
3. Scheduling issues

2010/11 UniPD, T. Vardanega Real-time systems 109 of 330

Common approaches – 1

Clock-driven (time-driven) scheduling
Scheduling decisions are made beforehand (off line) and then
carried out at predetermined time instants

The time instants normally occur at regular intervals
signaled by a clock interrupt
The scheduler first dispatches jobs to execution as due in
the current time period and then suspends itself until then
next schedule time
The scheduler uses an off-line schedule to dispatch

All parameters that matter must be known in advance
The schedule is static and cannot be changed at run time
The run-time overhead incurred in executing the schedule is
minimal

2010/11 UniPD, T. Vardanega Real-time systems 110 of 330

Common approaches – 2

Weighted round-robin scheduling
Basic round-robin scheme

All ready jobs are placed in a FIFO queue
The job at head of queue is allowed to execute for one time slice

If not complete by end of time slice it is placed at the tail of the queue
All jobs in the queue are given one time slice in one round

Weighted correction (as applied to scheduling of network traffic)
Jobs are assigned differing amounts of CPU time according a predetermined
‘weight’ (fraction) attribute

A job gets w time slices per round – one round is ∑w of ready jobs
Not good for jobs with precedence relations

Response time would be much worse since RR increases that for every job already
Fine for producer-consumer jobs that can operate concurrently in a pipeline

2010/11 UniPD, T. Vardanega Real-time systems 111 of 330

Common approaches – 3

Priority-driven (event-driven) scheduling
This class of algorithms is greedy

They never leave available processing resources unutilized
An available resource may stay unused iff there is no job ready to use it

They seek local optimization
A clairvoyant alternative may instead defer access to the CPU to incur less
contention and thus reduce job response time
Anomalies may occur when job parameters change dynamically

Scheduling decisions are made at run time when changes occur to the
“ready queue” and thus on local knowledge

The event causing a scheduling decision is called “dispatching point”
It includes algorithms also used in non real-time systems

FIFO, LIFO, SETF (shortest execution time first), LETF (longest e.t. first)
Normally applied at every round of RR scheduling

2010/11 UniPD, T. Vardanega Real-time systems 112 of 330

Preemption vs. non preemption

Can we compare the performance of preemptive scheduling
with that of non-preemptive scheduling?

There is no response that is valid in general
When all jobs have the same release time and the time overhead
of preemption is negligible then preemptive scheduling is
certainly better

It would be interesting to know whether the improvement of the
last finishing time (a.k.a. minimum makespan) under preemptive
scheduling pays off the time overhead of preemption
For 2 CPU we do know that the minimum makespan for
non-preemptive scheduling is never worse than 4/3 of that for
preemptive

2010/11 UniPD, T. Vardanega Real-time systems 113 of 330

Further definitions

Precedence constraints effect release time and deadline
One job’s release time cannot follow that of a successor job
One job’s deadline cannot precede that of a predecessor job

Effective release time
For a job with predecessors this is the maximum (latest) value between its own
release time and the effective release time of its predecessors
More specifically the maximum (latest) effective release time of its
predecessors plus the WCET of the corresponding job

Effective deadline
For a job with successors this is the minimum (earliest) value between its
deadline and the effective deadline of its successors
More specifically the minimum (earliest) effective deadline of its successors
less the WCET of the corresponding job
In the single-processor case and with preemptive scheduling we may consider
ERT and ED and then disregard the precedence constraints

2010/11 UniPD, T. Vardanega Real-time systems 114 of 330

Optimality – 1

Priorities can be assigned in accord to (effective) deadlines
Earliest Deadline First scheduling is optimal for single processor systems
with preemption enabled and independent jobs

For any given job set, EDF produces a feasible schedule if one exists
The optimality of EDF falls short under other hypotheses (e.g., no preemption,
multi-core)

R1 R2 R3 D3 D1 D2

J1 J1, J2 J3, J1, J2

time

Ready queue:

2010/11 UniPD, T. Vardanega Real-time systems 115 of 330

Optimality – 2

Priorities can also be assigned in accord to slack (laxity)
The slack at time t of a job J with deadline d and remaining time of
execution r is: [(d – t) – r]
Least Slack Time First (Least Laxity First) scheduling is optimal under the
same hypotheses as for EDF optimality

