3. Scheduling issues

| Common approaches — 3

m Priority-driven (event-driven) scheduling
0 This class of algorithms is greedy
m They never leave available processing resources unutilized
= An available resource may stay unused iff there is no job ready to use it
Q They seek local optimization

w A clairvoyant alternative may instead defer access to the CPU to incur less
contention and thus reduce job response time

= Anomalies may occur when job parameters change dynamically

0 Scheduling decisions are made at run time when changes occur to the
“ready queue” and thus on local knowledge
m The event causing a scheduling decision is called “dispatching point”

a Itincludes algorithms also used in non real-time systems
= FIFO, LIFO, SETF (shortest execution time first), LETF (longest e.t. first)
= Normally applied at every round of RR scheduling

2010/11 UniPD, T. Vardancga Real-time systems 111 0f 330

| Common approaches — 1

m Clock-driven (time-driven) scheduling

0 Scheduling decisions are made beforehand (off line) and then
carried out at predetermined time instants

m The time instants normally occur at regular intervals
signaled by a clock interrupt

m The scheduler first dispatches jobs to execution as due in
the cutrent time period and then suspends itself until then
next schedule time

® The scheduler uses an off-line schedule to dispatch
All parameters that matter must be known in advance
a The schedule is static and cannot be changed at run time

0 The run-time overhead incurred in executing the schedule is
minimal

2010/11 UniPD, T. Vardanega Real-time systems 109 of 330

| Preemption vs. non preemption

= Can we compare the performance of preemptive scheduling
with that of non-preemptive scheduling?
0 There is no response that is valid in general
m When all jobs have the same release time and the time overhead
of preemption is negligible then preemptive scheduling is
certainly better
o It would be interesting to know whether the improvement of the
last finishing time (a.k.a. ménimum makespan) under preemptive
scheduling pays off the time overhead of preemption
a For 2 CPU we do know that the minimum makespan for
non-preemptive scheduling is never worse than 4/3 of that for
preemptive

2010/11 UniPD, T. Vardanega Real-time systems. 112 0f 330

| Common approaches — 2

m Weighted round-robin scheduling

0 Basic round-robin scheme
= All ready jobs are placed in a FIFO queue
m The job at head of queue is allowed to execute for one #ime slice
Q If not complete by end of time slice it is placed at the tail of the queue
= Alljobs in the queue are given one time slice in one round
0 Weighted correction (as applied to scheduling of network traffic)
= Jobs are assigned differing amounts of CPU time according a predetermined
‘weight” (fraction) attribute
a Ajob gets » time slices per round — one round is ¥ of ready jobs
= Not good for jobs with precedence relations
0 Response time would be much worse since RR increases that for every job already

= Fine for producer-consumer jobs that can operate concurrently in a pipeline

2010/11 UniPD, T. Vardanega Real-time systems 110 of 330

| Further definitions

m Precedence constraints effect release time and deadline
o One job’s release time cannot follow that of a successor job
o One job’s deadline cannot precede that of a predecessor job
m Effective release time
o For ajob with predecessors this is the maximum (latest) value between its own
release time and the effective release time of its predecessors
0 More specifically the maximum (latest) effective release time of its
predecessors plus the WCET of the corresponding job
n Effective deadline
o For a job with successors this is the minimum (earliest) value between its
deadline and the effective deadline of its successors
o More specifically the minimum (earliest) effective deadline of its successors
less the WCET of the corresponding job

o In the single-processor case and with preemptive scheduling we may consider
ERT and ED and then disregard the precedence constraints

2010/11 UniPD, T. Vardanega Real-time systems. 113 0f 330

| Optimality — 1

m Priorities can be assigned in accord to (effective) deadlines
o Earliest Deadline First scheduling is opzimal for single processor systems
with preemption enabled and independent jobs
m For any given job set, EDF produces a feasible schedule if one exists

m The optimality of EDF falls short under other hypotheses (e.g., no preemption,
multi-core)

time

Ready queve: J, J, 1, JsJi)s

2010/11 UniPD, T. Vardanega Real-time systems 114 of 330

| Predictability of execution

= Initial intuition
0 The execution of job set J under a given scheduling algotithm
is predictable if the actual start time and the actual response
time of every job in J vary within the bounds of the maximal
and minimal schedule

w Maximal schedule: the schedule created by the scheduling
algorithm with the WCET of every job

w Minimal schedule: analogously for the BCET
m Theorem: the execution of independent jobs with given
release time under preemptive priority-driven scheduling on
a single processor is predictable

