R2,1;8[R1,4;1][R1,1;5]]

Units available

Units required Duration of use

Obviously!

Wait-for graph
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Resource access control – 1

Inhibiting preemption in critical sections
A job that requires access to a resource is always granted it
A job that has been assigned a resource runs at a priority 
higher than any other job

These two clauses imply each other
They jointly prevent deadlock situations from occurring

They cause bounded priority inversion
At most once per job

Reason is obvious
For a maximum duration Bi(rc) = max(k=i+1,..,n) Ck

For job indices in monotonically non-increasing order and Ck
worst-case duration of critical-section activity by job Jk
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Critique – 1

This strategy causes distributed overhead
All jobs – including those that do not compete for 
resource access – incur some time penalty
Very unfair hence not desirable

Better if time overhead is solely incurred by the jobs 
that actually compete for resource access

The priority of the job that is granted the resource must 
only be higher than that of its competitor jobs

The principle of the ceiling priority: we shall return to it
The resource requirements must be statically known
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Resource access control – 2

Basic priority inheritance protocol (BPIP)
The priority of a job varies over time from that initially assigned
The variation follows inheritance principles

Protocol rules
Scheduling: jobs are dispatched by preemptive priority-driven 
scheduling; at release time they take on their assigned priority
Allocation: when job J requires access to resource R at time t

If R is free, R is assigned to J until release
If R is busy, the request is denied and J becomes blocked

Priority inheritance: when job J becomes blocked, job Jl that blocks 
it takes on J’s current priority as its inherited priority and retains it until R 
is released; at that point Jl reverts to its previous priority
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Critique – 2

BPIP incurs two forms of blocking
Direct blocking: owing to resource contention
Inheritance blocking: owing to priority raising

Priority inheritance is transitive
Direct blocking is transitive because jobs may need to acquire multiple resources

BPIP does not prevent deadlock as cyclic blocking is a devious form of 
transitive direct blocking
BPIP incurs reducible distributed overhead (i.e., that can be dispensed with)

Under BPIP a job may become blocked multiple times when competing for more 
than one shared resource

BPIP does not need to have a-priori knowledge of the shared resources
It is inherently dynamic
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Resource access control – 3

Basic priority ceiling protocol (BPCP)
As BPIP but with the additional constraint that all 
resource requirements must be statically known
Every resource R is assigned a priority ceiling attribute set 
to the highest priority of the jobs that require R

At time t the system has a ceiling Π(t) attribute set to the 
highest priority ceiling of all resources currently in use
Otherwise it defaults to Ω < the lowest priority of all jobs
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Resource access control – 4

Protocol rules
Scheduling: jobs are dispatched by preemptive priority-driven 
scheduling; at release time they take on their assigned priority
Allocation: when job J requests access to resource R at time t

If R is assigned to another job, the request is denied and J becomes 
blocked
If R is free and J’s priority π(t) is > Π(t), the request is granted
If J owns the resource that has priority ceiling = Π(t), the request is 
granted
Otherwise the request is denied and J becomes blocked

Priority inheritance: when job J becomes blocked, job Jl that blocks it 
takes on J’s current priority π(t) until it releases all resources with 
priority ceiling ≥ π(t); then Jl’s priority reverts to the level that 
preceded resource access
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Critique – 3

BPCP is not greedy (whereas BPIP is)
Under BPCP a request for a free resource may be denied

Under BPCP each job J incurs three distinct forms of 
blocking caused by lower-priority job Jl

J R Jl

1. Direct blocking

Jh R Jl

2. Priority-inheritance blocking

J R X Jlπ(t) Π(t) = π(X) > π(t)

3. Avoidance blocking

J
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Critique – 4

Avoidance blocking is what makes BPCP not greedy and prevents 
deadlock from occurring

If at time t job J has current priority  π(t) > Π(t) then it must be that
J will never use any of the resources currently used at time t
So won’t all jobs with higher priority than J

The value of the system ceiling Π(t) determines the partition of jobs to 
which a resource free at time t can be assigned without risk of deadlock

All jobs with priority higher than the system ceiling Π(t)
Caveat

To stop job J from blocking itself in the attempt of acquiring multiple 
resources, BPCP must grant its request if π(t) ≤ Π(t) but J holds the 
resources {X} with priority ceiling = Π(t)
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Critique – 5

