Real-Time Systems

Anno accademico 2009/10

Lautea magistrale in informatica
Dipartimento di Matematica Pura e Applicata
Universita di Padova

Tullio Vardanega

8.a WCET analysis
techniques

Enrico Mezzetti, emezzett@math.unipd.it

2009/10 UniPD, T. Vardanega Real-time systems 3of48
| Computing the WCET — 2
m Exact WCET not generally computable (~ the balting problem)
A WCET estimate or bound are key to predictability
0 Must be safe to be an upper bound to all possible executions
0 Must be #ght to avoid costly over-dimensioning
[
§
E
§
50f48

2009/10 UniPD, T. Vardancga Real-time systems

| Outline

1. Introduction

2. Dependability issues

3. Scheduling issues

4. More on fixed-priority scheduling
5. Task interactions and blocking

6. System issues

7. Multi-cores and distribution

Bibliography
¢ J.Liu, "Real-Time Systems", Prentice Hall, 2000
¢ A Burns, A. Wellings, “Concurrent and Real-Time Programming in Ada”,
Cambridge University Press, 2007
e A Burns, A. Wellings, "Real Time Systems and Programming Languages: Ada
95, Real-Time Java and Real-Time C/POSIX", Addison-Wesley, 2009

2009/10 UniPD, T. Vardanega Real-time systems 20f48

| Computing the WCET — 1

m Why not measure the WCET of a task on its target hardware?
WCET ?

m Triggering the WCET by test

Q Worst-case input covering all executions of a real program is intractable in practice

Worst-case input ——_g, _T ™
e B |

Worst-case HW state =———>

Q Worst-case initial state is difficult to determine due to complex HW features
= Complex pipelines (out-of-order execution)
m Caches
® Branch predictors and other features allowing speculative execution

m ... increasingly used in modern processors

2009/10 UniPD, T. Vardancga Real-time systems 4of 48

| Static analysis — 1

m Analyze a program without executing it
0 On an abstract model of the target HW
0 With the actual executable
0 To determine safe and tight WCET bounds
m Execution time depends on execution path and HW
Q High-level analysis addresses the program behavior
m Path analysis
Q Low-level analysis determines the timing behavior of
individual instructions

= Not constant due to complex HW
m Must be aware of inner working of HW (pipeline, caches, etc.)

2009/10 UniPD, T. Vardancga Real-time systems 6of 48

| Static analysis — 2 | Static analysis — 3

s High-level analysis = High-level analysis (cont’d)
o Analyzes all possible execution paths of the program o Several techniques are used
= Builds the Control-flow Graph (CFG) w Control-flow analysis to compute execution paths

. . . u Data-flow analysis to find loop bounds

= Superset of all possible execution paths E -

w [alue analysis to resolve memory accesses
n CFG unit: basic blocks

0 Information automatically gathered is not exhaustive

w Basic block is the unit of analysis
O Sequence of instructions with no branches/loops
3 Issues related to path analysis w User annotation of flow-facts is needed
0 To facilitate detection of infeasibie paths
Q To refine loop bounds
w Loop bounds (and recursion depth) Q To define frequency relations between basic blocks
a

w Input-data dependency
w [nfeasible paths

w Dynamic calls (through pointers) To specify the target of dynamic calls and referenced memory addresses

2009/10 UniPD, T. Vardanega

Real-time systems Tof 48 2009/10 UniPD, T. Vardanega Real-time systems. 8of48
| Static analysis — 4 | Static analysis — 5
m Low-level analysis m Low-level analysis (cont’d)
0 Requires abstract modeling all hardware features a Concrete HW states
» Processor, memory subsystem, buses, petipherals. .. = Determined by the execution history
» Conservative : mever underestimate the concrete timing = Cannot compute all HW states for all possible executions

. 0 Invariant HW states are grouped into execution contexts
u Al possible HW states should be accounted for . es are group
Q Conservative overestimation to reduce the research space

o Applied techniques
w _Abstract interpretation

0 Computes abstract states and specific operators in the abstract domain
= Update function to update the abstract state along the exec path

0 Issues related to HW modeling
w Precise modeling of complex hardware is difficult
0 Inherent complexity (e.g. out-of-order pipelines)

0 Lack of comprehensive information (copyrights, patents, ...)

0 Differences between specification and implementation (1) = Join function to merge control-flow after a branch
w Representation of all HW states is computationally infeasible » Some techniques ate specific to each HW feature
2009/10 UniPD, T. Vardanega Real-time systems 9of48 2009/10 UniPD, T. Vardanega Real-time systems 10 of 48
| Static analysis — 6 | Static analysis — 7
m The big picture m Also safeness can be hampered
Program I Safe S
(e, dimm _.!g -- N r":\ b weEr o Local worst case does not always lead to global worst case
v r & o Timing anomalies

j ons . -
User annotations = Complex hardware architectures (e.g. out-of-order pipelines)

u} Open problems = Even improper design choices (e.g. cache replacement policies)
» Can we always trust HW modeling? u Counter-intuitive timing behavior
» How much overestimation do we incutr? m Faster execution of a single instruction entails /ong-ferm negative effects
0 Inclusion of infeasible paths 0 Very difficult to account for in static analysis

