
Real-Time Systems

Anno accademico 2009/10
Laurea magistrale in informatica
Dipartimento di Matematica Pura e Applicata
Università di Padova
Tullio Vardanega

2009/10 UniPD, T. Vardanega Real-time systems 2 of 48

Outline

1. Introduction
2. Dependability issues
3. Scheduling issues
4. More on fixed-priority scheduling
5. Task interactions and blocking
6. System issues
7. Multi-cores and distribution
Bibliography

• J. Liu, "Real-Time Systems", Prentice Hall, 2000
• A. Burns, A. Wellings, “Concurrent and Real-Time Programming in Ada”,

Cambridge University Press, 2007
• A. Burns, A. Wellings, "Real Time Systems and Programming Languages: Ada

95, Real-Time Java and Real-Time C/POSIX", Addison-Wesley, 2009

2009/10 UniPD, T. Vardanega Real-time systems 3 of 48

8.a WCET analysis
techniques
Enrico Mezzetti, emezzett@math.unipd.it

2009/10 UniPD, T. Vardanega Real-time systems 4 of 48

Computing the WCET – 1

Why not measure the WCET of a task on its target hardware?

Triggering the WCET by test
Worst-case input covering all executions of a real program is intractable in practice
Worst-case initial state is difficult to determine due to complex HW features

Complex pipelines (out-of-order execution)
Caches
Branch predictors and other features allowing speculative execution
… increasingly used in modern processors

Target Hardware
(black box)

Task
Worst-case input

Worst-case HW state

Logic
Analyser,

Oscyiloscope,
etc

WCET ?

2009/10 UniPD, T. Vardanega Real-time systems 5 of 48

Computing the WCET – 2

Exact WCET not generally computable (~ the halting problem)
A WCET estimate or bound are key to predictability

Must be safe to be an upper bound to all possible executions
Must be tight to avoid costly over-dimensioning

2009/10 UniPD, T. Vardanega Real-time systems 6 of 48

Static analysis – 1

Analyze a program without executing it
On an abstract model of the target HW
With the actual executable
To determine safe and tight WCET bounds

Execution time depends on execution path and HW
High-level analysis addresses the program behavior

Path analysis
Low-level analysis determines the timing behavior of
individual instructions

Not constant due to complex HW
Must be aware of inner working of HW (pipeline, caches, etc.)

2009/10 UniPD, T. Vardanega Real-time systems 7 of 48

Static analysis – 2

High-level analysis
Analyzes all possible execution paths of the program

Builds the Control-flow Graph (CFG)
Superset of all possible execution paths
Basic block is the unit of analysis

Sequence of instructions with no branches/loops

Issues related to path analysis
Input-data dependency
Infeasible paths
Loop bounds (and recursion depth)
Dynamic calls (through pointers)

2009/10 UniPD, T. Vardanega Real-time systems 8 of 48

Static analysis – 3

High-level analysis (cont’d)
Several techniques are used

Control-flow analysis to compute execution paths
Data-flow analysis to find loop bounds
Value analysis to resolve memory accesses
CFG unit: basic blocks

Information automatically gathered is not exhaustive
User annotation of flow-facts is needed

To facilitate detection of infeasible paths
To refine loop bounds
To define frequency relations between basic blocks
To specify the target of dynamic calls and referenced memory addresses

2009/10 UniPD, T. Vardanega Real-time systems 9 of 48

Static analysis – 4

Low-level analysis
Requires abstract modeling all hardware features

Processor, memory subsystem, buses, peripherals…
Conservative : never underestimate the concrete timing
All possible HW states should be accounted for

Issues related to HW modeling
Precise modeling of complex hardware is difficult

Inherent complexity (e.g. out-of-order pipelines)
Lack of comprehensive information (copyrights, patents, …)
Differences between specification and implementation (!)

