| The Ravenscar profile

6b System iSSUCS (a concrete m An Ada language profile is enforced by means of a
. . configuration pragma
1mplementat1on) o pragma Profile (Ravenscar)

m Equivalent to a set of language restrictions and
three additional configuration pragmas
o pragma Dispatching_Policy
(FIFO_Within_Priorities)
o pragma Locking_Policy (Ceiling_Locking)
o pragma Detect Blocking

Real-time systems 410f 108

2009/10 UniPD, T. Vardanega

| Task model summary — 1 Ravenscar restrictions

No_Abort_Statements,
No_Dynamic_Attachment,
No_Dynamic_Priorities,

| | Static task set No_lImplicit_Heap_Allocations,
. No_Local_Protected_Objects,
0 In Ada: all tasks declared at library level No_Local_Timing_Events,
. . No_Protected_Type_Allocators,
m Tasks issue jobs repeatedly No_Relative_Delay,
T k l . - - - . No_Requeue_Statements,
0 Task cycle: activation, execution, suspension No_Select_Statements,
1 vati 1 1 i) No_Specific_Termination_Handlers,
[] Sl'ngle activ j(mon point, no blocking (!) Nomroer Ml Tocatore
m Real-time attributes No_Task Hierarchy,
. . No_Task_Termination,
0 Activation simple_Barriers,
Periodi clic: T . Max_Entry_Queue_Length => 1,
m Periodic or cyclic: every T time units Max_Protected Entries => 1,
m Sporadic: at least T time units between consecutive events Max_Task_Entries => 0,
. . No_Dependence => Ada.Asynchronous_Task_Control,
a Execution No_Dependence => Ada.Calendar,
, i L ~ No_Dependence => Ada.Execution_Time.Group_Budget,
m Worst case execution time (WCET) assumed to be known No_Dependence => Ada.Execution Time. Timers,
m Deadline: D time units after activation No_Dependence => Ada.Task_Attributes
2009/10 UniPD, T. Vardanega Real-time systems 39 of 108 2009/10 UniPD, T. Vardanega Real-time systems 42 0f 108
| Task model summary — 2 Restriction checking
= Task communication m Luckily, almost all of the restrictions can be

0 Shared variables with mutually exclusive access
m In Ada: protected objects with procedures and functions
o No avoidance synchronization m A few restrictions can only be checked at run time
m Except for delivering release events to sporadic tasks
= In Ada: PO with a single entry
m Scheduling model

0 Fixed-priority preemptive

statically checked by the compiler

0 Potentially blocking operations in the bodies of protected
operation

0 Priority ceiling violation

m In Ada: FIFO_within_priorities 0 More than one call queued on a protected entry or a
m Access protocol for shared objects suspension object
0 Immediate ceiling priority o Task termination

m In Ada: Ceiling_Locking

2009/10 UniPD, T. Vardancga Real-time systems 40 0f 108 2009/10 UniPD, T. Vardancga Real-time systems 430f 108

| Potentially blocking operations

13

m Potentially “suspending” operations
o Delay until statement
= A true suspension
o Protected entry call statement
= Avoidance synchronization treated with the eggshell model
0 Transitive closure across procedure calls
u Call on a subprogram whose body contains a potentially suspending
OPCIQUOH
= pragma Detect_Blocking requires detection of
potentially blocking operations
o Exception Program_Error must be raised if detected at run time
0 Blocking need not be detected if it occurs in the domain of a

foreign language (e.g. C)

2009/10 UniPD, T. Vardanega Real-time systems 44 0f 108

| Other run-time checks

m Priority ceiling violation
m More than one call waiting on a protected entry or a
suspension object
o Exception Program_Error must be raised in both cases
m Task termination
a Program behavior must be documented
o Possible effects include
= Silent termination
= Holding the task in a pre-terminated state

= Execution on an application-defined termination handler
0 Use of the Ada.Task_Termination package (C.7.3)

2009/10 UniPD, T. Vardancga Real-time systems 45 0f 108

| Other restrictions

m Some restrictions on the sequential part of the
language may be useful in conjunction with the
Ravenscar profile
o No_Dispatch