LLF however is far more onerous than EDF to implement as it requires to
keep tab of execution time

R1,e1 R2,e2 D1D2

J1

time

Ready queue:

e11 e12 e13 L1=D1-t-(e1-(e11+e12+e13)

t L2=D2-t-e2
J2, J1

e2

2010/11 UniPD, T. Vardanega Real-time systems 116 of 330

Optimality – 3

If the goal is that jobs just make their deadlines then having
jobs complete any earlier has not much point

The Latest Release Time algorithm follows this logic and
schedules jobs backwards from the latest deadline

LRT first sets the job with the latest deadline and then the job
with the latest release time and so forth

A later release time earns a greater deadline
LRT does not belong in the priority-driven class as it may defer
the execution of a ready job

Greedy algorithms may cause jobs to incur greater
interference

2010/11 UniPD, T. Vardanega Real-time systems 117 of 330

Predictability of execution

Initial intuition
The execution of job set J under a given scheduling algorithm
is predictable if the actual start time and the actual response
time of every job in J vary within the bounds of the maximal
and minimal schedule

Maximal schedule: the schedule created by the scheduling
algorithm with the WCET of every job
Minimal schedule: analogously for the BCET

Theorem: the execution of independent jobs with given
release time under preemptive priority-driven scheduling on
a single processor is predictable

2010/11 UniPD, T. Vardanega Real-time systems 118 of 330

2010/11 UniPD, T. Vardanega Real-time systems 119 of 330

Clock-driven scheduling – 1

Workload model
N periodic tasks with N constant and statically defined

In Jim Anderson’s definition of periodic (not Jane Liu’s)
The (Φi, pi, ei, Di) parameters of every task Τi are constant and
statically known

The schedule is static and committed off line before system
start to a table S of decision times tk

S[tk] = Τi if a job of task Τi must be dispatched at time tk
S[tk] = I (idle) otherwise
Schedule computation can be as sophisticated as we like since
we pay for it only once and before execution
Jobs cannot overrun otherwise the system is in error

2010/11 UniPD, T. Vardanega Real-time systems 120 of 330

Clock-driven scheduling – 2
Input: stored schedule S(tk) for k = 0,..,N-1; H (hyper-period)
SCHEDULER:

i := 0; k = 0; set timer to expire at tk ;
do forever :

sleep until timer interrupt;
if an aperiodic job is executing

preempt;
end if;
current task T := S(tk);
i := i+1; k := i mod N;
set timer to expire at floor (i / N) × H + tk ;
if current task T = Idle
execute job at head of aperiodic queue;

else execute job of task T;
end if;

end do;
end SCHEDULER

2010/11 UniPD, T. Vardanega Real-time systems 121 of 330

Clock-driven scheduling – 3

t1 , Tm

tj , I

tk , Tl

S[]

0

N-1

1

J

K

Tm

T

Timer

t1

assign

set

dispatch

We need an interval timer

2010/11 UniPD, T. Vardanega Real-time systems 122 of 330

Example

Static schedule table S for J would need 17 entries
That’s too many and too fragmented!

Can you tell why 17?

J = {t1 = (0, 4, 1, 4), t2 = (0, 5, 1.8, 5), t3 = (0, 20, 1, 20), t4 = (0, 20, 2, 20}
U = 0.76
H = 20

0 4 8 12 16

t1 t3 t2 t1 t1 t1t4 t2 t1t2 t2

t1 t1 t1 t1t2 t2 t2 19.8

20

2010/11 UniPD, T. Vardanega Real-time systems 123 of 330

Clock-driven scheduling – 4

Obvious reasons suggest we should minimize the size and
complexity of the cyclic schedule (table S)

The scheduling point tk should occur at regular intervals
Each such interval is termed minor cycle (frame) and has duration f
We need a periodic timer
Within minor cycles there is no preemption but a single minor cycle may
contain the execution of multiple jobs

Φi for every task Ti is a non-negative integer multiple of f
The first job of every task has release time (forcedly) set at the beginning
of a minor cycle

We must therefore enforce some artificial constraints

2010/11 UniPD, T. Vardanega Real-time systems 124 of 330

Clock-driven scheduling – 5

Constraint 1: Every job must complete within f
f ≥maxi (ei) so that overrun situations can be detected

