5.a Task interactions and

blocking

| Inhibiting preemption — 1

m In many real-life situations some (parts of) jobs
should not be preempted
0 This is typically the case with the execution of #on-

reentrant code shared by multiple jobs whether directly (by
direct call) or indirectly (e.g., within a system call
primitive)

m Considerations of data integtity and/or efficiency
require that some system level activities must not be
preempted
0 Preemption is inhibited by simply disabling dispatching

2010/11 UniPD, T. Vardancga Real-time systems 194 of 330

| Inhibiting preemption — 2

m A higher-priority job J, that at its release time finds
a lower-priority job J; executing with disabled
preemption gets blocked for a B,(np) time duration
a Under FPS this is a flagrant case of priority inversion

m The feasibility of], now depends on B,(np) too
o Under FPS, B{(np) = max;; 6, where 8, < ¢) is the

longest non-preemptable execution of job J,

0 This cost is paid by of], only once per activation

2010/11 UniPD, T. Vardanega Real-time systems 195 of 330

Self suspension

m A job J; that invokes suspending operations or that self suspends
suffers a time penalty that worsens its response time
m |, incurs a degenerate form of blocking that can be bounded as
By(ss) = max(®) + 2, ;) min(e;, Oy
o Where max(d) is he longest duration of self suspension of job J and the
other term accounts for the cumulative additional interference caused by
higher-ptiority jobs that may become ready during the suspension of J;
possibly deferred by their own self-suspension
m For a job J; that may self suspend K times during execution
a B, =B(ss) + (K+1) Bi(np)

0 Atevery resumption J; may incur B;(np) again

2010/11 UniPD, T. Vardanega Real-time systems. 196 of 330

Example

T, = {0, 4,25, 4}, T, = {3, 10, 2,10} = U = 0.825
under RM scheduling

2010/11 UniPD, T. Vardanega Real-time systems 197 of 330

| Access contention

m Access to shared resources causes potential for
contention that must be controlled by specialized
protocols

w A resource access control protocol specifies

0 When and under what condition a resource access request
may be granted

o The order in which requests must be serviced
m Access contention situations may cause priority
inversion to arise

2010/11 UniPD, T. Vardanega Real-time systems. 198 of 330

| Example — 1

¢ Max use of shared resource per execution
T,={-2,20,R(4)}, T, = {2, -, 3,17, R(4)} , T; = {6, -, 3, 14, R(2)}
under EDF

T,:e;R@);e. T,:ue;e; R@);e. T;:e;e; R(2); e

Rin use by T, RinusebyT, RinusebyT,

R released by T/} R released by T,

| Example — 2

T,={-2,20,R2.5)}, T, = {2,-, 3,17, R@)} , T; = {6, -, 3, 14, R(2)}
under EDF

Same as before except with shorter use of R by T,

T|R| T, R T, |R[R T, R TZJ_T, o|rR| T, | R [R T, R R ”1|‘le2 Tl,,l |
| |
[I I - |
2 4 6 8 10 12 14 16, 18 2 4 6 8 1!] 1'2 14 16 18
T, completes T, completes
T : deadline miss!
T, completes E
2010/11 UniPD, T. Vardanega Real-time systems 199 of 330 2010/11 UniPD, T. Vardanega Real-time systems 200 of 330
| As sumptions and notations | Example
. . . . Wait-for graph
m It is safer for real-time design to require that grap
. . - Units required Duration of use
o All jobs do not self suspend (directly or indirectly) T, e e
a All jobs can be preempted &3 Units available
~ . - . . . '
L] We say that job], is directly blocked by a lower-priority T,0 R, 5
job J, when
o J,is granted exclusive access to a shared resource R
0 J,, has requested R and its request has not been granted : R, 1
. = [RpL8[Ru41 [R;,155]]
m To study the problem we may want to use a wart-for graph
1;2
T, (4,)
Obiously!
2010/11 UniPD, T. Vardanega Real-time systems 201 of 330 2010/11 UniPD, T. Vardanega Real-time systems. 202 of 330

Resource access control — 1

» Inhibiting preemption in critical sections
0 A job that requires access to a resource is always granted it
o A job that has been assigned a resource runs at a priority
higher than any other job

m These two clauses imply each other

m They jointly prevent deadlock situations from occurring
m They cause bounded priority inversion
o At most once per job
= Reason is obvious
o For a maximum duration By(tc) = maxj—;,; Gy