0 Overestimation intrinsic in abstract state computation
m Weaknesses of user annotations

0 Labor intensive and error prone

2009/10 UniPD, T. Vardancga Real-time systems 11048 2009/10 UniPD, T. Vardancga Real-time systems 12048

| Scheduling anomaly: example

= Some dependence between instructions
m Shared resources (e.g. pipeline stages)

oaihe hit &
dependicncy

Resource 2 (BIC]

Resourse 3 4] I

Resouree | A
Resouree 2
4]

m Faster execution of A leads to a worse overall execution because
of the order in which instructions are executed

2009/10 UniPD, T. Vardanega Real-time systems 13 0f 48

Hybrid analysis (measurement based) — 2

m Approaches to collect timing information
Q Software instrumentation
® The program is augmented with instrumentation code
m Instrumentation effects the timing behavior of the program
Q Ak probe effect
Q Cannot be simply removed at end of analysis
a Hardware instrumentation
m Depends on specialized HW features (e.g., debug interface)
m Confidence in the results contingent on the coverage of the
executions

o Exposed to the same problems as static analysis and measurement

2009/10 UniPD, T. Vardancga Real-time systems 15048

| Example tool: a3 and ai'T

m 2’ stands for AbsInt Advanced Analyzer

0 Industrial-level commercial tool
= Aitbus, Daimler, Mitsubishi, Volkswagen, etc.
0 Developed by AbsInt GmbH (absint.com)
w Based on abstract interpretation
= Scientific basis developed at Saarlanden Universiteit, Saarbruecken,
Germany
0 Supports various forms of static analysis
= Stack usage analysis
= Value analysis

= WCET analysis — the aiT tool proper

2009/10 UniPD, T. Vardancga Real-time systems 17 0f 48

Hybrid analysis (measurement based) — 1

m To obtain realistic (less pessimistic) WCET estimates
0 On the real target processor
o On the final executable
0 Safeness not guaranteed (!)
m Hybrid approaches exploit
0 Measures basic blocks on the real HW
® Avoids pessimism from abstract modeling
0 Static analysis techniques to combine the obtained measures

= Knowledge of the program execution paths

2009/10 UniPD, T. Vardanega Real-time systems 14 0f 48

Hybrid analysis (measurement based) — 3

m The big picture

Progam exceuae 4 _,ﬁ

AL WCET

Opt User annotations
&' ki estimates
-

a Open problems V4
= Can we trust the resulting estimates?
0 Contingent on worst-case input and worst-case HW state
0 Consideration of infeasible paths
® Needs the real execution environment or an identical copy

0 Serious cost impact and inherent difficulty of exactness

2009/10 UniPD, T. Vardancga Real-time systems 16048

| WCET analysis with a3-aiT — 1

m A static analysis tool
0 Uses an abstract processor model

= Specific to each processor
m Different versions of the same tool are needed for different
processors
o Almost everything is modeled by abstract interpretation
w Logp analysis : interval analysis and pattern matching
u [alue analysis : interval analysis
w Pjpeline analysis : integrates cache analysis by abstract interpretation
0 Results combined with path information in an ILP problem
= Solution is the WCET bound

2009/10 UniPD, T. Vardancga Real-time systems 18048

| WCET analysis with a3-aiT — 2

m Overview of 2’

Supported analysis

¥ Control-flow graph

Refine processor model i
L,

. v'Safe WCET bounds
Program exccumble N

and target procedure v Safe Stack usage bounds
v Possible values of
User annotations registers and variables

(global and local .ais files)

2009/10 UniPD, T. Vardanega Real-time systems 19 of 48

| Summary

m Computing the WCET

Static analysis

0 High-level analysis

o Low-level analysis

Hybrid analysis (measurement-based)

m Example tool and demo

2009/10 UniPD, T. Vardancga Real-time systems 21048

| Feasibility region

= Geometrical region that represents the set of feasible
systems (w.r.t. their workload model parameters)
0 N-dimensional space with N-parameter analysis
o Function of the timing patameters

o Specific to the scheduling policy in force
m t, t, is feasible
tl

t, is not feasible
Feasibility
region

e

par2

parl

2009/10 UniPD, T. Vardancga Real-time systems 23048

| WCET analysis with a%-aiT — 3

m The a3-Leon2 tool

o Targets the LEON2 processor family
m Acroflex-Gaisler (gaisler.com)
o Configurable to apply to a specific processor
u Clock rate
= FPU
w Memory areas and relative access latency
w Caches (size, associativity, line 5ize,. ..)
0 LEON2 is a quite simple processor
m 5-stage pipeline
= No branch predictors (delay slot)