BPCP does not incur reducible distributed overhead because it does 
not permit transitive blocking

Theorem [Sha & Rajkumar & Lehoczky, 1990]: under BPCP a job 
may become blocked for at most the duration of one critical section

Under BPCP when a job becomes blocked, its blocking can only be 
caused by a single job
The job that causes others to block cannot itself be blocked

Hence BPCP does not permit transitive blocking

Demonstration: by exercise

The maximum possible value of that duration is termed the blocking 
time Bi(rc) due to resource contention

Bi(rc) must be accounted for in the schedulability test for Ji
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Computing the BPCP blocking time – 1

J1

R1

J6

J2

J3

J4

J5

R2

R3

10

6

2

4

1

5

…

Bi(rc) = max value in row i across all tables
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Computing the BPCP blocking time – 2

Table “directly blocked by” is straightforward

Table “priority-inheritance blocked by”
The value set in cell [i, k] is the maximum value found in rows 
1, …, i-1; column k in Table “directly blocked by”

Table “avoidance blocked by”
In the (desirable) case that jobs are assigned distinct priorities, the 
cells here are identical to those in Table “priority-inheritance blocked by”
except for the jobs that do not request resources (whose cell value 
is set to zero)
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Resource access control – 4

(Stack-based) ceiling priority protocol
Improves over BPCP in terms of

Saving resources especially precious to embedded systems by 
sharing stack space across jobs

To prevent preemption from ever fragmenting a job’s stack space 
we must ensure that no job request for resources may be denied 
during execution

Which BPCP instead allows
And of course we must require that jobs do not self suspend

Lower algorithmic complexity
To reduce the run-time overhead in space and time (e.g., from the 
dynamic computation of the system ceiling)
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Ceiling priority protocol – 1

Stack-based version [Baker, 1991]
Computation of and updates to ceiling Π(t): when all 
resources are free, Π(t) evaluates to Ω; the ceiling value is 
updated any time a resource is assigned or released
Scheduling: on its release time a job stays blocked until its 
assigned priority π(t) > Π(t) 

Jobs that are not blocked are dispatched to execution by preemptive 
priority-driven scheduling

Allocation: whenever a job issues a request for a resource, the 
request is granted
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Comments

Under SB-CPP a job can only begin execution when the 
resources it needs are free

Otherwise π(t) > Π(t) could not hold

Under SB-CPP a job that may get preempted does not 
become blocked

The preempting job does certainly not share any resources with the 
preempted job

SB-CPP prevents deadlock from occurring

Under SB-CPP Bi(rc) is computed in the same way as with 
BPCP
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Ceiling priority protocol – 2

Base version
CPP does not use the system ceiling Π(t) although the resources 
continue to have a ceiling priority attribute
Scheduling: 

Each job that does not hold any resource executes at the level of its 
assigned priority
Jobs with the same priority are scheduled in a FIFO ordering 
(FIFO_within_priorities)
The current priority of a job that holds any resources takes on the 
highest value among the ceiling priority of those resources

Allocation: whenever a job issues a request for a resource, the 
request is granted
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Summary

Issues arising from task interactions under 
preemptive priority-based scheduling
Survey of resource access control protocols
Critique of the surveyed protocols

5.b Task interactions and blocking 
(recap, exercises and extensions)

Credits to A. Burns and A. Wellings
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Task interactions and blocking

If a task is suspended waiting for a lower-priority 
task to complete some required computation then 
the priority model is, in some sense, being 
undermined
It is said to suffer priority inversion
If a task is waiting for a lower-priority task, it is said 
to be blocked
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Priority inversion – 1

To illustrate an extreme example of priority inversion, 
consider the execution of four periodic tasks: a, b, c and d; 
and two resources: Q and V; under simple locking

4EEQVE4d

2EVVE3c

2EE2b

0EQQQQE1 (low)a

Release timeExecution sequencePriorityTask
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Priority inversion – 2

Executing
Executing with Q locked

Preempted

Executing with V locked
Blocked

Time

Task

a

b

c

d

0 2 4 6 8 10 12 14 16
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Priority inheritance (basic version)