Constraint 2: f must be an integer divisor of hyper-period H
Hyper-period H contains an integer number F of minor cycles
Hyper-period H beginning at minor cycle kF for k=0,…,N-1 is termed
major cycle

Constraint 3: the time span between the job’s release time
and deadline should be ≥ f

To aid the scheduler in policing that each job completes by its deadline
Using some math this can be expressed as:
2f – gcd (pi, f) ≤ Di for every task ti

2010/11 UniPD, T. Vardanega Real-time systems 125 of 330

Understanding constraint 3

t’ + Di t’ + pi

t’ + pit’ + Di

t’ + pit’ + Dit’

t’

f

t + 2ft t + f

t’

a

b

c

t + 2f ≤ t’ + Di

(t’ – t) ≥ gcd (pi, f)

2f – gcd (pi, f) ≤ Di

Constraint 3

pi

2010/11 UniPD, T. Vardanega Real-time systems 126 of 330

Clock-driven scheduling – 5

It is very likely that the original parameters of some
task set T may prove unable to satisfy all three
constraints for the given f simultaneously
In that case we must decompose T’s jobs by slicing
their larger ei into fragments small enough to
artificially yield a “good” f

2010/11 UniPD, T. Vardanega Real-time systems 127 of 330

Example

T = {(0, 4, 1, 4), (0, 5, 2, 7), (0, 20, 5, 20)}
H = 20
[c1] : f ≥ 5
[c2] : f = {2, 4, 5, 20}
[c3] : f ≤ 4

2010/11 UniPD, T. Vardanega Real-time systems 128 of 330

Clock-driven scheduling – 6

To construct a cyclic schedule we must therefore
make three design decisions

Fix an f
Slice (the large) jobs
Assign (jobs and) slices to minor cycles

There is a very unfortunate inter-play among these
decisions

Cyclic scheduling thus is very fragile to any change in
system parameters

2010/11 UniPD, T. Vardanega Real-time systems 129 of 330

Clock-driven scheduling – 7
Input: stored schedule S(k) for k = 0,..,F-1;
CYCLIC_EXECUTIVE:

t := 0; k = 0;
do forever:

sleep until clock interrupt @ time t × f;
currentBlock = S(k);
t := t+1; k := t mod F;
if last job not completed take action;
end if;
execute slices in currentBlock;
while the aperiodic job queue is not empty do
execute aperiodic job at top of queue;

end do;
end do;

end SCHEDULER

2010/11 UniPD, T. Vardanega Real-time systems 130 of 330

Example (slicing) – 1/2

J = {t1 = (0, 4, 1, 4), t2 = (0, 5, 2, 7), t3 = (0, 20, 5, 20)}, H = 20
t3 causes disruption since we need e3 ≤ f ≤ 4 to satisfy c3
We must therefore slice e3 : how many slices do we need?

0 4 8 12 16

We first look at the schedule with f=4 and without t3 to see
what least-disruptive opportunities we have …

t1 t2

f = 4

t1 t1 t2 t1 t2 t1 t2

S(1)

2010/11 UniPD, T. Vardanega Real-time systems 131 of 330

Example (slicing) – 2/2

… then we observe that {1,3,1} is a good choice

0 4 8 12 16

t3 = {t3’ = (0, 20, 1, X), t3” = (0, 20, 3, Y), t3’’’ = (0, 20, 1, 20)}
F = (H / f) = 5
where X < Y ≤ 20 to represent the applicable
precedence constraints between the slices

t1 t2 t3’ t1 t3” t1 t2 t1 t2 t1 t2 t3’’’

2010/11 UniPD, T. Vardanega Real-time systems 132 of 330

Design issues – 1

Completing a job much ahead of its deadline is of no use
If we have spare time we might give aperiodic (event-driven) jobs
more opportunity to execute and thus make the system more
responsive
The principle of slack stealing allows aperiodic jobs to execute in
preference to periodic jobs when possible

Every minor cycle include some amount of slack time not used for
scheduling periodic jobs

The slack is a static attribute of each minor cycle
A scheduler does slack stealing if it assigns the available slack time at
the beginning of every minor cycle (instead of at the end)

This provision requires a fine-grained interval timer to signal the
end of the slack time

2010/11 UniPD, T. Vardanega Real-time systems 133 of 330

Design issues – 2

What can we do to handle overruns ?
Halt the job found running at the start of the new minor cycle