Representation of all HW states is computationally infeasible

2009/10 UniPD, T. Vardanega Real-time systems 10 of 48

Static analysis – 5

Low-level analysis (cont’d)
Concrete HW states

Determined by the execution history
Cannot compute all HW states for all possible executions

Invariant HW states are grouped into execution contexts
Conservative overestimation to reduce the research space

Applied techniques
Abstract interpretation

Computes abstract states and specific operators in the abstract domain
Update function to update the abstract state along the exec path
Join function to merge control-flow after a branch

Some techniques are specific to each HW feature

2009/10 UniPD, T. Vardanega Real-time systems 11 of 48

Static analysis – 6

The big picture

Open problems
Can we always trust HW modeling?
How much overestimation do we incur?

Inclusion of infeasible paths
Overestimation intrinsic in abstract state computation

Weaknesses of user annotations
Labor intensive and error prone

Analysis framework and
Abstract HW model

Program
(exec, disassembly,...)

User annotations

Safe
WCET bounds

2009/10 UniPD, T. Vardanega Real-time systems 12 of 48

Static analysis – 7

Also safeness can be hampered
Local worst case does not always lead to global worst case
Timing anomalies

Complex hardware architectures (e.g. out-of-order pipelines)
Even improper design choices (e.g. cache replacement policies)
Counter-intuitive timing behavior
Faster execution of a single instruction entails long-term negative effects

Very difficult to account for in static analysis

2009/10 UniPD, T. Vardanega Real-time systems 13 of 48

Scheduling anomaly: example

Some dependence between instructions
Shared resources (e.g. pipeline stages)

Faster execution of A leads to a worse overall execution because
of the order in which instructions are executed

2009/10 UniPD, T. Vardanega Real-time systems 14 of 48

Hybrid analysis (measurement based) – 1

To obtain realistic (less pessimistic) WCET estimates
On the real target processor
On the final executable
Safeness not guaranteed (!)

Hybrid approaches exploit
Measures basic blocks on the real HW

Avoids pessimism from abstract modeling

Static analysis techniques to combine the obtained measures
Knowledge of the program execution paths

2009/10 UniPD, T. Vardanega Real-time systems 15 of 48

Hybrid analysis (measurement based) – 2

Approaches to collect timing information
Software instrumentation

The program is augmented with instrumentation code
Instrumentation effects the timing behavior of the program

A.k.a.: probe effect
Cannot be simply removed at end of analysis

Hardware instrumentation
Depends on specialized HW features (e.g., debug interface)

Confidence in the results contingent on the coverage of the
executions

Exposed to the same problems as static analysis and measurement

2009/10 UniPD, T. Vardanega Real-time systems 16 of 48

Hybrid analysis (measurement based) – 3

The big picture

Open problems
Can we trust the resulting estimates?

Contingent on worst-case input and worst-case HW state
Consideration of infeasible paths

Needs the real execution environment or an identical copy
Serious cost impact and inherent difficulty of exactness

Program executable

Opt User annotations WCET
estimates

Target Hardware
(black box)

Execution
traces Path info

2009/10 UniPD, T. Vardanega Real-time systems 17 of 48

Example tool: a3 and aiT

a3 stands for AbsInt Advanced Analyzer
Industrial-level commercial tool

Airbus, Daimler, Mitsubishi, Volkswagen, etc.

Developed by AbsInt GmbH (absint.com)
Based on abstract interpretation
Scientific basis developed at Saarlanden Universiteit, Saarbruecken,
Germany

Supports various forms of static analysis
Stack usage analysis
Value analysis
WCET analysis – the aiT tool proper

2009/10 UniPD, T. Vardanega Real-time systems 18 of 48

WCET analysis with a3-aiT – 1

A static analysis tool
Uses an abstract processor model

Specific to each processor
Different versions of the same tool are needed for different
processors

Almost everything is modeled by abstract interpretation
Loop analysis : interval analysis and pattern matching
Value analysis : interval analysis
Pipeline analysis : integrates cache analysis by abstract interpretation

Results combined with path information in an ILP problem
Solution is the WCET bound