2010/11 UniPD, T. Vardancga Real-time systems 117 of 330

| Optimality — 2

m Priorities can also be assigned in accord to slack (laxity)
a The slack at time t of a job] with deadline d and remaining time of
execution ris: [(d —t) — 1]
O Least Slack Time First (Least Laxity First) scheduling is optimal under the
same hypotheses as for EDF optimality

m LLF however is far more onerous than EDF to implement as it requires to
keep tab of execution time

Rye Rye, D, D,
(ST PAES _
Li=Dy-t-(e-(e) tepyteyy)

————— | time

| |

t — [——
L,=D,-t-e, o

Ready queue:], Jadi

2010/11 UniPD, T. Vardanega Real-time systems 115 of 330

Classification of Scheduling Algorithms

All scheduling algorithms

static scheduling dynamic scheduling
(or offline, or clock driven) (O?r priﬁ/eﬂ)
static-priority dynamic-priority
scheduling scheduling
Jim Anderson Eeal-Time Systerns Introduction - 30

2010/11 UniPD, T. Vardanega Real-time systems. 118 of 330

| Optimality — 3

m If the goal is that jobs just make their deadlines then having
jobs complete any earlier has not much point
a The Latest Release Time algorithm follows this logic and
schedules jobs backwards from the latest deadline
= LRT first sets the job with the latest deadline and then the job
with the latest release time and so forth
0 A later release time earns a greater deadline
m LRT does not belong in the priority-driven class as it may defer
the execution of a ready job
= Greedy algorithms may cause jobs to incur greater
interference

2010/11 UniPD, T. Vardanega Real-time systems 116 of 330

| Clock-driven scheduling — 1

m Workload model
o N periodic tasks with N constant and statically defined
m In Jim Anderson’s definition of periodic (not Jane Liu’s)

a The (@, p, ¢, D, parameters of every task T, are constant and
statically known

m The schedule is static and committed off line before system
start to a table S of decision times t_
a S[t] =T, if ajob of task T, must be dispatched at time t,
a S[t] =1 (idlk) otherwise
o Schedule computation can be as sophisticated as we like since
we pay for it only once and before execution
0 Jobs cannot overrun otherwise the system is in error

2010/11 UniPD, T. Vardanega Real-time systems. 119 of 330

Clock-driven scheduling — 2

Input: stored schedule S(t) for k = 0,.,N-1; H (hyper-period)
SCHEDULER:
i:= 0; k = 0; set timer to expire at 7, ;
do forever :
sleep until timer interrupt;
if an aperiodic job is executing
preempt;
end if}
current task T := S(%,);
i:=i+1; k:=imod N;
set timer to expire at floor (i / N) x H + 7, ;
if current task T = Idle
execute job at head of aperiodic queue;
else execute job of task T;
end if;
end do;
end SCHEDULER

2010/11 UniPD, T. Vardanega Real-time systems 120 of 330

Clock-driven scheduling — 4

m Obvious reasons suggest we should minimize the size and
complexity of the cyclic schedule (table S)
0 The scheduling point t; should occur at regular intervals
» Each such interval is termed minor cycle (frame) and has duration f
n We need a periodic timer

= Within minor cycles there is no preemption but a single minor cycle may
contain the execution of multiple jobs

o @, for every task T; is a non-negative integer multiple of
m The first job of every task has release time (forcedly) set at the beginning

of a minor cycle

m We must therefore enforce some artificial constraints

2010/11 UniPD, T. Vardancga Real-time systems 123 of 330

Clock-driven scheduling — 3

S|
0 { dispatch
i) 6,1 t
set ‘__
: We need an znterval timer
K 4, T
N-1

2010/11 UniPD, T. Vardanega Real-time systems 121 0f 330

Clock-driven scheduling — 5

m Constraint 1: Every job must complete within /
o {2 max; (e;) so that overrun situations can be detected

m Constraint 2: /must be an integer divisor of hyper-period H
0 Hyper-period H contains an integer number F of minor cycles
0 Hyper-period H beginning at minor cycle kF for k=0,...,N-1 is termed

major cycle

m Constraint 3: the time span between the job’s release time
and deadline should be 2 f
0 To aid the scheduler in policing that each job completes by its deadline

o Using some math this can be expressed as:
2f - gcd (p;, f) = D, for every task t;