No_I0

No_Recursion

No_Unchecked_Access

No_Allocators

o No_Local_Allocators

m See ISO/TEC TR 15942, Guide for the use of the Ada
Id)rog(lammiﬂg Langnage in High Integrity Systems for

etails

a
a
a
a

2009/10 UniPD, T. Vardancga Real-time systems 46 0f 108

Execution time measurement — 1

m The CPU time consumed by tasks during execution
can be measured
0 And actually should if the WCET values used for
feasibility analysis have to hold true (!)
m Per-task clocks can be defined
a Set at 0 before task activation

0 The clock value increases as the task executes

2009/10 UniPD, T. Vardanega Real-time systems 47 0f 108

Execution time measurement — 2

with Ada.Task_ldentification;
with Ada.Real_Time; use Ada.Real_Time;
package Ada.Execution_Time is
type CPU_Time is private;
CPU_Time_First : constant CPU_Time;
CPU_Time_Last : constant CPU_Time;
CPU_Time_Unit : constant :=
implementation-defined-real-number;
CPU_Tick : constant Time_Span;
function Clock
(T : Ada.Task_ldentification.Task_Id
:= Ada.Task_ldentification.Current_Task)
return CPU_Time;

end Ada.Execution_Time;

2009/10 UniPD, T. Vardancga Real-time systems 48 0f 108

Execution time timers — 1

m A user-defined event can be fired when a CPU
clock reaches a specified value
0 An event handler is automatically invoked by the runtime

0 The handler is an (access to) a protected procedure

m Basic mechanism for execution-time monitoring

2009/10 UniPD, T. Vardancga Real-time systems 49 0f 108

Execution time timers — 2

with System;
package Ada.Execution_Time.Timers is
type Timer (T : not nulll access constant
Ada.Task_ldentification.Task_Id) is
tagged limited private;
type Timer_Handler is
access protected procedure (TM : in out Timer);
Min_Handler_Ceiling : constant System.Any_Priority
:= implementation-defined,

procedure Set_Handler (TM : in out Timer;
In_Time : in Time_Span;
Handler : in Timer_Handler);

procedure Set_Handler (TM : in out Timer;
At_Time : in CPU_Time;
Handler : in Timer_Handler);

end Ada.Execution_Time.Timers;

2009/10 UniPD, T. Vardanega

| Timing events — 1

m Lightweight mechanism for defining code to be
executed at a specified time
a Does not require an application-level task
0 Analogous to interrupt handling
m The code is defined as an event handler
0 An (access to) a protected procedure

o Directly invoked by the runtime system

Real-time systems 50 0f 108

Group budget — 1

m Groups of tasks with a global execution-time
budget can be defined

0 Can be used to provide temporal isolation among groups
of tasks

0 Basic mechanism for server-based scheduling

2009/10 UniPD, T. Vardanega

2009/10 UniPD, T. Vardancga

| Timing events — 2

package Ada.Real_Time.Timing_Events is
type Timing_Event is tagged limited private;
type Timing_Event_Handler is
access protected procedure (Event : in out Timing_Event);
procedure Set_Handler (Event : in out Timing_Event;
At_Time n Time;
Handler in Timing_Event_Handler);

procedure Cancel_Handler (Event : in out Timing_Event;
Cancelled : out Boolean);

end Ada.Real_Time.Timing_Events;

Real-time systems 510108

Group budget — 2

with System;
package Ada.Execution_Time.Group_Budgets is

type Group_Budget is tagged limited private;
type Group_Budget_Handler is
access protected procedure (GB : in out Group_Budget);

Min_Handler_Ceiling : constant System.Any Priority :=
implementation-defined;

procedure Add_Task (GB : in out Group_Budget;

T : in Ada.Task_ldentification.Task_ld);
procedure Replenish (GB : in out Group_Budget;

To : in Time_Span);
procedure Add (GB in out Group_Budget;

Interval : in Time_Span);

procedure Set_Handler (GB : in out Group_Budget;
Handler : in Group_Budget_Handler);

end Ada.Execution_Time.Group_Budgets;