If task p is blocking task q, then q runs with p's priority

0 2 4 6 8 10 12 14 16

a

b

c

d
Task

Time

Direct blocking
from task a

Inheritance blocking

Inheritance blocking

Direct blocking
from task c
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Calculating BPI blocking

If the system has m critical sections that can lead to a task 
being blocked then the maximum number of times that the 
task can be blocked is m
The upper bound on blocking time B for task i with K critical 
sections in the system is given by

With usage(k,i)={1 | 0} depending on task i’s use of 
the critical section k and C(k) the duration of use

∑=
=

K

k
i kCikusageB

1
)(),(
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Incorporating blocking in response time
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Ceiling priority protocols

Two variants
Original ceiling priority protocol (basic priority ceiling)
Immediate ceiling priority protocol

With them on a single processor
A high-priority task can be blocked by lower-priority 
tasks at most once per job
Deadlocks are prevented
Transitive blocking is prevented
Mutual exclusive access to resources is ensured by the 
protocol itself so that locks are not needed
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Original ceiling priority protocol

Each task has an assigned static priority
Perhaps determined by deadline monotonic assignment

Each resource has a static ceiling attribute defined as the 
maximum priority of the tasks that may use it
A task has a dynamic priority that is the maximum of its own 
static priority and any it inherits due to it blocking higher-
priority tasks
A task can only lock a resource if its dynamic priority is 
higher than the highest ceiling of any currently locked 
resource (excluding any that it has already locked itself)

)(),(max
1

kCikusageB
k

ki =
=

2009/10 UniPD, T. Vardanega Real-time systems 38 of 57

Inheritance with OCPP

a

b

c

d

0 2 4 6 8 10 12 14 16

Task

Time

Avoidance blocking

Inheritance blocking
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Immediate ceiling priority protocol

Each task has an assigned static priority
Perhaps determined by deadline monotonic assignment

Each resource has a static ceiling attribute defined as the 
maximum priority of the tasks that may use it
A task has a dynamic priority that is the maximum of its own 
static priority and the ceiling values of any resources it is 
currently using
Any job of that task will only suffer a block at release

Once the job starts executing all the resources it needs must be free
If they were not then some task would have priority ≥ than the job’s 
hence its execution would be postponed
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Inheritance with ICPP

a

b

c

d

0 2 4 6 8 10 12 14 16

Task

Time

Inheritance blocking

Inheritance blocking

Inheritance
blocking
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OCPP versus ICPP

Although the worst-case behavior of the two ceiling schemes is 
identical (from a scheduling view point), there are some points of 
difference

ICPP is easier to implement than OCPP as blocking relationships 
need not be monitored
ICPP leads to less context switches as blocking is prior to job 
activation
ICPP requires more priority movements as they happen with all 
resource usage
OCPP changes priority only if an actual block has occurred

ICPP is called Priority Protect Protocol in POSIX and Priority 
Ceiling Emulation in Ada and Real-Time Java
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An extendible task model

Our workload model so far allows
Deadlines that can be less than period (D<T)
Periodic and sporadic tasks 

As well as aperiodic tasks under some server scheme

Task interactions with the resulting blocking being 
factored in the response time equations
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Extensions

Cooperative scheduling
Release jitter
Arbitrary deadlines
Fault tolerance
Offsets
Optimal priority assignment
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Cooperative scheduling – 1

Unrestrained preemptive behavior is not always acceptable 
for safety-critical systems
Cooperative or deferred preemption splits tasks into slots
Mutual exclusion is via non-preemption
The use of deferred preemption has two important benefits

It increases the timing feasibility of the system as it can lead to 
lower response time values
With deferred preemption no interference can occur (by definition) 
during the last slot of execution
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Cooperative scheduling – 2

Let the execution time of the final slot be

When the response time equation converges, that is,      
when                      ,  the response time is given by
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Release jitter – 1

A big issue for distributed systems and now for multi-core too
Consider a periodic task K with period 20 releasing at end of 
job activation a sporadic task on a different processor

What is the time between any two subsequent sporadic releases?