2009/10 UniPD, T. Vardanega Real-time systems 19 of 48

WCET analysis with a3-aiT – 2

Overview of a3

Program executable
and target procedure

User annotations
(global and local .ais files)

Control-flow graph

Safe WCET bounds

Safe Stack usage bounds

Possible values of
registers and variables

a3

Refine processor model

Supported analysis

2009/10 UniPD, T. Vardanega Real-time systems 20 of 48

WCET analysis with a3-aiT – 3

The a3-Leon2 tool
Targets the LEON2 processor family

Aeroflex-Gaisler (gaisler.com)
Configurable to apply to a specific processor

Clock rate
FPU
Memory areas and relative access latency
Caches (size, associativity, line size,…)

LEON2 is a quite simple processor
5-stage pipeline
No branch predictors (delay slot)

2009/10 UniPD, T. Vardanega Real-time systems 21 of 48

Summary

Computing the WCET
Static analysis

High-level analysis
Low-level analysis

Hybrid analysis (measurement-based)
Example tool and demo

2009/10 UniPD, T. Vardanega Real-time systems 22 of 48

8.b Feasibility analysis
techniques
Marco Panunzio, panunzio@math.unipd.it

2009/10 UniPD, T. Vardanega Real-time systems 23 of 48

Feasibility region

Geometrical region that represents the set of feasible
systems (w.r.t. their workload model parameters)

N-dimensional space with N-parameter analysis
Function of the timing parameters
Specific to the scheduling policy in force

par2

Feasibility
region

t2t1

t1 is feasible
t2 is not feasible

par1

2009/10 UniPD, T. Vardanega Real-time systems 24 of 48

Advanced utilization tests

Hyperbolic bound improves Liu & Layland utilization test
For systems with periodic tasks under FPS and RM priority assignment
E. Bini, G. Buttazzo, and G. Buttazzo: “A Hyperbolic Bound for the Rate
Monotonic Algorithm”. Proceedings of the 13th Euromicro Conference on
Real-Time Systems, 2001

2)1(
1

≤+∏
=

N

i

iU

1

0.83

U1

RM

EDF

)12(1

1

−≤∑
=

N
N

i

i NU

1
1

≤∑
=

N

i
iU

2009/10 UniPD, T. Vardanega Real-time systems 25 of 48

Fine-grained response time analysis

IICSTSCCS
T

JRCCSBR R
extInt

R
clock

ihpj
j

j

A
j

n
i

ii
n
i

n
i

n
i +++++⎥

⎥

⎤
⎢
⎢

⎡ +
+++= ∑

∈

+

)(

1)21(1

ii CCSBR ++= 11

JRR Wn
ii +=

Blocking time
(resource access
protocol or kernel)

“In” context switch “Out” context switch
Interference from
the clock

Interference from
interrupts

“Activation” jitter

“Wake-up” jitter

Time to issue a
suspension call

2009/10 UniPD, T. Vardanega Real-time systems 26 of 48

Transactions – 1

Considers causal relations between activities
Introduces information relevant to analysis that is not
captured by classical workload models

Dependencies in the activation of jobs

Originally introduced for the analysis of distributed systems
Also useful for the analysis of single-node “collaboration patterns”

τ1 τ2 τ3

τ4

τ5

2009/10 UniPD, T. Vardanega Real-time systems 27 of 48

Transactions – 2

Two (main) kinds of dependence
Direct precedence relation (e.g., producer-consumer)

τ2 cannot proceed until τ1 completes

Indirect priority relation
τ4 does not suffer interference from τ3 (under FPS and synchronous
release of τ1 and τ4)

τ2 τ3
τ1

τ4 p1=4

τ2 τ3τ1 p1=5 p2=3 p3=6

2009/10 UniPD, T. Vardanega Real-time systems 28 of 48

Example – 1

A “callback pattern” to permit in out interactions
between tasks in Ravenscar systems

2009/10 UniPD, T. Vardanega Real-time systems 29 of 48

Example – 2

T1 (Producer) [cyclic]

T2 (Consumer)
[sporadic]

Q1

T3 (Callback)
[sporadic]

Q2

fetches request

deposits request

fetches result
deposit result

T1 T2 T3

End-to-end deadline
The feasibility of the end-to-end response time against this deadline is the important information (!)

