
6.b System issues (a concrete
implementation)

2009/10 UniPD, T. Vardanega Real-time systems 39 of 108

Task model summary – 1

Static task set
In Ada: all tasks declared at library level

Tasks issue jobs repeatedly
Task cycle: activation, execution, suspension

Single activation point, no blocking (!)
Real-time attributes

Activation
Periodic or cyclic: every T time units
Sporadic: at least T time units between consecutive events

Execution
Worst case execution time (WCET) assumed to be known
Deadline: D time units after activation

2009/10 UniPD, T. Vardanega Real-time systems 40 of 108

Task model summary – 2

Task communication
Shared variables with mutually exclusive access

In Ada: protected objects with procedures and functions
No avoidance synchronization

Except for delivering release events to sporadic tasks
In Ada: PO with a single entry

Scheduling model
Fixed-priority preemptive

In Ada: FIFO_within_priorities
Access protocol for shared objects

Immediate ceiling priority
In Ada: Ceiling_Locking

2009/10 UniPD, T. Vardanega Real-time systems 41 of 108

The Ravenscar profile

An Ada language profile is enforced by means of a
configuration pragma

pragma Profile (Ravenscar)

Equivalent to a set of language restrictions and
three additional configuration pragmas

pragma Dispatching_Policy
(FIFO_Within_Priorities)

pragma Locking_Policy (Ceiling_Locking)
pragma Detect_Blocking

2009/10 UniPD, T. Vardanega Real-time systems 42 of 108

Ravenscar restrictions
No_Abort_Statements,
No_Dynamic_Attachment,
No_Dynamic_Priorities,
No_Implicit_Heap_Allocations,
No_Local_Protected_Objects,
No_Local_Timing_Events,
No_Protected_Type_Allocators,
No_Relative_Delay,
No_Requeue_Statements,
No_Select_Statements,
No_Specific_Termination_Handlers,
No_Task_Allocators,
No_Task_Hierarchy,
No_Task_Termination,
Simple_Barriers,
Max_Entry_Queue_Length => 1,
Max_Protected_Entries => 1,
Max_Task_Entries => 0,
No_Dependence => Ada.Asynchronous_Task_Control,
No_Dependence => Ada.Calendar,
No_Dependence => Ada.Execution_Time.Group_Budget,
No_Dependence => Ada.Execution_Time.Timers,

No_Dependence => Ada.Task_Attributes

2009/10 UniPD, T. Vardanega Real-time systems 43 of 108

Restriction checking

Luckily, almost all of the restrictions can be
statically checked by the compiler
A few restrictions can only be checked at run time

Potentially blocking operations in the bodies of protected
operation
Priority ceiling violation
More than one call queued on a protected entry or a
suspension object
Task termination

2009/10 UniPD, T. Vardanega Real-time systems 44 of 108

Potentially blocking operations

Potentially “suspending” operations
Delay until statement

A true suspension
Protected entry call statement

Avoidance synchronization treated with the eggshell model
Transitive closure across procedure calls

Call on a subprogram whose body contains a potentially suspending
operation

pragma Detect_Blocking requires detection of
potentially blocking operations

Exception Program_Error must be raised if detected at run time
Blocking need not be detected if it occurs in the domain of a
foreign language (e.g. C)

2009/10 UniPD, T. Vardanega Real-time systems 45 of 108

Other run-time checks

Priority ceiling violation
More than one call waiting on a protected entry or a
suspension object

Exception Program_Error must be raised in both cases
Task termination

Program behavior must be documented
Possible effects include

Silent termination
Holding the task in a pre-terminated state
Execution on an application-defined termination handler

Use of the Ada.Task_Termination package (C.7.3)

2009/10 UniPD, T. Vardanega Real-time systems 46 of 108

Other restrictions

Some restrictions on the sequential part of the
language may be useful in conjunction with the
Ravenscar profile
No_Dispatch
No_IO
No_Recursion
No_Unchecked_Access
No_Allocators
No_Local_Allocators

See ISO/IEC TR 15942, Guide for the use of the Ada
Programming Language in High Integrity Systems for
details

2009/10 UniPD, T. Vardanega Real-time systems 47 of 108

Execution time measurement – 1

The CPU time consumed by tasks during execution
can be measured

And actually should if the WCET values used for
feasibility analysis have to hold true (!)