= For job indices in monotonically non-increasing order and C, worst-case
duration of critical-section activity by job J,

2010/11 UniPD, T. Vardanega Real-time systems 203 of 330

Critique — 1

m This strategy causes distributed overhead

o Alljobs — including those that do not compete for resource access —
incur some time penalty

o Very unfair hence not desirable

m Better if time overhead is solely incurred by the jobs that
actually compete for resource access
0 The priority of the job that is granted the resource must only be
higher than that of its competitor jobs
m The principle of the ceiling priority: we shall return to it

0 The resource requirements must be statically known

2010/11 UniPD, T. Vardanega Real-time systems. 204 of 330

Resource access control — 2

m Basic priority inheritance protocol (BPIP)
0 The priority of a job vaties over time from that initially assigned
0 The variation follows inheritance principles
m Protocol rules
0 Scheduling: jobs are dispatched by preemptive priority-driven scheduling;
at release time they take on their assigned priority
0 Allocation: when job] requires access to resource R at time t
= IfRis free, R is assigned to J until release
m If Ris busy, the request is denied and] becomes blocked
0 Priority inheritance: when job] becomes blocked, job J; that blocks it
takes on J’s current priority as its inherited priority and retains it until R is
released; at that point J; reverts to its previous priotity

2010/11 UniPD, T. Vardanega Real-time systems 205 of 330

| Critique — 2

= BPIP incurs two forms of blocking
0 Direct blocking owing to resource contention
0 Inheritance blocking owing to priority raising
m Priority inheritance is transitive
o Direct blocking is transitive as jobs may need to acquire multiple resources
= BPIP does not prevent deadlock as cyclic blocking is a devious form of
transitive direct blocking
m BPIP incurs reducible distributed overhead (i.c., that can be dispensed with)
o Under BPIP a job may become blocked multiple times when competing for
more than one shared resource
= BPIP does not need to have a-priori knowledge of the shared resources
0 Itis inherently dynamic

2010/11 UniPD, T. Vardancga Real-time systems 206 of 330

Resource access control — 3

m Basic priority ceiling protocol (BPCP)
a As BPIP but with the additional constraint that all
resource requirements must be statically known

a Every resource R is assigned a priority ceiling attribute set
to the highest priority of the jobs that require R

m At time t the system has a ceiling [1(t) attribute set to the
highest priority ceiling of all resources currently in use

m Otherwise it defaults to Q < the lowest priority of all jobs

2010/11 UniPD, T. Vardanega Real-time systems 207 of 330

Resource access control — 4

m Protocol rules

0 Scheduling: jobs are dispatched by preemptive priority-driven
scheduling; at release time they take on their assigned priority

0 Allocation: when job J requests access to resource R at time t
= If Ris assigned to another job, request is denied and J becomes blocked
m IfRis free and J’s priority TT(t) is > (t), the request is granted
= If] owns the resource with priority ceiling = I(t), the request is granted
m Otherwise the request is denied and J becomes blocked

0 Priority inheritance: when job] becomes blocked, job J; that blocks it
takes on J’s current priority TI(t) until it releases all resources with
priority ceiling 2 N(t); then J’s priotity reverts to the level that
preceded resource access

2010/11 UniPD, T. Vardanega Real-time systems. 208 of 330

| Critique — 3

m BPCP is not greedy (whereas BPIP is)
o Under BPCP a request for a free resource may be denied
= Hence under BPCP each job J incurs three distinct forms of
blocking caused by lower-priority job J,
@ rva>7m

1. Direct blocking 2. Priority-inheritance blocking

0 @@ 10=r0> 70

3. Avoidance blocking

2010/11 UniPD, T. Vardanega Real-time systems 209 of 330

| Critique — 4

u _Avoidance blocking is what makes BPCP not greedy and
prevents deadlock from occurring
o If at time t job] has current priority TT(t) > [1(t) then it must be the
case that
m] will never use any of the resources currently used at time t
= So won’t all jobs with higher ptiority than J
0 The value of the system ceiling [(t) determines the partition of jobs
to which a resource free at time t can be assigned without risking
deadlock
= All jobs with priority higher than the system ceiling [(t)
m Caveat
o To stop job] from blocking itself in the attempt of acquiring
multiple resources, BPCP must grant its request if T1(t) < [(t) but J
holds the resources {X} with priotity ceiling = I1(¢)