But that job may not be the one that overrun!
Even if it was, stopping it would only serve a useful purpose if
producing a late result had no residual utility

Defer halting until after the job has completed all its “critical
actions”

To avoid the risk that a premature halt may leave the system in an
inconsistent state

Allow the job some extra time by delaying the start of the next
minor cycle

Plausible if producing a late result still had utility

2010/11 UniPD, T. Vardanega Real-time systems 134 of 330

Design issues – 3

What can we do to handle mode changes?
A mode change is when the system incurs some
reconfiguration of its function and workload
parameters
Two main axes of design decisions

With or without deadline during the transition
With or without overlap between outgoing and
incoming operation modes

2010/11 UniPD, T. Vardanega Real-time systems 135 of 330

Overall evaluation

Pro
Comparatively simple design
Simple and robust implementation
Complete and cost-effective verification

Con
Very fragile design

Construction of the schedule table is a NP-hard problem
High extent of undesirable architectural coupling

All parameters must be fixed a priori at the start of design
Choices may be made arbitrarily to satisfy the constraints on f
Totally inapt for sporadic jobs

2010/11 UniPD, T. Vardanega Real-time systems 136 of 330

Priority-driven scheduling

Base principle
Every job is assigned a priority
The job with the highest priority is selected for execution

Dynamic-priority scheduling
Distinct jobs of the same task may have distinct priorities

Static-priority scheduling
All jobs of the same task have one and same priority

2010/11 UniPD, T. Vardanega Real-time systems 137 of 330

Dynamic-priority scheduling

Two main algorithms
Earliest Deadline First (EDF)
Least Laxity First (LLF)

Theorem (Liu & Layland, 1973): EDF is optimal for
independent jobs with preemption

Also true with sporadic tasks
The relative deadline for periodic tasks may be arbitrary with the
respect to period (<, =, >)

Result trivially applicable to LLF
EDF is not optimal for jobs that do not allow preemption

2010/11 UniPD, T. Vardanega Real-time systems 138 of 330

Static (fixed)-priority scheduling (FPS)

Two main variants with respect to the strategy for
priority assignment

Rate monotonic
A task with lower period (faster rate) gets higher priority

Deadline monotonic
A task with higher urgency (shorter deadline) gets higher priority

What about “execution-monotonic”?

Before looking at those strategies in more detail we
need to fix some basic notions

2010/11 UniPD, T. Vardanega Real-time systems 139 of 330

Dynamic scheduling: comparison criteria – 1

Priority-driven scheduling algorithms that disregard job urgency
perform poorly

Hence we were right in not considering the WCET as a factor of relevance

How to compare the performance of scheduling algorithms?
Schedulable utilization is a useful criterion

An algorithm can produce a feasible schedule for a task set J on a single processor
if U(J) does not exceed its schedulable utilization
For single processors the highest theoretical value of schedulable utilization is 1
Theorem (Liu & Layland, 1973): the schedulable utilization of EDF is 1

For arbitrary deadlines, density ∆k = ek / min(Dk, pk) is an important
factor
∆ > U if Di < pi for some task
Σ (ei / min(Dk, pk) = ∆ ≤ 1 is a sufficient schedulability condition for EDF

2010/11 UniPD, T. Vardanega Real-time systems 140 of 330

Dynamic scheduling: comparison criteria – 2

The schedulable utilization criterion alone is not sufficient:
we must consider predictability too

In case of transient overload the behavior of static-priority
scheduling can be determined in advance and it is reasonable

The overrun of any job of a given task t does not hinder the
tasks with higher priority than t

The behavior of EDF under transient overload is much more
difficult to determine

EDF becomes a source of instability
Under EDF a job that missed its deadline is more urgent than
a job with a deadline in the future

EDF becomes a source of (rising) instability

2010/11 UniPD, T. Vardanega Real-time systems 141 of 330

Dynamic scheduling: comparison criteria – 3

Other figures of merit for comparison
Normalized Mean Response Time (NMRT)

Ratio between the job response time and the CPU time actually
consumed for its execution
The larger the NMRT value, the larger the task idle time

Guaranteed Ratio (GR)
Number of tasks (jobs) whose execution can be guaranteed
versus the total number of tasks that request execution