2010/11 UniPD, T. Vardanega Real-time systems. 124 of 330

Example

J={=(0,4,1,4),4=(0, 5,18, 5), t;= (0, 20, 1, 20), t, = (0, 20, 2, 20}
U =0.76

H=20 19.8

4

4

0

b ||‘1 | 4 ‘z|'1|
4

H =

8 12 16 20

m Static schedule table S for] would need 17 entries
0 That’s too many and too fragmented!

m Can you tell why 17?2

2010/11 UniPD, T. Vardanega Real-time systems 122 0f 330

Understanding constraint 3

Pi
: e ©+D; ¢ +p, 1
Constraint 3

@ = r ejnile+pi1| J

|
@ t| t+f| t+2f| |

l’t t’+Dilt’+PIT

t+2f$t’+D‘j
f)

|: (=19 2ged (p,
2f —ged (p,) <D,

2010/11 UniPD, T. Vardanega Real-time systems. 125 of 330

| Clock-driven scheduling — 5

m [t is very likely that the original parameters of some
task set T may prove unable to satisfy all three
constraints for the given fsimultaneously

m In that case we must decompose T’s jobs by slicing
their larger ¢, into fragments small enough to
artificially yield a “good” f

2010/11 UniPD, T. Vardanega Real-time systems 126 of 330

| Clock-driven scheduling — 7

Input: stored schedule S(k) for k = 0,..,F-1;
CYCLIC_EXECUTIVE:
t:=0;k=0;
do forever:
sleep until clock interrupt @ time t X f;
currentBlock = S(k);
t:=t+l;k:= tmod F;
if last job not completed take action;
end if;
execute slices in currentBlock;
while the aperiodic job queue is not empty do
execute apetiodic job at top of queue;
end do;
end do;
end SCHEDULER

2010/11 UniPD, T. Vardancga Real-time systems 129 of 330

| Example

T ={(0,4,1,4),(0,5,2,7), (0, 20, 5, 20)}
m H=20

m[cl]:f25
m [c2]: f={2,4,5,20}
m[c3]:f<4

| Example (slicing) — 1/2

J={=(0,4,1,4),4,=(0,5,2,7),,= (0, 20, 5, 20)}, H = 20
t; causes disruption since we need e; £ f< 4 to satisfy ¢3
We must therefore slice e; : how many slices do we need?

2010/11 UniPD, T. Vardanega Real-time systems 127 of 330

We first look at the schedule with f=4 and without t; to see
what least-disruptive opportunities we have ...

2010/11 UniPD, T. Vardanega Real-time systems. 130 of 330

| Clock-driven scheduling — 6

m To construct a cyclic schedule we must therefore
make three design decisions
a Fixanf
a Slice (the large) jobs
a Assign (jobs and) slices to minor cycles

m There is a very unfortunate inter-play among these
decisions

a Cyclic scheduling thus is vety fragile to any change in
system parameters

Real-time systems 128 of 330

2010/11 UniPD, T. Vardanega

| Example (slicing) — 2/2

... then we observe that {1,3,1} is a good choice

. .
7. =
7 ./ T~
Re v . R =~
4 | 5 | I Y | G 4 | 4 | 4 | 4 | 4 | b |t
0 4 8 12 16
t, = {t, = (0,20, 1, X), t,, = (0, 20, 3, Y), t, = (0, 20, 1, 20)}
F=(H/H=5
where X <Y £ 20 to represent the applicable
precedence constraints between the slices
2010/11 UniPD, T. Vardanega Real-time systems. 131 of 330

| Design issues — 1

m Completing a job much ahead of its deadline is of no use

m If we have spare time we might give apetiodic (event-driven) jobs
morte opportunity to execute and thus make the system more
responsive

m The principle of slack stealing allows aperiodic jobs to execute in
preference to periodic jobs when possible
o Every minor cycle include some amount of slack time not used for
scheduling periodic jobs
m The slack is a static attribute of each minor cycle
m A scheduler does slack stealing if it assigns the available slack time at
the beginning of every minor cycle (instead of at the end)

o This provision requires a fine-grained interval timer to signal the
end of the slack time