Per-task clocks can be defined
Set at 0 before task activation
The clock value increases as the task executes

2009/10 UniPD, T. Vardanega Real-time systems 48 of 108

Execution time measurement – 2

with Ada.Task_Identification;

with Ada.Real_Time; use Ada.Real_Time;

package Ada.Execution_Time is

type CPU_Time is private;

CPU_Time_First : constant CPU_Time;

CPU_Time_Last : constant CPU_Time;

CPU_Time_Unit : constant :=
implementation-defined-real-number;

CPU_Tick : constant Time_Span;

function Clock

(T : Ada.Task_Identification.Task_Id

:= Ada.Task_Identification.Current_Task)

return CPU_Time;

...

end Ada.Execution_Time;

2009/10 UniPD, T. Vardanega Real-time systems 49 of 108

Execution time timers – 1

A user-defined event can be fired when a CPU
clock reaches a specified value

An event handler is automatically invoked by the runtime
The handler is an (access to) a protected procedure

Basic mechanism for execution-time monitoring

2009/10 UniPD, T. Vardanega Real-time systems 50 of 108

Execution time timers – 2
with System;

package Ada.Execution_Time.Timers is

type Timer (T : not null access constant
Ada.Task_Identification.Task_Id) is

tagged limited private;

type Timer_Handler is

access protected procedure (TM : in out Timer);

Min_Handler_Ceiling : constant System.Any_Priority
:= implementation-defined;

procedure Set_Handler (TM : in out Timer;

In_Time : in Time_Span;

Handler : in Timer_Handler);

procedure Set_Handler (TM : in out Timer;

At_Time : in CPU_Time;

Handler : in Timer_Handler);

...

end Ada.Execution_Time.Timers;

2009/10 UniPD, T. Vardanega Real-time systems 51 of 108

Group budget – 1

Groups of tasks with a global execution-time
budget can be defined

Can be used to provide temporal isolation among groups
of tasks
Basic mechanism for server-based scheduling

2009/10 UniPD, T. Vardanega Real-time systems 52 of 108

Group budget – 2
with System;
package Ada.Execution_Time.Group_Budgets is
type Group_Budget is tagged limited private;
type Group_Budget_Handler is
access protected procedure (GB : in out Group_Budget);

...
Min_Handler_Ceiling : constant System.Any_Priority :=

implementation-defined;
procedure Add_Task (GB : in out Group_Budget;

T : in Ada.Task_Identification.Task_Id);
...
procedure Replenish (GB : in out Group_Budget;

To : in Time_Span);
procedure Add (GB : in out Group_Budget;

Interval : in Time_Span);
...
procedure Set_Handler (GB : in out Group_Budget;

Handler : in Group_Budget_Handler);
...

end Ada.Execution_Time.Group_Budgets;

2009/10 UniPD, T. Vardanega Real-time systems 53 of 108

Timing events – 1

Lightweight mechanism for defining code to be
executed at a specified time

Does not require an application-level task
Analogous to interrupt handling

The code is defined as an event handler
An (access to) a protected procedure
Directly invoked by the runtime system

2009/10 UniPD, T. Vardanega Real-time systems 54 of 108

Timing events – 2

package Ada.Real_Time.Timing_Events is

type Timing_Event is tagged limited private;

type Timing_Event_Handler is

access protected procedure (Event : in out Timing_Event);

procedure Set_Handler (Event : in out Timing_Event;

At_Time : in Time;

Handler : in Timing_Event_Handler);

...