2010/11 UniPD, T. Vardanega Real-time systems. 210 of 330

| Critique — 5

m BPCP does not incur reducible distributed overhead
because it does not permit transitive blocking
m Theorem [Sha & Rajkumar & Lehoczky, 1990]: under
BPCP a job may become blocked for at most the duration
of one critical section
o Under BPCP when a job becomes blocked, its blocking can only be
caused by a single job
0 The job that causes others to block cannot itself be blocked
= Hence BPCP does not permit transitive blocking
0 Demonstration: by exercise
m The maximum possible value of that duration is termed the
blocking time B,(rc) due to resource contention
o Bj(rc) must be accounted for in the schedulability test for J;

2010/11 UniPD, T. Vardanega Real-time systems 211 0f 330

Computing the BPCP blocking time — 1

High

Directly blocked b
J2 I J3 I J4 JE

Avosdance
| IEN N T

Low

| B,(rc) = max value in row 7 across all tables |

2010/11 UniPD, T. Vardancga

Real-time systems 212 of 330

Computing the BPCP blocking time — 2

m Table “directly blocked by” is straightforward
w Table “priority-inberitance blocked by’

0 The value in cell [i, k] is the maximum value found in
(rows 1, ..., i-1; column k) in Table “directly blocked by”
m Table “avoidance blocked by”

0 If (desirably) jobs are assigned distinct priorities, the cells here are as
in Table “priority-inheritance blocked by’ except for the jobs that do not
request resoutces (whose cell value is set to zero)

2010/11 UniPD, T. Vardanega Real-time systems 213 of 330

Resource access control — 4

n (Stack-based) ceiling priority protocol
o Improves over BPCP in terms of
m Saving memory resources especially precious to embedded
systems by sharing stack space across jobs
0 Stack-based CPP prevents a job’s stack space from fragmenting
because it ensures that no job request for resources may be denied
during execution
* Which BPCP instead allows
= Stack fragmentation follows from blocking and not from preemption (!)
0 Of course we must also require that jobs do not self suspend
m This protocol has lower algorithmic complexity

0 To reduce the run-time overhead in space and time (e.g., from the
dynamic computation of the system ceiling)

2010/11 UniPD, T. Vardanega Real-time systems. 214 of 330

| Ceiling priority protocol — 1

m Stack-basedversion [Baker, 1991]
o Computation of and updates to ceiling [(t): when all

resources ate free, I1(t) evaluates to §; the ceiling value is
updated any time a resource is assigned or released

0 Scheduling: on its release time a job stays blocked until its
assigned priotity Tr(t) > I(t)
m Jobs that are not blocked are dispatched to execution by preemptive

priority-driven scheduling

a Allocation: whenever a job issues a request for a resource, the

request is granted

2010/11 UniPD, T. Vardanega Real-time systems 215 of 330

| Comments

= Under SB-CPP a job can only begin execution when the
resources it needs are free

o Otherwise T(t) > N(t) could not hold
m Under SB-CPP a job that may get preempted does not
become blocked
0 The preempting job does certainly not shate any resources with the
preempted job
m SB-CPP prevents deadlock from occurring

m Under SB-CPP B(rc) is computed in the same way as with
BPCP

2010/11 UniPD, T. Vardanega Real-time systems. 216 of 330

| Ceiling priority protocol — 2

m Base version

a

CPP does not use the system ceiling I'(t) although the resources

continue to have a ceiling priotity attribute

Scheduling:

= FBach job that does not hold any resource executes at the level of its
assigned priotity

m Jobs with the same priority are scheduled in a FIFO ordering
(FIFO_within_priorities)

= The current priority of a job that holds any resources takes on the
highest value among the ceiling priority of those resources

Allocation: whenever a job issues a request for a resource, the

request is granted

2010/11 UniPD, T. Vardanega

Real-time systems 217 0f 330

| Summary

m Issues arising from task interactions under
preemptive priority-based scheduling

m Survey of resource access control protocols

m Critique of the surveyed protocols

2010/11 UniPD, T. Vardancga Real-time systems 218 of 330