2009/10 UniPD, T. Vardanega

Real-time systems 20048

8.b Feasibility analysis
techniques

Marco Panunzio, panunzio@math.unipd.it

2009/10 UniPD, T. Vardancga Real-time systems 220f48

| Advanced utilization tests

w Hyperbolic bound improves Liu & Layland utilization test
o For systems with periodic tasks under FPS and RM priority assignment

o E. Bini, G. Buttazzo, and G. Buttazzo: “A Hyperbolic Bound for the Rate
Monotonic Algorithm”. Proceedings of the 13th Euromicro Conference on
Real-Time Systems, 2001~ N

SU<NEN-1)

i=1 .
Yui<i
i=1

ﬁ(ui+1)g2

U

2009/10 UniPD, T. Vardancga Real-time systems 24048

| Fine-grained response time analysis

A
Ri'+J] - "
= B|+C81+C|+ ——=L|(CS1+Cj+TS+CS2)+ |c,ock+ 1 Rt
/ \ ‘E“"(') Ti /
Interf fi
Blocking time “Tu” context switch “Out” context switch ‘:t::[:;:w rom
(resource access “Activation” jitter Interference from
protocol or kernel) the clock
Time to issue a
suspension call
Ri=Bi+CS1+Ci pension ¢
R R + J «—— Wake-up” jitter
2009/10 UniPD, T. Vardanega Real-time systems 250f48

| Transactions — 2

m Two (main) kinds of dependence

o Direct precedence relation (e.g., producer-consumer)

m 1, cannot proceed until T, completes

L

o Indirect priority relation

m 1, does not suffer interference from t; (under FPS and synchronous
release of T, and 1)

T PS5 ‘ }Tz p=3 ‘ }Tx ps=6

2009/10 UniPD, T. Vardancga Real-time systems 270f 48

| Example — 2

deposits request a1
%}m request

fetches result

T3 (Callback) ﬁ) |@
[sporadic| i

deposit result

End-to-end deadline
The feasibility of the end-to-end response time against this deadline is the important information (!)

2009/10 UniPD, T. Vardancga Real-time systems 290f 48

| Transactions — 1

m Considers causal relations between activities
o Introduces information relevant to analysis that is not
captured by classical workload models

® Dependencies in the activation of jobs

B 1, .
L | I I

o Originally introduced for the analysis of distributed systems

= Also useful for the analysis of single-node “collaboration patterns”

2009/10 UniPD, T. Vardanega Real-time systems 26048

| Example — 1

m A “callback pattern” to permit in out interactions
between tasks in Ravenscar systems
Fraans T
<o) e ———r——

£5: Praduces Campanant [1] PR Consumes_Companent [1]

consume_RE Consume_FiowSpecaicaton [1] +<spordic consume_Pi Congeme_Fiowiectcanen 1]

== ex: Consumer [1]

pr: Producer [1] "

amtac_Fa Fawstack 1]

2009/10 UniPD, T. Vardancga Real-time systems 280f 48

| Sensitivity analysis — 1

m Investigates the changes in a given system that
0 Improve the fit of an already feasible system

0 Make feasible an infeasible system

[} ACT™ £ Position of the system in
1 the feasibility region
4 . A Masimum feasible variation for the
WCET of t, (negative in the example)
Fac
ACy™ Maximum feasibe variation for the
WCET of t, (negative in the example)

2009/10 UniPD, T. Vardancga Real-time systems 300f48

| Sensitivity analysis — 2 | MAST

® Major computation complexity m Modeling and Analysis Suite for Real-Time Systems
m Theory still under development (MAST)
o Does not account for shared resources, multi-node systems, 0 Developed at University of Cantabria, Spain

partitioned systems 0 Open source

= High potential a Implements several analysis techniques
a To explore solution space in the dimensioning phase of design

u Presently only applicable to period/MIAT and WCET

» To analyze uni-processor or multi-processor systems
» Under Fixed-ptiority scheduling or EDF scheduling

o To study the consequences of changes to timing parameters 0 http://mast.unican.es

® To permit the inclusion of better functional value in the system

m To renegotiate timing (or functional) parameters

2009/10 UniPD, T. Vardanega

Real-time systems 310f48 2009/10 UniPD, T. Vardanega Real-time systems 320f48

| Classic workload model | MAST — real-time model

T, (Sporadic) MIAT=1750 WCET=500

T, (Cyclic) T=2000 WCET=500 -.. o
T, (Cycli) T=2000 WCET=500
7 Shared Scheduler
Resomroes
Critical Instant for'T3 7
| Oversion Seheduling T
T, N : i
T, Evem |t . e
L
T Honeier
T = Evem
1 2 3 4 5 6 Regalonns - Reference
2009/10 UniPD, T. Vardanega Real-time systems 33 0f48 2009/10 UniPD, T. Vardanega Real-time systems 340f48
| MAST — transaction | MAST — operations
m To model causal relations between activities Simple Operation ComoniicOperation
0 Triggered by external events
. . - List S0 1 502 o1
m Periodic, sporadic, aperiodic, etc...

