
Real-Time Systems

Anno accademico 2009/10
Laurea magistrale in informatica
Dipartimento di Matematica Pura e Applicata
Università di Padova
Tullio Vardanega

2009/10 UniPD, T. Vardanega Real-time systems 2 of 26

Outline

1. Introduction
2. Dependability issues
3. Scheduling issues
4. More on fixed-priority scheduling
5. Task interactions and blocking
6. System issues
7. Multi-cores and distribution
Bibliography

• J. Liu, "Real-Time Systems", Prentice Hall, 2000
• A. Burns, A. Wellings, “Concurrent and Real-Time Programming in Ada”,

Cambridge University Press, 2007
• A. Burns, A. Wellings, "Real Time Systems and Programming Languages: Ada

95, Real-Time Java and Real-Time C/POSIX", Addison-Wesley, 2009

7.b Multi-cores

Credits to A. Burns and A. Wellings

and to B. Andersson and J. Jonsson for their work in
Proc. of the the IEEE Real-Time Systems Symposium, WiP
Session, 2000, pp. 53–56

2009/10 UniPD, T. Vardanega Real-time systems 4 of 26

Fundamental issues

Hardware architecture taxonomy
Homogeneous or heterogeneous processors

Current research is focused on SMP (symmetric multiprocessors) as
the scheduling problem is much simpler

Scheduling approach
Global or partitioned or alternatives between these extremes
Partitioning is an allocation problem followed by single processor
scheduling

Optimality criteria
EDF is no longer optimal
EDF is not always better than FPS
Global scheduling is not always better than partitioned

2009/10 UniPD, T. Vardanega Real-time systems 5 of 26

Hardware architecture taxonomy

A multiprocessor (or multi-core) is tightly coupled so that
global status and workload information on all processors
(cores) can be kept current at low cost

The system may use a centralized dispatcher and scheduler
When each processor (core) has its own scheduler, the decisions
and actions of all schedulers are coherent

Scheduling in this model is an NP-hard problem

A distributed system is loosely coupled (too costly to keep
global status) and there usually is a dispatcher / scheduler
per processor

2009/10 UniPD, T. Vardanega Real-time systems 6 of 26

State of the art

Some task sets may be unschedulable even though they
have low utilization (much less than the number of
processors)

This is known as the Dhall’s effect [Dhall & Liu, 1978]
Existing necessary and sufficient schedulability tests have
exponential time complexity

Existing sufficient tests have polynomial time complexity but are
pessimistic

Rate-monotonic priority assignment is not optimal
No optimal priority assignment scheme with polynomial
time complexity has been found yet

2009/10 UniPD, T. Vardanega Real-time systems 7 of 26

Interference

We know what is the interference Ii on a task i for
single-processor scheduling
For global multiprocessor scheduling with m
processors interference only occurs for tasks m+1;
m+2; …
Multiprocessor interference can be computed as the
sum of all intervals when m higher-priority tasks
execute in parallel on all m processors

2009/10 UniPD, T. Vardanega Real-time systems 8 of 26

Example (Dhall’s effect) – 1

Under global scheduling, EDF and FPS would run a and b
on each of the 2 processors
But this would leave no time for c to complete

7 time units on each processor, 14 in total, but 8 on neither
Even if the total system is underutilized (!)

0.67

0.5

0.5

U

81212c

51010b

51010a

CDTTask

On 2 processors

∑ Ui = 1.67 < 2

2009/10 UniPD, T. Vardanega Real-time systems 9 of 26

Example – 2

Partitioned scheduling does not work here either
Task f cannot reside on just one processor: it needs to
migrate from one to the other to find room for execution
And it also needs that d and e are willing to use cooperative
scheduling