procedure Cancel_Handler (Event : in out Timing_Event;

Cancelled : out Boolean);

...

end Ada.Real_Time.Timing_Events;

2009/10 UniPD, T. Vardanega Real-time systems 55 of 108

Scheduling and dispatching policies

Additional dispatching policies
Non preemptive

Run-to-completion semantics (per partition)
Built-in support provided

Round robin
Within specified priority band
Built-in support provided
Dispatch on quantum expiry is deferred until end of protected action

Earliest deadline first
Within specified priority band
Built-in support provided for relative and absolute “deadline”
EDF ordered ready queues
Guaranteed form of resource locking (preemption level + deadline)

2009/10 UniPD, T. Vardanega Real-time systems 56 of 108

Priority-band dispatching

Mixed policies can coexist within a single partition
Priority specific dispatching policy can be set by
configuration across bands of contiguous priorities
Protected objects can be used for tasks to communicate
across bands
Tasks do not move across bands

2009/10 UniPD, T. Vardanega Real-time systems 57 of 108

A real-time component model

Real-time components are objects
Instances of classes
Internal state + interfaces
Based on a reduced set of archetypes

Cyclic & sporadic tasks
Protected data
Passive data

2009/10 UniPD, T. Vardanega Real-time systems 58 of 108

To ensure consistent temporal behavior

Two complementary approaches
Static WCET analysis and response-time analysis
can be used to ascertain correct temporal behavior
at design time
Platform mechanisms can be used at run time to
ensure that temporal behavior stays within the
boundaries asserted during analysis

Clocks, timers, timing events, …

2009/10 UniPD, T. Vardanega Real-time systems 59 of 108

Run-time services

The run-time environment must provide services
that help preserve properties asserted in the analysis

Real-time clocks & timers
Execution-time clocks & timers
Predictable scheduling

We assume the execution environment to
implement the Ravenscar tasking model

Ada 2005 with the Ravenscar profile
Augmented with (restricted) execution-time timers

2009/10 UniPD, T. Vardanega Real-time systems 60 of 108

Component structure

control agent
(OBCS)

operations
(OPCS)

thread

component

PI RI

concurrency

synchronization
functionality

2009/10 UniPD, T. Vardanega Real-time systems 61 of 108

Taxonomy of components

Cyclic component
Sporadic component
Protected (data) component
Passive component

2009/10 UniPD, T. Vardanega Real-time systems 62 of 108

Cyclic component

Release event from clock with fixed rate
Real-time attributes

Period
Deadline
Worst-case execution time

The most basic cyclic component does not need the
control agent

The system clock delivers the activation event
The component behavior is fixed and immutable

2009/10 UniPD, T. Vardanega Real-time systems 63 of 108

Cyclic component (basic variant)

operations
(OPCS)

thread

cyclic component

RI

cyclic operation

2009/10 UniPD, T. Vardanega Real-time systems 64 of 108

Cyclic component thread (spec)

task type Cyclic_Thread

(Thread_Priority : Priority;

Period : Positive) is

pragma Priority(Thread_Priority);

end Cyclic_Thread;

cannot be Time_Span!

ms

2009/10 UniPD, T. Vardanega Real-time systems 65 of 108

Cyclic component thread (body)

task body Cyclic_Thread is

Next_Time : Time := <Start_Time>; -- taken at elaboration time

--+ higher in the system

--+ hierarchy

begin

loop

delay until Next_Time; -- so that all tasks start at T0

OPCS.Cyclic_Operation; -- fixed and parameterless

Next_Time := Next_Time + Milliseconds(Period);

end loop;

end Cyclic_Thread;

2009/10 UniPD, T. Vardanega Real-time systems 66 of 108

Sporadic component – 1

Release event from software-mediated event
Signaled by software or hardware interrupts

Real-time attributes
Minimum inter-arrival time
Deadline
Worst-case execution time