Time

K

t t+20

Rl,1=t+15

Sporadic release at t+15

Sporadic release at t+21

Rl,2=t+20+Cl=t+21

Two sporadic releases
spaced by 21-15 = 6 (!)
The sporadic task has
a release jitter Js = Rl,1
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Release jitter – 2

Sporadic task s released at  0, T-J, 2T-J, 3T-J
Examination of the derivation of the schedulability equation implies that 
task i will suffer 

One interference from task s if
Two interferences if 
Three interferences if

This can be represented in the response time equation

If response time is to be measured relative to the real release time then the 
jitter value must be added

),0[ JTRi −∈
)2,[ JTJTRi −−∈
)3,2[ JTJTRi −−∈

j
ihpj

j

ji
iii C

T
JR

BCR ∑ ⎥
⎥

⎤
⎢
⎢

⎡ +
++=

∈ )(

ii
periodic

i JRR +=

2009/10 UniPD, T. Vardanega Real-time systems 48 of 57

Arbitrary deadlines – 1 

To cater for situations where D > T

The number of releases is bounded by the lowest value of 
q for which 

The worst-case response time is then the maximum value 
found for any q
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Arbitrary deadlines – 2

When formulation is combined with the effect of release jitter, two 
alterations to the RTA must be made
First, the interference factor must be increased if any higher priority 
tasks suffers release jitter:

Second, if the task under analysis can suffer release jitter then two 
consecutive windows could overlap if response time plus jitter is 
greater than period 
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Fault tolerance – 1 

Fault tolerance via either forward or backward error recovery always 
results in extra computation

This could be an exception handler or a recovery block.  
In a real-time fault-tolerant system, deadlines should still be met even 
when a certain level of faults occur 

This level of fault tolerance is known as the fault model
If the extra computation time that results from an error in task i is 

where hep(i) is set of tasks with priority equal to or higher than i
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Fault tolerance – 2

If F is the number of faults allowed

If there is a minimum arrival interval
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Offsets

So far we assumed all tasks share a common release time 
(the critical instant)

Task           T          D          C        R      U=0.9
a      8    5    4    4
b     20   10    4    8
c     20   12    4   16

What if we allowed offsets (phase?)
Task           T          D          C       O      R

a      8    5    4   0   4
b     20   10    4   0   8
c     20   12    4  10   8

Deadline miss!

Arbitrary offsets 
are not amenable 
to analysis!
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Non-optimal analysis – 1

In most realistic systems, task periods are not arbitrary but 
are likely to be related to one another
In the previous example two tasks have a common period
In these situations we can give one of such tasks an offset 
(of T/2) and then we analyze the resulting system using a 
transformation technique that removes the offset so that 
critical instant analysis applies
In the example, tasks b and c (which has the offset of 10) 
are replaced by a single notional task with period T/2, 
computation time 4, deadline equal to period and no offset
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Non-optimal analysis – 2

This notional task has two important properties
If it is feasible (when sharing a critical instant with all other tasks) then the 
two real tasks that it represents will meet their deadlines when one is given 
the half-period offset
If all lower priority tasks are feasible when suffering interference from the 
notional task (and all other high-priority tasks) then they will remain 
schedulable when the notional task is replaced by the two real tasks (one 
of which with the offset)

These properties follow from the observation that the notional task 
always has no less CPU utilization than the two real tasks

Task           T          D          C      O       R    U=0.9
a      8    5    4   0   4
n     10   10    4   0   8
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Notional task parameters
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Can be extended to more than two tasks
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procedure Assign_Pri (Set : in out Task_Set; 
N   : Natural; -- number of tasks
OK  : out Boolean) is

begin
for K in 1..N loop
for Next in K..N loop
Swap(Set, K, Next);
Process_Test(Set, K, OK); -- is task K feasible now?
exit when OK;

end loop;
exit when not OK; -- failed to find a schedulable task

end loop;
end Assign_Pri;

Priority assignment (simulated annealing)

Theorem: If task p is assigned the lowest priority and is feasible then, if a 
feasible priority ordering exists for the complete task set, an ordering exists 
with task p assigned the lowest priority
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Summary

Completing the survey and critique of resource access 
control protocols using some examples
Relevant extensions to the simple workload model
A simulated-annealing heuristic for the assignment of 
priorities