0,2

0.9

0.9

U

21212f

91010e

91010d

CDTTask

On 2 processors

∑ Ui = 2

2009/10 UniPD, T. Vardanega Real-time systems 10 of 26

Global scheduling anomalies

In real-time scheduling, the deadline miss ratio often highly
depends on the system load
This suggests that increasing the period will decrease the
utilization and thus decrease the deadline miss ratio
Anomaly 1: a decrease in processor demand from higher-
priority tasks can increase the interference on a lower-
priority task because of the change in the time when the
tasks execute
Anomaly 2: a decrease in processor demand of a task
negatively affects the task itself because the change in the
task arrival times make it suffer more interference

2009/10 UniPD, T. Vardanega Real-time systems 11 of 26

Anomaly 1

0.67
0.50
0.67
U

81212c

244b

233a

CDTTask m = 2 processors and ∑ Ui = 1.83 but
task c is saturated because Cc + Ic=Dc and
thus any increase in Cc makes it unschedulable

If we change Ta to 4 we decrease system load
to ∑ Ui = 1.67 but Ic increases from 4 to 6 (!)

P1

P2

a a a a

b b bc

c

c

c

c

3 6 9

4 8

2009/10 UniPD, T. Vardanega Real-time systems 12 of 26

Anomaly 2

0.7
0.6
0.5
U

71010c

355b

244a

CDTTask m = 2 processors and ∑ Ui = 1.8 but
task c is saturated

If we change Tc to 11 we decrease system
load to ∑ Ui = 1.74 but Ic increases
from 3 to 5 (!) as becomes visible in
the second job of c

5 10

P1

P2 b

a a ac

c

c

4 8

b c

2009/10 UniPD, T. Vardanega Real-time systems 13 of 26

P-fair scheduling [Baruah et al. 1996]

Proportional progress is a form of proportionate
fairness (P-fairness)

Each task τi is assigned resources in proportion to its
weight Wi = Ci/Ti hence it progresses proportionately
Useful e.g., for real-time multimedia applications

At every time t task τi must have been scheduled
either ⎿Wi × t⏌ or ⎡ Wi × t ⎤ time units

Preemption is assumed to only occur at integral time
units (without loss of generality) and the workload model
is periodic

2009/10 UniPD, T. Vardanega Real-time systems 14 of 26

P-fair scheduling – 2

lag (S, τi , t) is the difference between the total
resource allocations that task τi should have received
in [0,t) and what it received under schedule S
For a P-fair schedule S at time t

Task τi is ahead iff lag (S, τi , t) < 0
Task τi is behind iff lag (S, τi , t) > 0
Task τi is punctual iff lag (S, τi , t) = 0

α(τi , t) is the characteristic substring of task τi at time t
Finite string of over {-, 0, +} of αt+1(x) αt+2(x)…αt’(x)
Where t’ = min i : i > t : αi(x)=0
αt(x) = sign (wx × (t+1) – ⎿wx × t⏌- 1)

2009/10 UniPD, T. Vardanega Real-time systems 15 of 26

P-fair scheduling – 3

Task τi is urgent at time t iff τi is behind and αt(τi) ≠ -
Task τi is tnegru (inverse of urgent) at time t iff τi is ahead
and αt(τi) ≠ +
Task τi is contending otherwise
General principle of P-fairness

Every urgent task must be scheduled at time t to preserve P-fairness
No tnegru task can be scheduled at time t without failing P-fairness

Possible pitfalls for n0 tnegru, n1 contending, n2 urgent at time t
with m resources and n=n0+n1+n2

If n2>m the scheduling algorithm cannot schedule all urgent tasks
If n0>n-m the scheduling algorithm is forced to schedule some
tnegru tasks

2009/10 UniPD, T. Vardanega Real-time systems 16 of 26

P-fair scheduling – 4

The PF scheduling algorithm
Schedule all urgent tasks
Allocate the remaining resources to the highest-priority contending
tasks according to the total order function ⊇ with ties broken
arbitrarily

x ⊇ y iff α(x, t) ≥ α(y, t)
And the comparison between the characteristics substrings is resolved
lexicographically with - < 0 < +

With PF we have ∑x∈[0,n) wx = m
A dummy task may need to be added to the task set to top
utilization up