The control agent of the target component is used
to signal the activation event

And to store-and-forward signal-related data (if any)

2009/10 UniPD, T. Vardanega Real-time systems 67 of 108

Sporadic component – 2

control agent
(OBCS)

operations
(OPCS)

thread

sporadic component

signal
RI

wait
sporadic operation

PI

2009/10 UniPD, T. Vardanega Real-time systems 68 of 108

Sporadic component (spec)

protected type OBCS(Ceiling : Priority) is

pragma Priority(Ceiling);

procedure Signal;

entry Wait;

private

Occurred : Boolean := False;

end OBCS;

task type Sporadic_Thread(Thread_Priority : Priority) is

pragma Priority(Thread_Priority);

end Sporadic_Thread;

The sporadic thread is activated by
calling the Signal operation

2009/10 UniPD, T. Vardanega Real-time systems 69 of 108

Sporadic component thread (body)

task body Sporadic_Thread is

Next_Time : Time := <Start_Time>;

begin

delay until Next_Time; -- so that all tasks start at T0

loop

OBCS.Wait;

OPCS.Sporadic_Operation;

-- may take parameters if they were delivered by Signal

--+ and retrieved by Wait

end loop;

end Sporadic_Thread;

2009/10 UniPD, T. Vardanega Real-time systems 70 of 108

Sporadic component control agent (body)

protected body OBCS is

procedure Signal is

begin

Occurred := True;

end Signal;

entry Wait when Occurred is

begin

Occurred := False;

end Wait;

end OBCS;

2009/10 UniPD, T. Vardanega Real-time systems 71 of 108

Other basic components

Protected component
No thread, only synchronization and operations
Straightforward direct implementation with protected
object

Passive component
Purely functional behavior, neither thread nor
synchronization
Straightforward direct implementation with functional
package

2009/10 UniPD, T. Vardanega Real-time systems 72 of 108

Temporal properties

Basic patterns only guarantee periodic or sporadic
activation
They must be augmented to guarantee additional
temporal properties at run time

Minimum inter-arrival time for sporadic events
Deadline for all types of thread
WCET budgets for all types of thread

2009/10 UniPD, T. Vardanega Real-time systems 73 of 108

Minimum inter-arrival time

Violations of the specified separation interval may
increase interference on lower priority tasks and
cause them to miss deadlines
We must prevent sporadic thread from being
activated earlier than stipulated

Compute earliest (absolute) allowable activation time
Withhold activation (if signaled) until that time

2009/10 UniPD, T. Vardanega Real-time systems 74 of 108

Sporadic component thread (spec)

task type Sporadic_Thread

(Thread_Priority : Priority;

Separation : Positive) is

pragma Priority(Thread_Priority);

end Sporadic_Thread;

Minimum inter-arrival
time expressed in ms

ms

2009/10 UniPD, T. Vardanega Real-time systems 75 of 108

Sporadic component thread (body)

task body Sporadic_Thread is

Release_Time : Time;

Next_Release : Time := <Start_Time>;

begin

loop

delay until Next_Release;

OBCS.Wait;

Release_Time := Clock;

OPCS.Sporadic_Operation;

Next_Release := Release_Time + Milliseconds(Separation);

end loop;

end Sporadic_Thread;

Still a single point of activation

2009/10 UniPD, T. Vardanega Real-time systems 76 of 108

Observation

This code pattern may incur some temporal drift as
the clock is read after task release

Hence preemption may hit just after the release but
before reading the clock
The net effect is a larger separation than required

It is better to read the clock at the place and time
the task is released

Within the control agent
Which is protected and thus less exposed to general
interference

2009/10 UniPD, T. Vardanega Real-time systems 77 of 108

Enhanced sporadic pattern – 1

protected type OBCS(Ceiling : Priority) is

pragma Priority(Ceiling);

procedure Signal;

entry Wait(Release_Time : out Time);

private

Occurred : Boolean := False;

end OBCS;

