
Real-Time Systems

Anno accademico 2009/10
Laurea magistrale in informatica 
Dipartimento di Matematica Pura e Applicata
Università di Padova
Tullio Vardanega

2009/10 UniPD, T. Vardanega Real-time systems 2 of 108

Outline

1. Introduction
2. Dependability issues
3. Scheduling issues
4. More on fixed-priority scheduling
5. Task interactions and blocking
6. System issues
7. Multi-cores and distribution
Bibliography

• J. Liu, "Real-Time Systems", Prentice Hall, 2000
• A. Burns, A. Wellings, “Concurrent and Real-Time Programming in Ada”, 

Cambridge University Press, 2007
• A. Burns, A. Wellings, "Real Time Systems and Programming Languages: Ada 

95, Real-Time Java and Real-Time C/POSIX", Addison-Wesley, 2009

6.a System issues

2009/10 UniPD, T. Vardanega Real-time systems 4 of 108

Context switch

Preemption causes time and space overheads which 
should be duly accounted for in schedulability tests
Under preemption every single job incurs at least 
two context switches

One at activation
One at completion

The resulting costs should be charged to the job
Knowing the timing behavior of the run-time system we 
could incorporate overhead costs in schedulability tests

2009/10 UniPD, T. Vardanega Real-time systems 5 of 108

Priority levels – 1

The FPS techniques that we have studied assume jobs to have 
distinct priorities

It is not obvious however that we can always meet this 
requirement

Jobs may have to share priority levels
At the same level of priority, selection may be FIFO or 
round-robin

If priority levels are shared we have a worst-case situation to 
contemplate in the analysis

That job Ji be released immediately after all other jobs residing 
at its level of priority

2009/10 UniPD, T. Vardanega Real-time systems 6 of 108

Priority levels – 2

Let Tε(i) denote the set of jobs with priority equal 
to Ji excluding Ji itself
The time demand equation for Ji to study in the 
interval 0 < t ≤ min (Di, pi) then becomes

Wi,1(t) = ei + bi + Σj Є Tε(i) ej + Σ(k=1,…,i-1) ⎡t/pk⎤ ek

This obviously worsens Ji’s response time
But at system level the impact in terms of schedulability 
loss may not be as bad



2009/10 UniPD, T. Vardanega Real-time systems 7 of 108

Priority levels – 3

When the number [1,..,Ωn] of assigned priorities is greater than 
the number [π1,.., πΩs] of available priorities (priority grid) 
then we need some Ωn–to–Ωs mapping

All (top-range) assigned priorities ≥ π1 take value π1

Those in the interval (πk-1 , πk] take value πk progressing in the 
interval 1 < k ≤ Ωs

Two main techniques
Uniform mapping

Constant ratio mapping [Lehoczky & Sha, 1986]

2009/10 UniPD, T. Vardanega Real-time systems 8 of 108

Priority levels – 4

Uniform mapping

Availability is uniformly apportioned to needs
Q = ⎣ Ωn / Ωs ⎦ ⇒ πk = kQ for k=1,2,…, Ωs-1 and πΩs = Ωn

Example: from Ωn=9 and Ωs=3 we obtain π1=3, π2=6, π3=10, 
whence 1-3 → π1, 4-6 → π2, 7-9 → π3

Constant ratio mapping

Keeps the ratio (πi-1+1 )/πi constant for i=2,…, Ωs for the better 
good of higher-priority jobs
Example (same case as above): π1=1, π2=4, π3=10 with ratio at ½, 
whence 1 → π1, 2-4 → π2, 5-9 → π3

2009/10 UniPD, T. Vardanega Real-time systems 9 of 108

Priority levels – 5

3

6

9

Ωn Ωs

Ωn / Ωs 1

2

3

4

5

6

7

8

9

1

ratio = 1/2

4

10

ratio = 1/2

Uniform mapping Constant ratio mapping

2009/10 UniPD, T. Vardanega Real-time systems 10 of 108

Priority levels – 6

Lehoczky & Sha showed that the use of constant ratio 
mapping degrades the schedulable utilization of the RM 
scheduling algorithm gracefully