2010/11 UniPD, T. Vardanega Real-time systems 142 of 330

Example (EDF) – 1

T = {t1= (0, 2, 0.6, 1), t2= (0, 5, 2.3, 5)}
Density Δ(T) = e1/D1 + e2/D2 = 1.06 > 1
U(T) = e1/p1 + e2/p2 = 0.76 < 1
What happens to T under EDF?

t2t2 t2t1

0 1 2 3 4 5

t1 t1 t2

6

t1

7
OK

8
OK

H = 10

t1

2010/11 UniPD, T. Vardanega Real-time systems 143 of 330

Example (EDF) – 2

T = {t1= (0, 2, 1, 2), t2= (0, 5, 3, 5)}
U(T) = e1/p1 + e2/p2 = 1.1
T has no feasible schedule: what job suffers most under EDF?

T = {t1= (0, 2, 0.8, 2), t2= (0, 5, 3.5, 5)}
U(T) = e1/p1 + e2/p2 = 1.1
T has no feasible schedule: what job suffers most under EDF?

What about
T = {t1 = (0, 2, 0.8, 2), t2 = (0, 5, 4, 5)} with U(T) = 1.2 ?

t1t2t2 t1t1 t1

0 2 4 6 8

t2 t1 t1t2t2 t1t1 t1

0 2 4 6 8

t2 t1 t1t2t2 t1t1 t1

0 2 4 6 8

t2 t1 t1t2t2 t1t1 t1

0 2 4 6 8 10

t2 t1

5
Which job is dispatched here?

2010/11 UniPD, T. Vardanega Real-time systems 144 of 330

Critical instant – 1

Feasibility and schedulability tests must consider the worst
case for all tasks

The worst case for task Ti occurs when the worst possible
relation holds between its release time and that of all higher-
priority tasks
The actual case may differ depending on the admissible
relation between Di and pi

The notion of critical instant, if one exists, captures the
worst case

The response time Ri for a job of task Ti with release time on
the critical instant is the longest possible value for task Ti

2010/11 UniPD, T. Vardanega Real-time systems 145 of 330

Critical instant – 2

Theorem: under FPS with Di ≤ pi, the critical instant for
task Ti occurs when the release time of any of its jobs is in
phase with a job of every higher-priority task in the task set
Given task Ti we must find max (Wij) among all its jobs

Wi,j = ei + Σ(k=1,…,i-1) ⎡(Wi,j + Φi – Φk)/pk⎤ ek – Φi
Task indices assigned in decreasing order of priority

The equation captures the interference that any job j of task Ti
incurs from jobs of all higher-priority tasks {Tk} in the interval
from the release time of the first job of task Tk (at phase Φk) to the
response time of job j of Ti , which occurs at Φi + Wi,j

2010/11 UniPD, T. Vardanega Real-time systems 146 of 330

Time-demand analysis – 1

When Φ is 0 for all jobs considered then this equation
captures the absolute worst case for task Ti
This equation stands at the basis of Time Demand
Analysis which investigates how W varies as a function of
time

So long as W(t) ≤ t for some t within the time interval of interest the
supply satisfies the demand, hence the job can complete in time

Theorem [Lehoczky & Sha & Ding, 1989]:
w(t) ≤ t is necessary and sufficient

The obvious question is for which ‘t’ to check
The method proposes to check at all periods of all higher-priority
tasks (obviously until the deadline of the task under study)

2010/11 UniPD, T. Vardanega Real-time systems 147 of 330

Time demand analysis – 2

T
im

e
de

m
an

d

Time supply

w1(t) ≤ t
hence supply satisfies demand
at all t of interest

2

4

6 8 10

2

4

6

8

e1

p1

T = {t1= (-, 3, 1, 3), t2=(-, 5, 1.5, 5), t3= (-, 7, 1.25, 7)}

U(T) = Σ ei/pi = 0.82

phases can be arbitrary
since they have no impact
on the critical instant

This is when the critical-instant job of t1 completes
hence where w(t)=t

The supply exceeds the demand

2010/11 UniPD, T. Vardanega Real-time systems 148 of 330

Time demand analysis – 3
T = {t1= (-, 3, 1, 3), t2=(-, 5, 1.5, 5), t3= (-, 7, 1.25, 7)}