2010/11 UniPD, T. Vardanega Real-time systems 132 0f 330

| Overall evaluation

= Pro
0 Comparatively simple design
a Simple and robust implementation

a Complete and cost-effective verification

= Con
a Very fragile design
m Construction of the schedule table is a NP-hard problem
= High extent of undesirable architectural coupling
0 All parameters must be fixed a priori at the start of design
m Choices may be made arbitrarily to satisfy the constraints on /

» Totally inapt for sporadic jobs

2010/11 UniPD, T. Vardancga Real-time systems 135 of 330

| Design 1ssues — 2

= What can we do to handle overruns ?
0 Halt the job found running at the start of the new minor cycle
= But that job may not be the one that overrun!
= Even if it was, stopping it would only serve a useful purpose if
producing a late result had no residual wzility
0 Defer halting until after the job has completed all its “critical
actions”
m To avoid the risk that a premature halt may leave the system in an
nconsistent state
0 Allow the job some extra time by delaying the start of the next
minor cycle
m Plausible if producing a late result still had wzlity

2010/11 UniPD, T. Vardanega Real-time systems 133 0f 330

Priority-driven scheduling

m Base principle

a Every job is assigned a priority

0 The job with the highest priority is selected for execution
m Dynamic-priority scheduling

o Distinct jobs of the same task may have distinct priorities
m Static-priority scheduling

0 All jobs of the same task have one and same priority

2010/11 UniPD, T. Vardanega Real-time systems. 136 of 330

| Design issues — 3

m What can we do to handle mode changes?

m A mode change is when the system incurs some
reconfiguration of its function and workload
parameters

m T'wo main axes of design decisions
a With or without deadline during the transition

o With or without ovetlap between outgoing and
incoming operation modes

Real-time systems 134 0f 330

2010/11 UniPD, T. Vardanega

Dynamic-priority scheduling

= Two main algorithms

0 Earliest Deadline First (EDF)

o Least Laxity First (ILF)

Theorem (Liu & Layland, 1973): EDF is optimal for
independent jobs with preemption

o Also true with sporadic tasks
0 The relative deadline for periodic tasks may be arbitrary with the
respect to period (<, =, >)

m Result trivially applicable to LLF

EDF is not optimal for jobs that do not allow preemption

2010/11 UniPD, T. Vardanega Real-time systems. 137 of 330

| Static (fixed)-priotity scheduling (EPS)

m Two main variants with respect to the strategy for
priority assignment
0 Rate monotonic
= A task with lower period (faster rate) gets higher priority
a Deadline monotonic
= A task with higher urgency (shorter deadline) gets higher priority

0 What about “execution-monotonic”?

m Before looking at those strategies in more detail we
need to fix some basic notions

2010/11 UniPD, T. Vardanega Real-time systems 138 of 330

Dynamic scheduling: comparison criteria — 3

m Other figures of merit for comparison
0 Normalized Mean Response Time (NMRT)

m Ratio between the job response time and the CPU time actually
consumed for its execution

m The larger the NMRT value, the larger the task idle time
0 Guaranteed Ratio (GR)

m Number of tasks (jobs) whose execution can be guaranteed
versus the total number of tasks that request execution

2010/11 UniPD, T. Vardancga Real-time systems 141 of 330

Dynamic scheduling: comparison criteria — 1

m Priority-driven scheduling algorithms that disregard job urgency
petrform pootly

0 Hence we were tight in not considering the WCET as a factor of relevance
» How to compare the performance of scheduling algorithms?

m Schedulable utilization is a useful ctiterion

a An algorithm can produce a feasible schedule for a task set J on a single processor
if U(J) does not exceed its schedulable utilization

o For single processors the highest theoretical value of schedulable utilization is 1
o Theorem (Liu & Layland, 1973): the schedulable utilization of EDF is 1

» For arbitrary deadlines, density A= e,/ min(D,, p,) is an important
factor
a A>UifD, < p, for some task
a 2 (¢/ min(D,, p) = A < 1is a sufficient schedulability condition for EDF

2010/11 UniPD, T. Vardanega Real-time systems 139 of 330

| Example (EDF) — 1

T={t,= (AO, 2,0.6, 1), t,= (0, 5, 2.3, 5)}
Density A(T) = ¢,/D, + ¢,/D, =1.06>1
U(T) =el/pl+e2/p2=0.76 <1 *J
What happens to T under EDF?