2009/10 UniPD, T. Vardanega Real-time systems 78 of 108

Enhanced sporadic pattern – 2

protected body OBCS is

procedure Signal is

begin

Occurred := True;

end Signal;

entry Wait(Release_Time : out Time) when Occurred is

begin

Release_Time := Clock;

Occurred := False;

end Wait;

end OBCS;

2009/10 UniPD, T. Vardanega Real-time systems 79 of 108

Enhanced sporadic pattern – 3

task body Sporadic_Thread is

Release_Time : Time;

Next_Release : Time := <Start_Time>;

begin

loop

delay until Next_Release;

OBCS.Wait(Release_Time);

OPCS.Sporadic_Operation;

Next_Release := Release_Time + Milliseconds(Separation);

end loop;

end Sporadic_Thread;

2009/10 UniPD, T. Vardanega Real-time systems 80 of 108

Deadline overruns

Deadline overruns in a task may occur as a result of
Higher priority tasks executing more often than expected

Prevented with inter-arrival time enforcement
Execution time of the same or higher priority tasks
longer than stipulated

Programming errors
Bounding assertions violated by functional code

Inaccurate WCET analysis

2009/10 UniPD, T. Vardanega Real-time systems 81 of 108

Detection of deadline overruns

Deadline overruns can be detected at run time with
the help of timing events

A mechanism for requiring some application-level action
to be executed at a given time
Timing events can only exist at library level under the
Ravenscar profile

Statically allocated

Minor enhancement possible for periodic tasks
Which however breaks the symmetry of code patterns

2009/10 UniPD, T. Vardanega Real-time systems 82 of 108

Enhanced cyclic pattern – 1

task type Cyclic_Thread

(Thread_Priority : Priority;

Period : Positive;

Deadline : Positive) is

pragma Priority(Thread_Priority);

end Cyclic_Thread;

ms

2009/10 UniPD, T. Vardanega Real-time systems 83 of 108

Enhanced cyclic pattern – 2

Deadline_Overrun : Timing_Event; -- static, local per component

task body Cyclic_Thread is

Next_Time : Time := <Start_Time>;

Canceled : Boolean := False;

begin

loop

delay until Next_Time;

Set_Handler(Deadline_Overrun,

Next_Time + Milliseconds(Deadline),

Deadline_Overrun_Handler); -- application-specific

OPCS.Cyclic_Operation;

Cancel_Handler(Deadline_Overrun, Canceled);

Next_Time := Next_Time + Milliseconds(Period);

end loop;

end Cyclic_Thread;

2009/10 UniPD, T. Vardanega Real-time systems 84 of 108

Enhanced cyclic pattern – 3

Deadline_Overrun : Timing_Event; -- static, local per component

task body Cyclic_Thread is

Next_Time : Time := <Start_Time>;

Canceled : Boolean := False;

begin

loop

-- setting again cancels any previous event

Set_Handler(Deadline_Overrun,

Next_Time + Milliseconds(Deadline),

Deadline_Overrun_Handler); -- application-specific

delay until Next_Time;

OPCS.Cyclic_Operation;

Next_Time := Next_Time + Milliseconds(Period);

end loop;

end Cyclic_Thread;

2009/10 UniPD, T. Vardanega Real-time systems 85 of 108

Enhanced sporadic pattern – 4

task type Sporadic_Thread

(Thread_Priority : Priority;

Separation : Positive;

Deadline : Positive) is

pragma Priority(Thread_Priority);

end Sporadic_Thread;

ms

2009/10 UniPD, T. Vardanega Real-time systems 86 of 108

Enhanced sporadic pattern – 5
Deadline_Overrun : Timing_Event; -- static, local per component

task body Sporadic_Thread is

Release_Time : Time;

Next_Release : Time := <Start_Time>;

Canceled : Boolean := False;

begin

loop

delay until Next_Release;

OBCS.Wait(Release_Time);