T
im

e
de

m
an

d

Time supply

2

4

6 8 10

2

4

6

8

e1

e2

p2 w2(t) ≤ t

The supply exceeds the demandThe supply exceeds the demand

2010/11 UniPD, T. Vardanega Real-time systems 149 of 330

Time demand analysis – 4
T = {t1= (-, 3, 1, 3), t2=(-, 5, 1.5, 5), t3= (-, 7, 1.25, 7)}

T
im

e
de

m
an

d

Time supply

2

4

6 8 10

2

4

6

8

e1

e2

p3

e3

For D < p it suffices
to verify (w(t) ≤ t) at time
instants that are multiple
of the period of the
highest-priority tasks
and ≤ D

w3(t) ≤ t

5 73

The supply exceeds the demand
while it does not at all other t

of interest to t3 (!)

2010/11 UniPD, T. Vardanega Real-time systems 150 of 330

Time demand analysis – 4

It is straightforward to extend TDA to determine
the response time of tasks
The smallest value t that satisfies the fixed-point
equation t = ei + Σ(k=1,…,i-1) ⎡t/pk⎤ ek is the worst-case
response time of task Ti
Solutions methods to calculate this value were
independently proposed by

[Joseph & Pandia, 1986]
[Audsley & Burns & Richardson & Tindell & Wellings,
1993]

2010/11 UniPD, T. Vardanega Real-time systems 151 of 330

Time demand analysis – 5

Does anything change in the definition of critical instant when D > p ?

Theorem [Lehoczky & Sha & Strosnider & Tokuda, 1991]:
The first job of task Ti may not be the one that incurs the worst-case
response time

We must therefore consider all jobs of task Ti within the so-called
level-i busy period

The (t0, t) time interval within which the processor is busy executing jobs
with priority ≥ i, release time in (t0, t) and response time falling within t

The release time in (t0, t) captures the whole backlog of interfering jobs
The response time of all those jobs falling within t ensures that the busy period includes
their completion

2010/11 UniPD, T. Vardanega Real-time systems 152 of 330

Example

Time window 1 [0,70)
Time left for J2,1 : 70-26 = 44
Still to execute: 62-44 = 18

Time window 2 [70,100)
Time left for J2,1 : 30-26 = 4
Still to execute: 18-4 = 14
Release time of job J2,2

Time window 3 [100,140)
Time left for J2,1 = 40
J2,1 completes at: 114 (R = 114)
Time available for J2,2 : 40-14 = 26
Still to execute: 62-26 = 36

Time window 4 [140,200)
Time available for J2,2 : 60-26 = 34
Still to execute: 36-34 = 2

Time window 5 [200,210)
Release time of job J2,3

J2,2 completes at: 202 (R = 102)
Time available for J2,3 : 10-2 = 8
Still to execute: 62-8 = 54

Time window 6 [210,280)
Time available for J2,3 : 70-26 = 44
Still to execute: 54-44 = 10

Time window 7 [280,300)
Time available for J2,3 : 20-20 = 0
Release time of job J2,4

Time window 8 [300,350)
Time available for J2,3 : 50-6 = 44
J2,3 completes at: 300+6+10 = 316 (R = 116)

T1 = {-, 70, 26, 70}, T2 = {-, 100, 62, 120}
Let’s look at the level-2 busy period

The T2 busy period
extends beyond
this point (!) J2,1 ’s response time is not worst-case!

Ready queue: J1,1, J2,1 Ready queue: J1,2, J2,1 Ready queue: J2,1, J2,2

Ready queue: J1,2, J2,2

Ready queue: J2,2, J2,3

Ready queue: J1,3, J2,3
Ready queue: J1,4, J2,3

Ready queue: J1,4, J2,3, J2,4
Still in ready queue: J2,4

2010/11 UniPD, T. Vardanega Real-time systems 153 of 330

Level-i busy period

T1 = {-, 100, 20, 100}, T2 = {-, 150, 40, 150}, T3 = {-, 350, 100, 350} ⇒ U = 0.75
The same definition of level-i busy period holds also for D ≤ p

but its width is obviously shorter!

2010/11 UniPD, T. Vardanega Real-time systems 154 of 330

Summary

Initial survey of scheduling approaches
Important definitions and criteria
Detail discussion and evaluation of main scheduling
algorithms
Initial considerations on analysis techniques