2009/10 UniPD, T. Vardancga

2009/10 UniPD, T. Vardancga

| Scheduling and dispatching policies

= Additional dispatching policies
o Non preemptive
= Run-to-completion semantics (per partition)
® Built-in support provided
o Round robin
= Within specified priority band
® Built-in support provided
= Dispatch on quantum expiry is deferred until end of protected action
o Earliest deadline first
= Within specified priority band
= Built-in support provided for relative and absolute “deadline”
= EDF ordered ready queues
m Guaranteed form of resource locking (preemption level + deadline)

Real-time systems 520108 2009/10 UniPD, T. Vardanega

Real-time systems 530f 108

Real-time systems 540108

Real-time systems 55 0f 108

| Priority-band dispatching

m Mixed policies can coexist within a single partition

0 Priority specific dispatching policy can be set by
configuration across bands of contiguous priorities

0 Protected objects can be used for tasks to communicate
across bands

0 Tasks do not move across bands

2009/10 UniPD, T. Vardanega Real-time systems 56 0f 108

| A real-time component model

m Real-time components are objects
0 Instances of classes
0 Internal state + interfaces

0 Based on a reduced set of archetypes
m Cyclic & sporadic tasks
= Protected data

= Passive data

2009/10 UniPD, T. Vardancga Real-time systems 570f 108

To ensure consistent temporal behavior

m Two complementary approaches

m Static WCET analysis and response-time analysis
can be used to ascertain correct temporal behavior
at design time

m Platform mechanisms can be used at run time to
ensure that temporal behavior stays within the
boundaries asserted during analysis

0 Clocks, timers, timing events, ...

2009/10 UniPD, T. Vardancga Real-time systems 580f 108

Run-time services

® The run-time environment must provide services
that help preserve properties asserted in the analysis

0 Real-time clocks & timers

o Execution-time clocks & timers

0 Predictable scheduling

m We assume the execution environment to

implement the Ravenscar tasking model

0 Ada 2005 with the Ravenscar profile

0 Augmented with (restricted) execution-time timers

2009/10 UniPD, T. Vardanega

Real-time systems

59 0f 108

| Component structure

C Omp onent
o4
thread
Sunctionality
synchronization
RI
\sqntrol agent opcratiun/ C
(OBCS) (OPCS)

2009/10 UniPD, T. Vardanega Real-time systems 60 of 108

| Taxonomy of components

m Cyclic component

m Sporadic component

Passive component

Protected (data) component

2009/10 UniPD, T. Vardancga

Real-time systems

610f108

| Cyclic component

m Release event from clock with fixed rate
m Real-time attributes
a Period
0 Deadline
o Worst-case execution time
m The most basic cyclic component does not need the
control agent
0 The system clock delivers the activation event

0 The component behavior is fixed and immutable

2009/10 UniPD, T. Vardanega Real-time systems 620f 108

| Cyclic component (basic variant)

cyclic component

cyclic operation
thread

RI

operations — (

(OPCS)

2009/10 UniPD, T. Vardancga Real-time systems 63 0f 108

| Cyclic component thread (spec)

task type Cyclic_Thread
(Thread_Priority : Priority;
Period : Positive) is
pragma Priority(Thread_Pri
end Cyclic_Thread;

cannot be Time_Span!

2009/10 UniPD, T. Vardancga Real-time systems 64 0f 108

| Cyclic component thread (body)

task body Cyclic_Thread is
Next_Time : Time := <Start_Time>; -- taken at elaboration time
-—+ higher in the system
--+ hierarchy

begin
loop
delay until Next_Time; -- so that all tasks start at TO
OPCS.Cyclic_Operation; -- fixed and parameterless
Next_Time := Next_Time + Milliseconds(Period);
end loop;

end Cyclic_Thread;

2009/10 UniPD, T. Vardanega Real-time systems 65 0f 108

Sporadic component — 1

m Release event from software-mediated event
0 Signaled by software or hardware interrupts
m Real-time attributes
0 Minimum inter-arrival time
0 Deadline
a Worst-case execution time
m The control agent of the target component is used
to signal the activation event