2010/11 UniPD, T. Vardanega Real-time systems. 142 of 330

Dynamic scheduling: comparison criteria — 2

m The schedulable utilization criterion alone is not sufficient:
we must consider predictability too
o In case of transient overload the behavior of static-priority
scheduling can be determined in advance and it is reasonable

m The overrun of any job of a given task 7 does not hinder the
tasks with higher priority than 7

a The behavior of EDF under transient ovetload is much more
difficult to determine

= EDF becomes a source of instability

a Under EDF a job that missed its deadline is more urgent than
a job with a deadline in the future

= EDF becomes a source of (rising) instability

2010/11 UniPD, T. Vardanega Real-time systems 140 of 330

| Example (EDF) — 2

T={t=(0,2,1,2),=(0,5,3,5)}
U(T) =e,/p; t+ e,/p, =11
T has no feasible schedule: what job suffers most under EDF?

t

ofu] ¢ Jalu]

0 2 4 5 6 8 10
| Whih job s dispatched bere? |
T = {,= (0,2, 0.8,2), ,= (0, 5, 3.5, 5)}
U(T) =e,/p, +e,/p, =11
T has no feasible schedule: what job suffers most under EDF?

What about
T = {t1=(0,2,0.8,2), 2= (0,5, 4, 5)} with U(T) =1.2?

2010/11 UniPD, T. Vardanega Real-time systems. 143 of 330

| Critical instant — 1

m Feasibility and schedulability tests must consider the worst
case for all tasks

o The worst case for task T, occurs when the worst possible

relation holds between its release time and that of all higher-
priority tasks

0 The actual case may differ depending on the admissible
relation between D; and p;

= The notion of critical instant, if one exists, captures the
worst case

a The response time R, for a job of task T; with release time on

| Time demand analysis — 2

T = {t,= (-, 3, 1, 3), t,=(-, 5, 1.5, 5), t;= (-, 7, 1.25, 7)}

U(T) = Z e;/p; = 0.82
s
This is when the critical-instant job of t, completes phascs can be arbitrary
hence where w(H=t . .
- since they have no impact
N6— ..
g on the critical instant
&
3
§
g)
P wi(t) <t
hence supply satisfies demand
2

at all t of interest

61{ |
.

s - ! ! ceds the demand Time supply
the critical instant is the longest possible value for task T; > i G F m
2010/11 UniPD, T. Vardanega Real-time systems 144 of 330 2010/11 UniPD, T. Vardanega Real-time systems 147 of 330
| Critical instant — 2 | Time demand analysis — 3
T={t=(3,1,3),,=(- 5,15, 5), t,= (-, 7, 1.25, 7)}
m Theorem: under FPS with D, < p,, the critical instant for o
task T, occurs when the release time of azy of its jobs is in
phase with a job of every higher-priority task in the task set
. s 6 <
= Given task T; we must find max (W) among all its jobs § hECA
a W =¢+ z(kZl,...,n—l) |_<\X/1,j +0 - (Dk)/pk—‘ -9 'qii
= Task indices assigned in decreasing order of priority E4
0 The equation captures the interference that any job j of task T; 5
incurs from jobs of all higher-priotity tasks {T,} in the interval
from the release time of the first job of task T, (at phase @) to the &y 2
response time of job j of T}, which occurs at @, + Wi
§ < { | | | Time supply
2 4 6 8 10
2010/11 UniPD, T. Vardanega Real-time systems 145 of 330 2010/11 UniPD, T. Vardanega Real-time systems. 148 of 330

| Time-demand analysis — 1

m When @ is 0 for all jobs considered then this equation
captures the absolute worst case for task T;

m This equation stands at the basis of Time Demand
Analysis which investigates how W varies as a function of
time
a So long as W(t) < t for some ¢ within the time interval of interest the

supply satisfies the demand, hence the job can complete in time

m Theorem [Lehoczky & Sha & Ding, 1989]:

w(t) £ tis necessary and sufficient
0 The obvious question is for which ‘t’ to check