The earlier pitfalls cannot happen with the PF algorithm

2009/10 UniPD, T. Vardanega Real-time systems 17 of 26

Example (PF scheduling) – 1

3-U462335z

0.727…118y

0.714…75x

0.542w

0.333…31v

WTCTask
m = 3 processors
n = 4 tasks
Task z is a dummy used to
top system utilization up
In general its period is set
to the system hyperperiod

This time we halved it

With PF we always have
n2 > m and n0 ≤ n-m

2009/10 UniPD, T. Vardanega Real-time systems 18 of 26

Example (PF scheduling) – 2

2009/10 UniPD, T. Vardanega Real-time systems 19 of 26

Some results – 1

For the simplest workload model made of independent
periodic and sporadic tasks

A P-fair scheme can theoretically schedule up to a total utilisation
U = M for M processors, but its run-time overheads are excessive

Especially because tasks incur very many preemptions and are
frequently required to migrate across processors

Partitioned FPS first-fit (on decreasing task utilization) can sustain

i.e., 0.414 × M
But this is a sufficient test only [Oh & Baker, 1998]

)12(−≤ MU

2009/10 UniPD, T. Vardanega Real-time systems 20 of 26

Some results – 2

Partitioned EDF first-fit can sustain

For high Umax gets rapidly lower than 0.6 × M, but can
get close to M for some examples
Again this is a sufficient test only [Lopez et al., 2004]

1
1

+
+

≤
β
βMU

⎥
⎦

⎥
⎢
⎣

⎢
=

max

1
U

β

Per task

2009/10 UniPD, T. Vardanega Real-time systems 21 of 26

Some results – 3

Global EDF can sustain

For high Umax can be as low as 0.2 × M but also
close to M for other examples
Again, only sufficient [Goossens et al., 2003]

max)1(UMMU −−≤

2009/10 UniPD, T. Vardanega Real-time systems 22 of 26

Some results – 4

Combinations
FPS (higher band) to those tasks with Ui > 0.5
EDF for the rest

Again, only sufficient [Baruah, 2004]

⎟
⎠
⎞

⎜
⎝
⎛ +

≤
2

1MU

2009/10 UniPD, T. Vardanega Real-time systems 23 of 26

Multiprocessor PCP – 1

Proposed by [Sha, Rajkumar, & Lehoczky, 1988] for
globally shared resources
Assumes tasks and resources statically bound to processors

The host processor for a resource is called the synchronization processor
for that resource
The FPS scheduler for each synchronization processor knows the
priorities and resources requirements of all tasks requiring access to
its globally shared resources

We need actual locks to guarantee protection from true
parallelism (which makes lock-free algorithms attractive)

The task that holds a lock should not be preempted locally
The task that is denied a lock spin-locks (!)

2009/10 UniPD, T. Vardanega Real-time systems 24 of 26

Multiprocessor PCP – 2

Access to globally shared resources is controlled
locally on the synchronization processor according
to the Priority-Ceiling Protocol (PCP) except that

Access to a globally shared resource is modeled as the
task executing a global critical section on the
synchronization processor for the resource
All global critical sections are executed at higher priorities
than local tasks on the synchronization processor

2009/10 UniPD, T. Vardanega Real-time systems 25 of 26

Blocking under M-PCP

Consequently task Ti incurs five types of blocking
Local blocking time due to contention for local resources
Local preemption delay due to the preemption by global critical
sections used by remote tasks on Ti’s local processor
Remote blocking time due to contention with lower-priority tasks for
remote resources on their synchronization processors
Remote preemption delay due to preemption by higher-priority global
critical sections on synchronization processors of the remote
resources required by Ti

Deferred blocking time due to the suspended execution of local higher-
priority tasks

2009/10 UniPD, T. Vardanega Real-time systems 26 of 26

Summary

Issues and state of the art
Dhall’s effect: examples
Scheduling anomalies: examples
P-fair scheduling
Sufficient tests for simple workload model
Incorporating global resource sharing