Set_Handler(Deadline_Overrun,

Release_Time + Milliseconds(Deadline),

Deadline_Overrun_Handler); -- application-specific

OPCS.Sporadic_Operation;
Cancel_Handler(Deadline_Overrun, Canceled);

Next_Release := Release_Time + Milliseconds(Separation);

end loop;

end Sporadic_Thread;

The deadline cannot
be computed until
returning from Wait

2009/10 UniPD, T. Vardanega Real-time systems 87 of 108

Execution-time overruns

Tasks may execute for longer than stipulated, owing
to programming errors

Bounding assertions violated by functional code
WCET values used in feasibility analysis may be
inaccurate

Optimistic instead of pessimistic
WCET overruns can be detected at run time with
the help of execution-time timers

Not included in Ravenscar
Extended profile

2009/10 UniPD, T. Vardanega Real-time systems 88 of 108

Enhanced cyclic pattern (spec) – 4

task type Cyclic_Thread

(Thread_Priority : Priority;

Period : Positive;

WCET_Budget : Positive) is

pragma Priority(Thread_Priority);

end Cyclic_Thread;

ms

2009/10 UniPD, T. Vardanega Real-time systems 89 of 108

Enhanced cyclic pattern (body) – 5

task body Cyclic_Thread is

Next_Time : Time := <Start_Time>;

Id : aliased constant Task_ID := Current_Task;

WCET_Timer : Timer(Id'access);

begin

loop

delay until Next_Time;

Set_Handler(WCET_Timer,

Milliseconds(WCET_Budget),

WCET_Overrun_Handler); -- application-specific

OPCS.Cyclic_Operation;

Next_Time := Next_Time + Milliseconds(Period);

end loop;

end Cyclic_Thread;

2009/10 UniPD, T. Vardanega Real-time systems 90 of 108

Observations

WCET overruns in sporadic tasks can be detected
similarly

The timer should be set after the activation
There is no need for timer cancellation

2009/10 UniPD, T. Vardanega Real-time systems 91 of 108

Fault handling strategies

Error logging
Only for low-criticality tasks

Second chance
Use slack time and try to complete

Mode change
Switch to safe mode

Fail safe or fail soft behaviour

How?

2009/10 UniPD, T. Vardanega Real-time systems 92 of 108

Fault handling scheme

task timer
set

handler

timer expiration

ET
monitor

mode
change

log reset
system

reflective
computing

wait

2009/10 UniPD, T. Vardanega Real-time systems 93 of 108

Modifiers

Cyclic and sporadic objects may have modifier
operations

Mode change, behavior modifications, etc.

ATC not allowed in Ravenscar
Modifier requests are queued in the OBCS

Control agent now required for cyclic components as well

The thread fetches requests from the OBCS queue and
executes them whenever possible
“When” is determined by the adopted service policy

2009/10 UniPD, T. Vardanega Real-time systems 94 of 108

Cyclic thread with modifier

task body Cyclic_Thread is

Next_Release_Time : Time := <Start_Time>;

Request : Request_Type;

begin

loop

delay until Next_Release_Time;

OBCS.Get_Request(Request); -- may include operation parameters

case Request is

when NO_REQ => OPCS.Periodic_Activity;

when ATC_REQ => -- may take parameters

OPCS.Modifier_Operation;

end case;

Next_Release_Time := Next_Release_Time + Period;

end loop;

end Cyclic_Thread;

2009/10 UniPD, T. Vardanega Real-time systems 95 of 108

Control agent – 1

-- for cyclic thread

protected type OBCS (Ceiling: Priority) is

pragma Priority(Ceiling);

procedure Put_Request(Request : Request_Type);

procedure Get_Request(out Request : Request_Type);

private

Buffer : Request_Buffer; -- bounded queue

end OBCS;