0 And to store-and-forward signal-related data (if any)

2009/10 UniPD, T. Vardancga Real-time systems 66 0f 108

| Sporadic component — 2

sporadic component

wait) .
sporadic operation
thread

RI
PI signal

[j control agent operations
O (OBCS) (OPCS) [}C

2009/10 UniPD, T. Vardancga Real-time systems 67 0f 108

| Sporadic component (spec)

task type Sporadic_Thread(Thread_Priority : Priority) is
pragma Priority(Thread_Priority);
end Sporadic_Thread;

protected type OBCS(Ceiling : Priority) is
pragma Priority(Ceiling);

procedure Signal; The sporadic thread is activated by

entry Wait; calling the Signal operation
private B
Occurred : Boolean := False;
end OBCS;

2009/10 UniPD, T. Vardanega Real-time systems 68 0f 108

| Sporadic component thread (body)

task body Sporadic_Thread is

Next_Time : Time := <Start_Time>;
begin
delay until Next_Time; -- so that all tasks start at T0
loop
OBCS.Wait;

OPCS. Sporadic_Operation;
-- may take parameters if they were delivered by Signal
--+ and retrieved by Wait
end loop;
end Sporadic_Thread;

2009/10 UniPD, T. Vardancga Real-time systems 69 0f 108

Sporadic component control agent (body)

protected body OBCS is
procedure Signal is
begin
Occurred := True;
end Signal;
entry Wait when Occurred is
begin
Occurred := False;
end Wait;
end OBCS;

2009/10 UniPD, T. Vardancga Real-time systems 70 0f 108

| Other basic components

m Protected component
0 No thread, only synchronization and operations
o Straightforward direct implementation with protected
object
m Passive component
0 Purely functional behavior, neither thread nor
synchronization
o Straightforward direct implementation with functional
package

2009/10 UniPD, T. Vardanega

Real-time systems 710f 108

| Temporal properties

m Basic patterns only guarantee periodic or sporadic
activation

m They must be augmented to guarantee additional
temporal properties at run time
0 Minimum inter-artival time for sporadic events
0 Deadline for all types of thread
o WCET budgets for all types of thread

2009/10 UniPD, T. Vardancga Real-time systems 720f 108

Minimum inter-arrival time

m Violations of the specified separation interval may
increase interference on lower priority tasks and
cause them to miss deadlines

m We must prevent sporadic thread from being
activated earlier than stipulated
o Compute catliest (absolute) allowable activation time

0 Withhold activation (if signaled) until that time

2009/10 UniPD, T. Vardancga Real-time systems 730f 108

| Sporadic component thread (spec)

task type Sporadic_Thread
(Thread_Priority : Priority;
Separation : Positive) is
pragma Priority(Thread_Priori H
end Sporadic_Thread;

Minimum inter-arrival
time expressed in ms

2009/10 UniPD, T. Vardanega

Real-time systems 74 0f 108

| Sporadic component thread (body)

task body Sporadic_Thread is
Release_Time : Time;
Next_Release : Time := <Start_Time>;
begin
loop
delay until Next_Release;
OBCS.Wait;
Release_Time := Clock;
OPCS. Sporadic_Operation;
Next_Release := Release_Time + Milliseconds(Separation);
end loop;
end Sporadic_Thread;

Still a single point of activation

2009/10 UniPD, T. Vardancga

Real-time systems 75 0f 108

| Observation

m This code pattern may incur some temporal drift as
the clock is read after task release
0 Hence preemption may hit just after the release but

before reading the clock

0 The net effect is a larger separation than required

m Itis better to read the clock at the place and time
the task is released
0 Within the control agent

m Which is protected and thus less exposed to general
interference

2009/10 UniPD, T. Vardancga Real-time systems 76 0f 108

| Enhanced sporadic pattern — 1

protected type OBCS(Ceiling : Priority) is
pragma Priority(Ceiling);
procedure Signal;
entry Wait(Release_Time : out Time);
private
Occurred : Boolean := False;
end OBCS;