For large n with Di = pi for all i, and g denoting the minimum ratio 
in the given priority grid
Schedulable utilization f(g) evalues to 

ln(2g)+1-g for g>1/2
g for g≤1/2

The f(g)/ln 2 ratio is termed relative schedulability
Example: with Ωs = 256 and Ωn = 100.000, relative schedulability 
evaluates to 0,9986

It follows that 256 priority levels suffice for RM scheduling

2009/10 UniPD, T. Vardanega Real-time systems 11 of 108

Tick scheduling – 1

So far we have tacitly assumed that the scheduler operates 
on an event-driven basis

The scheduler always immediately executes upon the occurrence of
a scheduling event
If it was so then we could reasonably assume that a job is placed in 
the ready queue at its release time

In actual fact the scheduler may also operate in a time-driven
fashion

In that case the scheduling decisions are made and executed 
periodically on the arrival of clock interrupts
This mode of operation is termed tick scheduling

2009/10 UniPD, T. Vardanega Real-time systems 12 of 108

Tick scheduling – 2

With tick scheduling the time at which the scheduler 
acknowledges a job’s release time may be delayed by 
1 clock interrupt

This delay may have negative impact on the job’s response time
Hence we must assume a logical place where jobs in the “release 
time arrived but not yet acknowledged” state are held

The time and space overhead of transferring jobs from that 
logical place to the ready queue is not null and must be 
accounted for in the schedulability test 
Together with the time and space overhead of handling 
clock interrupts



2009/10 UniPD, T. Vardanega Real-time systems 13 of 108

Example
T = {t1=(0.1, 4, 1, 4), t2=(0.1, 5, 1.8, 5), t3=(0, 20, 5, 20)}
t3’s first section not preemptable and with duration 1.1

From RTA with event-driven scheduling we have R1= 2.1, R2= 3.9, R3= 14.4 (OK)
What with tick scheduling, clock period 1 and time overhead 0.05 + (0.06 * n) ?

0 1 2 3 4 5 6

t3

t2

t1

(t3) (t1,t2) (t1) (t2)

Deadline miss

Ready 
at tick

2009/10 UniPD, T. Vardanega Real-time systems 14 of 108

Tick scheduling – 3

The effect of tick scheduling is captured in the RTA for job Ji
By introducing a notional task T0 = (p0, e0) at the highest priority to 
account for the cost of handling clock interrupts
For all jobs Jk at priority greater than or equal to Ji, by adding to ek the 
time overhead m0 due to moving them to the ready queue

(Kk + 1) times for the Kk times that job Jk may self suspend

For all jobs Jl at priority lower than Ji, by introducing a notional task 
(pl, m0), for every such job to account for the time overhead of moving 
them to the ready queue
Computing bi(np) as a function of p0 as Ji may suffer up to p0 units of 
delay after becoming ready already without non-preemptable execution 
and thus bi(np) = (⎡maxk (θk / p0)⎤ + 1) p0 including non-preemption

Where θk is the maximum time of non-preemptable execution by any job Jk

2009/10 UniPD, T. Vardanega Real-time systems 15 of 108

Real-time operating systems – 1

Must be small, modular, extensible
Small footprint because there are often stored in ROM (which 
used to be little) and because most embedded systems have little
RAM

Real-time embedded systems do not include permanent storage other 
than for background aperiodic activities

Modular because this facilitates verification, validation and 
certification of its design and implementation, including of temporal 
predictability
Extensible because some but not all specific systems may need 
functionalities above and beyond the core ones

Adhering to the principle of microkernel architecture
Minimal kernel services include scheduling, inter-process 
communication and synchronization, interrupt handling

2009/10 UniPD, T. Vardanega Real-time systems 16 of 108

Real-time operating systems – 2

Tasks must be known to the RTOS
Tasks (processes, threads) are the unit of CPU allocation by the
scheduler

Tasks issue jobs, one at a time, which are subject to scheduling and 
dispatching

Upon creation of a task, some memory is assigned from RAM to 
create the Task Control Block for that task
The insertion of a task in a state queue (e.g., ready queue) is made 
by placing a pointer to the relevant TCB
The disposal of a task at end of life requires removal of its TCB and 
de-allocation of any memory it had in use