2009/10 UniPD, T. Vardanega Real-time systems 96 of 108

Control agent – 2
-- for cyclic thread

protected body OBCS(Ceiling : Priority) is

procedure Put_Request(Request : Request_Type) is

begin

Buffer.Put(Request);

end Put_Request;

procedure Get_Request(out Request : Request_Type) is

begin

if Buffer.Empty then

Request := NO_REQ;

else

Buffer.Get(Request);

end if;

end Get_Request;

end OBCS;

2009/10 UniPD, T. Vardanega Real-time systems 97 of 108

Ada 2005 compilation chain

Ada 2005 compiler and linker
Full support of Annex D – Real-time systems

Real-time kernel
Implements the Ravenscar tasking model

Ada run-time system
Implements the Ada tasking model on top of the kernel

2009/10 UniPD, T. Vardanega Real-time systems 98 of 108

GNAT for LEON

Cross-compilation system targeted to LEON2
micro-processors

Radiation-hardened SPARC v8
ESA standard

Components
GNAT Ada 2005 compiler (AdaCore)
GNARL run-time system (AdaCore)
ORK+ kernel (UPM)

2009/10 UniPD, T. Vardanega Real-time systems 99 of 108

GNAT compiler

Ada 2005 cross-compilation system
Hosted on GNU/Linux
Targeted to ELF-SPARC v8

Real hardware or simulators

Current version: GNAT GPL 2009
Supports Ada 2005
Ported to LEON2 at UPM

Including Ravenscar run-time system

2009/10 UniPD, T. Vardanega Real-time systems 100 of 108

ORK+

Lightweight real-time kernel for the Ravenscar
tasking model
Evolution of ORK

Developed at UPM under ESA contract

New Ada 2005 features
Timing events
Execution-time clocks and timers
Group budgets

2009/10 UniPD, T. Vardanega Real-time systems 101 of 108

ORK+ architecture

2009/10 UniPD, T. Vardanega Real-time systems 102 of 108

Compilation process

GNAT
compiler

application
sources

gnat.adc

RTS
specs

application
ALI files

application
object files

GNAT
binder

RTS
ALI files

elaboration
code

GNAT
linker

RTS & kernel
object files

ELF-32 SPARC
executable

2009/10 UniPD, T. Vardanega Real-time systems 103 of 108

Cross-compilation and debugging

application
executable file

GDB
debugger

GNAT
compiler

application
sources

RTS
specs

application
object files

GNAT
linker

RTS
objects

Host computer

loaded
application

GRMON

Target computer

2009/10 UniPD, T. Vardanega Real-time systems 104 of 108

Running programs

LEON2 simulator on host
platform

E.g. TSIM

LEON2 computer board
Can use the GNAT
programming system for
cross-compilation,
execution and debugging
on target

2009/10 UniPD, T. Vardanega Real-time systems 105 of 108

Example
$ sparc-elf-gnatmake hello
[$ sparc-elf-gnatmake -g hello -largs -Wl,-Map=hello.map]
$ tsim –gdb
...

gdb interface: using port 1234
[on another terminal – local or remote]
$ sparc-elf-gdb hello
(gdb) target extended-remote 127.0.0.1:1234
...

(gdb) load
...

(gdb) cont
...

(gdb) detach
...

2009/10 UniPD, T. Vardanega Real-time systems 106 of 108

GNAT Programming System

2009/10 UniPD, T. Vardanega Real-time systems 107 of 108

Other tools

Response time analysis
MAST (University of Cantabria, Spain)
http://mast.unican.es/

Execution-time (WCET) analysis
Bound-T (Tidorum, Finland)

Static analysis
http://www.tidorum.fi/bound-t/

RapiTime (Rapita Systems, UK)
Measurement based
http://www.rapitasystems.com/rapitime

2009/10 UniPD, T. Vardanega Real-time systems 108 of 108

Summary

A concrete tasking model
Preservation of analysis assumptions and properties
Execution time measurement
Execution time timers
Group budget (for servers)
Timing events
A real-time component model
Tools