2009/10 UniPD, T. Vardanega Real-time systems 30 of 48

Sensitivity analysis – 1

Investigates the changes in a given system that
Improve the fit of an already feasible system
Make feasible an infeasible system

C1

C2

Cmax
1Δ

Cmax
2Δλmax

Cmax
1Δ

Cmax
2Δ

Position of the system in
the feasibility region

τ

τ Maximum feasible variation for the
WCET of t1 (negative in the example)

Maximum feasible variation for the
WCET of t2 (negative in the example)

2009/10 UniPD, T. Vardanega Real-time systems 31 of 48

Sensitivity analysis – 2

Major computation complexity
Theory still under development

Does not account for shared resources, multi-node systems,
partitioned systems

High potential
To explore solution space in the dimensioning phase of design

Presently only applicable to period/MIAT and WCET

To study the consequences of changes to timing parameters
To permit the inclusion of better functional value in the system
To renegotiate timing (or functional) parameters

2009/10 UniPD, T. Vardanega Real-time systems 32 of 48

MAST

Modeling and Analysis Suite for Real-Time Systems
(MAST)

Developed at University of Cantabria, Spain
Open source
Implements several analysis techniques

To analyze uni-processor or multi-processor systems
Under Fixed-priority scheduling or EDF scheduling

http://mast.unican.es

2009/10 UniPD, T. Vardanega Real-time systems 33 of 48

Classic workload model

1 2 3 4 5 6

T1

T2

T3

Critical Instant for T3

T1 (Sporadic) MIAT=1750 WCET=500

T2 (Cyclic) T=2000 WCET=500

T3 (Cyclic) T=2000 WCET=500

2009/10 UniPD, T. Vardanega Real-time systems 34 of 48

MAST – real-time model

2009/10 UniPD, T. Vardanega Real-time systems 35 of 48

MAST – transaction

To model causal relations between activities
Triggered by external events

Periodic, sporadic, aperiodic, etc…

2009/10 UniPD, T. Vardanega Real-time systems 36 of 48

MAST – operations

The real-time model includes the description of all
the operations in the system

Simple
operation BCET

ACET

WCET
Shared Resource

List

Composite
OperationName

SO 2SO 1 CO 1

Name

Simple Operation

BCET

ACET

WCET
Shared Resource

List

Composite Operation

Name

SO 2SO 1 CO 1

Name

Composite
Operation

SO 2SO 1 CO 1

Name

Enclosing Operation

CO 2SO 3 EO 1

Name
WCETBCET ACET

Composite
OperationName

Message Transmission
Name

Best Message Size
Avg Message Size
Worst Message Size

2009/10 UniPD, T. Vardanega Real-time systems 37 of 48

MAST – creation of a transaction

Event
Handler

Event
Handler

External
event

Operation
en1

Activity

Operation
en2

Scheduling
Server S2

Activity

Tr1

e1 e2 e3

Scheduling
Server S1

Timing
Requirements

Timing
Requirements

2009/10 UniPD, T. Vardanega Real-time systems 38 of 48

Example: Ravenscar callback

T1 (Producer)
[cyclic]

T2 (Consumer)
[sporadic]

Q1

T3 (Callback)
[sporadic]