In typical embedded systems, tasks never terminate

2009/10 UniPD, T. Vardanega Real-time systems 17 of 108

Task control block

Thread ID

Start address

Context

Task parameters

Scheduling information

Synchronization information

Time usage information

Timer information

…

Task type

Phase

Period
Relative deadline

Event list

…

Assigned priority

Current priority

2009/10 UniPD, T. Vardanega Real-time systems 18 of 108

Real-time operating systems – 3

For better generality tasks are often realized at application level instead of 
as primitive entities of the RTOS
Periodic task

An RTOS thread that hangs on a suspension point which is periodically 
released; after release it executes application-specific code (corresponding 
to issuing a job) and then returns to the suspension point

Sporadic task
An RTOS thread whose suspension point is not released periodically but 
with bounded minimum distance and that after release issues its job ands 
then returns to the suspension point

Aperiodic task
Indistinguishable from the other tasks other than for the absence of 
deadline (because of which it executes in the background)



2009/10 UniPD, T. Vardanega Real-time systems 19 of 108

Task states – 1

2009/10 UniPD, T. Vardanega Real-time systems 20 of 108

Task states – 2

Tasks enter the suspended state only voluntarily
By making a primitive invocation that causes them to 
hang on a periodic / sporadic suspension point

The RTOS needs specialized structures to handle 
the distinct forms of suspension

A time-based queue for periodic suspensions
An event-based queue for sporadic suspensions

But someone shall still take care of warranting minimum 
separation between subsequent releases (!)

2009/10 UniPD, T. Vardanega Real-time systems 21 of 108

System calls – 1

The most part of RTOS services are executed in 
response to direct or indirect invocations by tasks

These invocations are termed system calls

System calls are not directly visible to the application

They are hidden in procedure calls exported by 
compiler libraries

The library call does all of the preparatory work needed 
to make the correct invocation of the actual system call 
on behalf of the application

2009/10 UniPD, T. Vardanega Real-time systems 22 of 108

System calls – 2

In embedded systems the RTOS and the application 
share memory

Not the case in general-purpose operating systems
Real-time embedded applications can be better trusted 
and we do not want to pay the space and time 
overhead that arises from address space separation
This however implies that the RTOS must protect its 
own data structures from the risk of race condition

2009/10 UniPD, T. Vardanega Real-time systems 23 of 108

System calls – 3

2009/10 UniPD, T. Vardanega Real-time systems 24 of 108

The scheduler – 1

This is a distinct part of the RTOS that does not 
execute in response to application invocation

It acts every time a task changes state
The corresponding time events are termed 
dispatching points

Scheduler “activation” is often periodic in 
response to clock interrupts

Not only with tick scheduling



2009/10 UniPD, T. Vardanega Real-time systems 25 of 108

The scheduler – 2

At every clock interrupt the scheduler must
Manage the queue of time-based events pending
Increment the execution time budget counter of the running 
job to support the time-based scheduling policy in force (e.g., 
round-robin)
Manage the ready queue

The 10 ms or above period (tick size) typical of 
general-purpose operating systems is not fit for RTOS

But a higher frequency may incur excessive overhead

The scheduler needs to make provisions for event-
driven execution too

2009/10 UniPD, T. Vardanega Real-time systems 26 of 108

I/O issues

The I/O subsystem of a real-time system may 
require its own scheduler
Simple methods to access an I/O resource

Use a non-preemptive FIFO policy
Use some kind of TDMA scheme

Preemptive scheduling techniques as those in use 
for processor scheduling

For instance, RM, EDF, LLF
can be used to schedule I/O requests

2009/10 UniPD, T. Vardanega Real-time systems 27 of 108

Interrupt handling – 1

Hardware interrupts are the most efficient manner for the 
processor to notify the application about the occurrence of 
external events

E.g., the completion of asynchronous I/O operations

Frequency and computational load of the interrupt handling 
activities vary with the interrupt source

For reasons of efficiency the interrupt handling service is 
typically subdivided in an immediate part and a deferred part

The immediate part executes at the level of interrupt priority, above 
all software priorities
The deferred part executes as a normal software activity

2009/10 UniPD, T. Vardanega Real-time systems 28 of 108

Interrupt handling – 2

When the hardware interface asserts an interrupt the processor saves 
the PC and PSW registers in the interrupt stack and jumps to the
address of the relevant interrupt service routine (ISR)

At this time interrupts are disabled to prevent race conditions from 
happening on the arrival of further interrupts
Interrupts arriving at that time may be lost or just kept pending depending 
on the hardware capability
Interrupts operate at an assigned level of priority
The interrupt source may be determined by polling or via an interrupt 
vector