2009/10 UniPD, T. Vardanega Real-time systems 77 0f 108

| Enhanced sporadic pattern — 2

protected body OBCS is
procedure Signal is
begin
Occurred := True;
end Signal;

entry Wait(Release_Time : out Time) when Occurred i
begin
Release_Time := Clock;
Occurred := False;
end Wait;
end OBCS;

)

2009/10 UniPD, T. Vardancga Real-time systems 78 0f 108

Enhanced sporadic pattern — 3

task body Sporadic_Thread is
Release_Time : Time;
Next_Release : Time := <Start_Time>;
begin
loop
delay until Next_Release;
OBCS.Wait(Release_Time);
OPCS. Sporadic_Operation;
Next_Release := Release_Time + Milliseconds(Separation);
end loop;
end Sporadic_Thread;

2009/10 UniPD, T. Vardancga Real-time systems 79 0f 108

| Deadline overruns

m Deadline overruns in a task may occur as a result of
0 Higher priority tasks executing more often than expected
m Prevented with inter-arrival time enforcement

0 Execution time of the same or higher priority tasks
longer than stipulated

m Programming errors

0 Bounding assertions violated by functional code
m Inaccurate WCET analysis

2009/10 UniPD, T. Vardanega Real-time systems 80 0f 108

| Detection of deadline overruns

m Deadline overruns can be detected at run time with
the help of timing events

0 A mechanism for requiring some application-level action
to be executed at a given time

0 Timing events can only exist at library level under the
Ravenscar profile

m Statically allocated
m Minor enhancement possible for periodic tasks

0 Which however breaks the symmetry of code patterns

2009/10 UniPD, T. Vardancga

Real-time systems 810108

| Enhanced cyclic pattern — 1

Deadline
pragma Priority(Thread_Pri
end Cyclic_Thread;

2009/10 UniPD, T. Vardancga

Real-time systems 820108

| Enhanced cyclic pattern — 2

Deadline_Overrun : Timing_Event; -- static, local per component
task body Cyclic_Thread is

Next_Time : Time := <Start_Time>;

Canceled : Boolean := False;
begin

loop

delay until Next_Time;

Set_Handler(Deadline_Overrun,
Next_Time + Milliseconds(Deadline),
Deadline_Overrun_Handler); -- application-specific

OPCS. Cyclic _Operation;

Cancel_Handler(Deadline_Overrun, Canceled);

Next_Time := Next_Time + Mi seconds(Period);

end loop;

end Cyclic_Thread;

2009/10 UniPD, T. Vardanega Real-time systems 83 0f 108

| Enhanced cyclic pattern — 3

Deadline_Overrun : Timing_Event; -- static, local per component
task body Cyclic_Thread is

Next_Time : Time := <Start_Time>;

Canceled : Boolean := False;
begin

loop

-- setting again cancels any previous event
Set_Handler(Deadline_Overrun,
Next_Time + Milliseconds(Deadline),
Deadline_Overrun_Handler); -- application-specific
delay untill Next_Time;
OPCS. Cyclic _Operation;
Next_Time := Next_Time + Milliseconds(Period);
end loop;
end Cyclic_Thread;

2009/10 UniPD, T. Vardancga Real-time systems 84 0f 108

| Enhanced sporadic pattern — 4

task type Sporadic_Thread
(Thread_Priority : Priority;
Separation : Positive;
Deadline : Positive) is
pragma Priority(Thread_Priority);
end Sporadic_Thread;

2009/10 UniPD, T. Vardancga

Real-time systems 850 108

| Enhanced sporadic pattern — 5

Deadline_Overrun : Timing_Event; -- static, local per component
task body Sporadic_Thread is

Release_Time : Time;

Next_Release : Time := <Start_Time>;

Cénceled : Boolean := False; “The deadline cannot
begin .

be computed until
loop

returning from Wait

delay until Next_Release;
OBCS.Wait(Release_Time);
Set_Handler(Deadline_Overrun,

Release_Time + Milliseconds(Deadline),

Deadline Overrun_Handler); -- application-specific
OPCS. Sporadic_Operation;
Cancel_Handler(Deadline_Overrun, Canceled);
Next_Release := Release_Time + Milliseconds(Separation);

end Sporadic_Thread;