Enclosing Operation Message Transmission
Tramacien Name

Best Message Size
e — ,," it T
==
Honr e Handier ““{4‘—' m The real-time model includes the description of all

Haniers the operations in the system

2009/10 UniPD, T. Vardancga Real-time systems 35048 2009/10 UniPD, T. Vardancga Real-time systems 360f48

| MAST — creation of a transaction

External Trl
event

el e2 e3

| Example: Ravenscar callback

=

deposits result

deposits request

&hcs request

fetches result

i —

T3 (Callback)

Real-time systems

2009/10 UniPD, T. Vardanega

[sporadid
‘ T | [12 | [13 ‘
\ J
r
End-to-end deadline
370f 48 2009/10 UniPD, T. Vardanega Real-time systems 38 of 48

| MAST — shared resources

Shared Resource

1CP

Ceiling = NA

Simple operation
| [WCET =1

Simple operation
| [WCET =2

Ger_Q1

Puc_Ql

| MAST — modeling tasks

Simple operation

Enclosing Operation Scheduling Server
Produce_EO Producer_SS
Produce_SO WCET =8 WCET=10

FPP Priority = 4

CPU1.PS

F‘“C"““l Frodueer -
event e
B Y o1

Handler
J
T=40

2009/10 UniPD, T. Vardancga Real-time systems

39 0f 48 2009/10 UniPD, T. Vardancga Real-time systems 40 0f 48

| Example: timing attributes

Producer [1] (C) T,=40 C,=10 pi=4
Consumer [2] (S) T,=40 C,=10 p,=2
Callback [3] (S) T,=40 C,=5 ps=5

Q1 Ceiling=4
Q2 Ceiling=5

| Example: RTA results

Producer [1] (C) T,=40 C,=10 pi=4
Consumer [2] (S) T,=40 C,=10 p,=2
Callback [3] (S) T,=40 C,=5 ps=5

Q1 Ceiling=4
>
Q2 Ceiling=5

Classic RTA

2009/10 UniPD, T. Vardancga Real-time systems

R, =17
R, =25
R,=7

41 of 48 2009/10 UniPD, T. Vardanega Real-time systems 42 0f 48

event
Bl Event " Event ' et i
Handler Handler Lt
~ ot o2 03
T=40
N
Operation
allba

| Example: transaction

2009/10 UniPD, T. Vardanega

Real-time systems 43048

| MAST+

m Developed from MAST 1.3.6
m Extended real-time model and additional analysis
techniques

0 Ravenscar systems
m Uni-processor and multi-processor systems

0 Holistic analysis

= Output in XML

2009/10 UniPD, T. Vardancga

Real-time systems 45 0f 48

MAST+: implemented metrics

m ClockPeriod, PeriodicClockHandler, DemandedClockHandler

0 Overhead due to the Interrupt Service Routine (ISR) to serve the hardware

clock and the interval timer
m Ready, Select, Switch
o Context switch overhead
= SuspensionCall, WaitCall
o Overhead due to task suspension
m KernellLongestCriticalSection

0 Maximum time duration in which the kernel disables interrupts

2009/10 UniPD, T. Vardancga

Real-time systems 47 of 48

| Example: end-to-end analysis

Producer [1] (C) T;=40 C;=10 p=4
Consumer [2] (S) T,=40 C,=10 p=2
Callback [3]) T,=40 C=5 p,=5
Q1 Ceiling=4
——> B=2 B,=0 B=2
Q2 Ceiling=5
Classic RTA Precedence and offset-based
R, =17 Ry (T =12 Response time relative
R,=25 R, (Tr) =20 <7 tothe beginning of the
207 2 transaction!
R, =7 R (T =27

2009/10 UniPD, T. Vardanega Real-time systems 440f48

| MAST+: extended real-time model

m Introduces the concept of “Execution platform”

0 To model Ravenscar-compliant execution platforms

m By characterizing the timing cost of kernel operation

Regular Processor I I FxP.ruﬁnn_PlaHm'mI
I 1 E |

RCM_Kernel

HCM_Processon

2009/10 UniPD, T. Vardancga Real-time systems 46 of 48

| Summary

Feasibility region

m Advanced utilization tests

Fine-grained response time analysis

Transactions

m Sensitivity analysis

Example tool (MAST) and demo

2009/10 UniPD, T. Vardancga Real-time systems 48 of 48