Polling is hardware independent hence more generally applicable but it 
increases latency of interrupt service
Vectoring needs specialized hardware but it contains latency

As these actions complete, registers are restored and interrupts are 
enabled again

2009/10 UniPD, T. Vardanega Real-time systems 29 of 108

Interrupt handling – 3

The worst-case latency incurred on interrupt handling is 
determined by the time needed to

Bring the current instruction to completion, save registers, clear the 
pipeline, acquire the interrupt vector, activate the trap mechanism
Disable interrupts
Complete the (remaining) execution of the ISR at higher priority

This duration corresponds to interference across interrupts
Save the context of the interrupted task, identify the interrupt
source and jump to the corresponding ISR
Begin execution of the selected ISR

Interrupt service can have a device-independent part and a device-
specific part

2009/10 UniPD, T. Vardanega Real-time systems 30 of 108

Interrupt handling – 4

To reduce distributed overhead, the deferred part of the 
interrupt handling service must be preemptable

Hence it must execute at software priority

But it still may directly or indirectly operate on RTOS 
level data structures

Those structures must be therefore protected by 
appropriate access control protocols
If we can do that then we do not need the RTOS to spawn 
its own tasks for this purpose



2009/10 UniPD, T. Vardanega Real-time systems 31 of 108

Interrupt handling – 5

To achieve better responsiveness for interrupt services 
schemes such as slack stealing or bandwidth 
preservation could be used

Bandwidth preservation keeps the reserve of execution 
budget not used by aperiodic activities in between 
periodic replenishments
But their implementation needs specialized support 
from the RTOS

2009/10 UniPD, T. Vardanega Real-time systems 32 of 108

Time management – 1

A system clock consists of
A periodic counting register

Automatically reset to the tick size every time it reaches the 
triggering edge and triggers the clock tick

The register a hardware part automatically decremented at very 
clock pulse and a software part incremented by the handler of 
the clock tick

A queue of time events fired in the interval, whose treatment 
is pending

An (immediate) interrupt handling service

2009/10 UniPD, T. Vardanega Real-time systems 33 of 108

Time management – 2

The frequency of the clock tick determines the 
resolution (granularity) of the software part of 
the clock

The resolution should be an integer divisor of the 
tick size
So that the RTOS may perform tick scheduling at 
every N clock ticks
Then we have more frequent time-service 
interrupts and less frequent (1/N) clock interrupts

2009/10 UniPD, T. Vardanega Real-time systems 34 of 108

Time management – 3

The resolution of the software clock is an important design parameter 
of an RTOS

The finer the resolution the better the clock accuracy but the larger the 
time-service interrupt overhead

There is a delicate balance between the clock accuracy needed by the 
application and the clock resolution that can be afforded by the system

There is intrinsic latency in any query made by a software task to the 
software clock

E.g., 439 clock cycles in ORK for the Leon microprocessor, corresponding to 
about 11 microseconds at 40 MHz

The resolution cannot be finer-grained than the maximum latency that 
may be incurred in accessing the clock

2009/10 UniPD, T. Vardanega Real-time systems 35 of 108

Time management – 4

Beside periodic clocks RTOS must support one-
shot timers a.k.a. interval timers

They operate in a programmed (non-repetitive) way

The RTOS scans the queue of the programmed 
time events to set the time of the next interrupt due 
from the interval timer

The resolution of the interval timer is limited by the time 
overhead of its handling by the RTOS

E.g., 7.061 clock cycles in ORK for Leon

2009/10 UniPD, T. Vardanega Real-time systems 36 of 108

Time management – 5

The accuracy of time events is given by the difference between 
the time at which the event occurred and the time value as 
programmed

Depends on three fundamental factors of influence
The frequency at which the time-event queues are inspected

If interval timers were not used, this would correspond to the period 
of time-service interrupts

The policy with which the RTOS handles the time-event queues
LIFO vs. FIFO

The time overhead cost of handling time events in the queue

The release time of periodic tasks is inherently exposed to jitter



2009/10 UniPD, T. Vardanega Real-time systems 37 of 108

Summary

RTOS design issues
Context switch
Priority levels
Tick scheduling
Interrupt handling
Time management