2009/10 UniPD, T. Vardanega Real-time systems 86 0f 108

Execution-time overruns

m Tasks may execute for longer than stipulated, owing
to programming errors
0 Bounding assertions violated by functional code

m WCET values used in feasibility analysis may be
inaccurate
0 Optimistic instead of pessimistic

m WCET overruns can be detected at run time with
the help of execution-time timers
o Not included in Ravenscar

o Extended profile

2009/10 UniPD, T. Vardancga Real-time systems 87 0f 108

| Enhanced cyclic pattern (spec) — 4

(Thread_Priority : Priority;
Period - Positive;
WCET_Budget : Positive) is
pragma Priority(Thread_Pri
end Cyclic_Thread;

2009/10 UniPD, T. Vardancga Real-time systems 88 0f 108

| Enhanced cyclic pattern (body) — 5

task body Cyclic_Thread is
Next_Time : Time := <Start_Time>;
Id : aliased constant Task_ID := Current_Task;
WCET_Timer : Timer(ld access);
begin
loop
delay until Next_Time;
Set_Handler (WCET.
Milliseconds(WCET_Budget),

WCET_Overrun_Handler); -- application-specific
OPCS. Cyclic Operation;
Next_Time := Next_Time + Milliseconds(Period);

end loop;
end Cyclic_Thread;

2009/10 UniPD, T. Vardanega Real-time systems 89 0f 108

| Observations

m WCET overruns in sporadic tasks can be detected
similarly
0 The timer should be set after the activation

0 Thetre is no need for timer cancellation

2009/10 UniPD, T. Vardancga Real-time systems 90 of 108

| Fault handling strategies

m Error logging
0 Only for low-criticality tasks
m Second chance
0 Use slack time and try to complete
m Mode change
0 Switch to safe mode
w Fail safe or fail soft behaviour

o How?

2009/10 UniPD, T. Vardancga Real-time systems 91 0f 108

| Fault handling scheme

monitoy

l l . reflective

‘ computing

reset
system

Real-time systems 92 0f 108

2009/10 UniPD, T. Vardanega

| Modifiers

m Cyclic and sporadic objects may have modifier
operations
0 Mode change, behavior modifications, etc.

m ATC not allowed in Ravenscar
0 Modifier requests are queued in the OBCS

m Control agent now required for cyclic components as well
0 The thread fetches requests from the OBCS queue and
executes them whenever possible

0 “When” is determined by the adopted service policy

2009/10 UniPD, T. Vardancga Real-time systems 93 0f 108

| Cyclic thread with modifier

task body Cyclic_Thread is
Next_Release_Time : Time := <Start_Time>;
Request : Request_Type;
begin
loop
delay until Next_Release_Time;
OBCS.Get_Request(Request); -- may include operation parameters
case Request is
when NO_REQ => OPCS.Periodic Activity;
when ATC_REQ => -- may take parameters
OPCS.Modifier_Operation;
end case;
Next_Release_Time := Next_Release_Time + Period;
end loop;
end Cyclic_Thread;

2009/10 UniPD, T. Vardancga Real-time systems 94 0f 108

Control agent — 1

-- for cyclic thread
protected type OBCS (Ceiling: Priority) is
pragma Priority(Ceiling);
procedure Put_Request(Request : Request_Type);
procedure Get_Request(out Request : Request_Type);
private
Buffer : Request_Buffer; -- bounded queue
end OBCS;

Real-time systems 95 0f 108

2009/10 UniPD, T. Vardanega

Control agent — 2

-- for cyclic thread
protected body OBCS(Ceiling : Priority) is
procedure Put_Request(Request : Request_Type) is
begin
Buffer.Put(Request);
end Put_Request;

procedure Get_Request(out Request : Request_Type) is
begin
if Buffer_Empty then
Request := NO_REQ;
else
Buffer.Get(Request);
end if;
end Get_Request;
end OBCS;