Q2

fetches request

deposits request

fetches result
deposits result

T1 T2 T3

End-to-end deadline

2009/10 UniPD, T. Vardanega Real-time systems 39 of 48

MAST – shared resources

Simple
operation BCET

ACET

WCET
Shared Resource

List

Name

Simple operation

WCET = 2

Q1

Put_Q1 BCET

ACET

WCET
Shared Resource

List

Simple operation

WCET = 1

Q1

Get_Q1

Simple
operation

Shared Resource
List

Name

Shared Resource

ICP

Ceiling = NA

Q1

2009/10 UniPD, T. Vardanega Real-time systems 40 of 48

MAST – modeling tasks

Simple
operation BCET

ACET

WCET
Shared Resource

List

Name

Simple operation

WCET = 8

None

Produce_SO

Composite
Operation

SO 2SO 1

Name

Enclosing Operation

Put_Q1Produce_SO

Produce_EO
WCET=10

External
event

Operation
Produce_EO

Activity

Producer

E1 O1

Scheduling
Server Producer_SS

D = 40

Composite
Operation

SO 2SO 1

Name

Scheduling Server

CPU1.PS

Producer_SS

FPP Priority = 4

Event
Handler

T=40

2009/10 UniPD, T. Vardanega Real-time systems 41 of 48

Example: timing attributes

Producer [1] (C) T1=40 C1=10 p1=4

Consumer [2] (S) T2=40 C2=10 p2=2

Callback [3] (S) T3=40 C3=5 p3=5

Q1 Ceiling=4

Q2 Ceiling=5

2009/10 UniPD, T. Vardanega Real-time systems 42 of 48

Example: RTA results

B1=2 B2=0 B3=2

Classic RTA

R1 = 17

R2 = 25

R3 = 7

Producer [1] (C) T1=40 C1=10 p1=4

Consumer [2] (S) T2=40 C2=10 p2=2

Callback [3] (S) T3=40 C3=5 p3=5

Q1 Ceiling=4

Q2 Ceiling=5

2009/10 UniPD, T. Vardanega Real-time systems 43 of 48

Example: transaction

External
event

Operation
Produce_EO

Activity

Producer_TR

E1
O1

Scheduling
Server Producer_SS

D = 40

Event
Handler

T=40

Operation
Consume_EO

Activity

O2

Scheduling
Server Consumer_SS

D = 40

Operation
Callback_EO

Activity

O3

Scheduling
Server Callback_SS

D = 40
Event

Handler
Event

Handler

2009/10 UniPD, T. Vardanega Real-time systems 44 of 48

Example: end-to-end analysis

Precedence and offset-based

R1 (Tr) = 12

R2 (Tr) = 20

R3 (Tr) = 27

Response time relative
to the beginning of the
transaction!

B1=2 B2=0 B3=2

Classic RTA

R1 = 17

R2 = 25

R3 = 7

Producer [1] (C) T1=40 C1=10 p1=4

Consumer [2] (S) T2=40 C2=10 p2=2

Callback [3] (S) T3=40 C3=5 p3=5

Q1 Ceiling=4

Q2 Ceiling=5

2009/10 UniPD, T. Vardanega Real-time systems 45 of 48

MAST+

Developed from MAST 1.3.6
Extended real-time model and additional analysis
techniques

Ravenscar systems
Uni-processor and multi-processor systems

Holistic analysis

Output in XML

2009/10 UniPD, T. Vardanega Real-time systems 46 of 48

MAST+: extended real-time model

Introduces the concept of “Execution platform”
To model Ravenscar-compliant execution platforms

By characterizing the timing cost of kernel operation

2009/10 UniPD, T. Vardanega Real-time systems 47 of 48

MAST+: implemented metrics

ClockPeriod, PeriodicClockHandler, DemandedClockHandler
Overhead due to the Interrupt Service Routine (ISR) to serve the hardware
clock and the interval timer

Ready, Select, Switch
Context switch overhead

SuspensionCall, WaitCall
Overhead due to task suspension

KernelLongestCriticalSection
Maximum time duration in which the kernel disables interrupts

2009/10 UniPD, T. Vardanega Real-time systems 48 of 48

Summary

Feasibility region
Advanced utilization tests
Fine-grained response time analysis
Transactions
Sensitivity analysis
Example tool (MAST) and demo