0 The method proposes to check at all periods of all higher-priority
tasks (obviously until the deadline of the task under study)

2010/11 UniPD, T. Vardanega Real-time systems 146 of 330

Time demand analysis — 4

T={t=(3,1,3),,=(- 5,15, 5), t,= (-, 7,1.25, 7)}

s P
’—- wi(t) St
Ne— /
S For D < p it suffices
‘E‘ to verify (w(t) £ t) at time
< instants that are multiple
o of the period of the
B4 The supply exceeds the demand | | highest-priority tasks
e IS while it does not at all other t and<D
3 of interest to t; ()
el 2
e { | Time supply
2 3 4 5 6 7 8 10

2010/11 UniPD, T. Vardanega

Real-time systems. 149 of 330

| Time demand analysis — 4

m [t is straightforward to extend TDA to determine
the response time of tasks

m The smallest value t that satisfies the fixed-point
equation t = ¢, + z(k:t-wi*l) [t/ pk—| e, is the worst-case
response time of task T;

m Solutions methods to calculate this value were
independently proposed by
0 [Joseph & Pandia, 19806]

0 [Audsley & Burns & Richardson & Tindell & Wellings,
1993]

2010/11 UniPD, T. Vardanega Real-time systems 150 of 330

| Level-i busy period

T, = {-, 100, 20, 100}, T, = {-, 150, 40, 150}, T; = {-, 350, 100, 350} = U = 0.75
The same definition of level-i busy period holds also for D £ p
but its width is obviously shorter!

1] 1| l E

Tl ‘]

020 100 120 200 220 W00 320
12] l

o 20 B0 150 180 300

- 13 busy period ———

3
o 55 100 120 130 150200 220 240 350 e
2010/11 UniPD, T. Vardanega Real-time systems 153 of 330

| Time demand analysis — 5

m Does anything change in the definition of critical instant when D > p ?

m Theorem [Lehoczky & Sha & Strosnider & Tokuda, 1991]:
The first job of task T; may #of be the one that incurs the worst-case
response time

m We must therefore consider all jobs of task T; within the so-called
level-i busy period

0 The (t,, t) time interval within which the processor is busy executing jobs
with priority 2 i, release time in (t,, t) and response time falling within t
m The release time in (t;, t) captures the whole backlog of interfering jobs

m The response time of all those jobs falling within t ensures that the busy period includes
their completion

2010/11 UniPD, T. Vardanega Real-time systems 151 of 330

Summary

m Initial survey of scheduling approaches
m Important definitions and criteria

m Detail discussion and evaluation of main scheduling
algorithms

m Initial considerations on analysis techniques

2010/11 UniPD, T. Vardanega Real-time systems. 154 of 330

| Example

T, = {-, 70, 26, 70}, T, = {-, 100, 62, 120}
Let’s look at the level-2 busy period

Ready quese)1 Js1 Resdy e, o,

Re

(070 Time window 2 [70,100) Time window 3 [100,140)
Time left for J,: 70-26 = 44 [| ‘Time left for J,,: 30-26 = 4 Time left for J,, = 40
Stll to execute: 6244 = 18 Sl st 0= L] 1, completes ac: 114 & = 114)
eeute: 2 :
Release time of job J,, Time available for J,,: 40-14 = 26
Still to exccute: 62-26 = 36

Ready queve:], 155

‘Time window 5 [200,210)

Release time of job J, Rendy quevet)z)z
Jzp completes at: 202 (R=102) f+——) | Time window 4 [140,200)
Time available for J,,: 10-2= 8 Time available for J,: 60-26 = 34
Still to execute: 62-8 = 54 Still to execute: 36-34 = 2

— Time window 7 [280,300)
Time window 6 [210,280) 1 ! » _
Time available for J,.: 70-26 = 44 [— | Time available for J,,;:20-20 = 0

Ready queve:],], s

Still to execute: 54-44 = 10 Rt dmeafiibiby
Reads queuci], Jor Jas
[STTR— —

The T, busy petiod ‘Time window 8 [300,350)

estends beyond +——————1 ‘Time available for J,,: 50-6 = 44,

this point (1) J,., completes at: 300+6+10 = 31EXR = 16| | J., s response time is not worst-casel

ya It
T

2010/11 UniPD, T. Vardanega

Real-time systems 152 of 330