2009/10 UniPD, T. Vardancga Real-time systems 96 0f 108

Ada 2005 compilation chain

m Ada 2005 compiler and linker

0 Full support of Annex D — Real-time systems
m Real-time kernel

0 Implements the Ravenscar tasking model
m Ada run-time system

0 Implements the Ada tasking model on top of the kernel

2009/10 UniPD, T. Vardancga Real-time systems 97 0f 108

| GNAT for LEON

m Cross-compilation system targeted to LEON2

micro-processors
0 Radiation-hardened SPARC v8
o ESA standard

= Components
o GNAT Ada 2005 compiler (AdaCore)
o GNARL run-time system (AdaCore)
o ORK+ kernel (UPM)

2009/10 UniPD, T. Vardanega Real-time systems 98 of 108
| GNAT compiler
m Ada 2005 cross-compilation system
o Hosted on GNU/Linux
0 Targeted to ELF-SPARC v8
m Real hardware or simulators
m Current version: GNAT GPL 2009
0 Supports Ada 2005
a Ported to LEON2 at UPM
m Including Ravenscar run-time system
2009/10 UniPD, T. Vardanega Real-time systems 99 of 108
| ORK+
m Lightweight real-time kernel for the Ravenscar
tasking model
m Evolution of ORK
0 Developed at UPM under ESA contract
m New Ada 2005 features
0 Timing events
o Execution-time clocks and timers
o Group budgets

2009/10 UniPD, T. Vardancga Real-time systems

| ORK+ architecture

el Pratection
e

e

; | w0
| - [
Lyt
i !
N e Theeadi o O
o—_} O o -
Jirre—
=
- LT .
=
: t
b &
2009/10 UniPD, T. Vardanega Real-time systems 101 of 108

| Compilation process

RTS
ALI files

GNAT
binder

application
ALI files

application

application GNAT
sources compi
object files code
RTS

specs
RTS & kernel GNAT ELF-32 SPARC
object files linker executable

Real-time systems 102 0f 108

claboration

2009/10 UniPD, T. Vardancga

| Cross-compilation and debugging

application GNAT application GNAT
sources compiler object files linker

application
executable file

debugger

Host computer

Target computer lo?mlefl
application

2009/10 UniPD, T. Vardancga Real-time systems 103 of 108

| Running programs

» LEON?2 simulator on host
platform
= Eg TSIM
= LEON2 computer board -

= Can use the GNAT
programming system for
cross-compilation,
execution and debugging

on target
Sfe
WP, ™. Vardinega E i3 cal-time systems o
2009/10 UniPD, T. Vardaneg; %‘:%‘5 Real-time sy 1040f 108
| Example
$ sparc-elf-gnatmake hello
[$ sparc-clf-gnatmake -g hello -largs -W1,-Map=hello.map |
$ tsim —gdb
gdb interface: using port 1234
[on another terminal — local or remote |
$ sparc-elf-gdb hello
(gdb) target extended-remote 127.0.0.1:1234
(gdb) load
(gdb) cont
(gdb) detach
Sk
2009/10 UniPD, T. Vardanega ?;c;? Real-time systems 105 0f 108

| GNAT Programming System

e G0 nesge L B Bl Do Bk wedem i

DoBX0 &,

F1[E

Tha progedt (e s o s carsabies

1 wnad gl LTt _rwt;

ks

2009/10 UniPD, T. Vardancga Real-time systems

106 of 108

| Other tools

m Response time analysis
0 MAST (University of Cantabria, Spain)
0 http://mast.unican.es/

m Execution-time (WCET) analysis
0 Bound-T (Tidorum, Finland)

= Static analysis

= http://www.tidorum.fi/bound-t/
0 RapiTime (Rapita Systems, UK)

® Measurement based
= http://www.rapitasystems.com/ rapitime

e
2009/10 UniPD, T. Vardanega HULE
S

Real-time systems

107 0f 108

Summary

m A concrete tasking model

m Preservation of analysis assumptions and properties

m Execution time measurement

m Execution time timers

m Group budget (for servers)

m Timing events

m A real-time component model

m Tools
Sk
2009/10 UniPD, T. Vardancga ?;c_;?

Real-time systems

108 of 108

