
5.a Task interactions and
blocking

2010/11 UniPD, T. Vardanega Real-time systems 194 of 330

Inhibiting preemption – 1

In many real-life situations some (parts of) jobs
should not be preempted

This is typically the case with the execution of non-
reentrant code shared by multiple jobs whether directly (by
direct call) or indirectly (e.g., within a system call
primitive)

Considerations of data integrity and/or efficiency
require that some system level activities must not be
preempted

Preemption is inhibited by simply disabling dispatching

2010/11 UniPD, T. Vardanega Real-time systems 195 of 330

Inhibiting preemption – 2

A higher-priority job Jh that at its release time finds
a lower-priority job Jl executing with disabled
preemption gets blocked for a Bi(np) time duration

Under FPS this is a flagrant case of priority inversion

The feasibility of Jh now depends on Bi(np) too
Under FPS, Bi(np) = max(i+1,…,n) θk where (θk ≤ ek) is the
longest non-preemptable execution of job Jk

This cost is paid by of Jh only once per activation

2010/11 UniPD, T. Vardanega Real-time systems 196 of 330

Self suspension

A job Ji that invokes suspending operations or that self suspends
suffers a time penalty that worsens its response time
Ji incurs a degenerate form of blocking that can be bounded as
Bi(ss) = max(δi) + Σ(k=1,.., i-1) min(ej, δk)

Where max(δj) is he longest duration of self suspension of job Jj and the
other term accounts for the cumulative additional interference caused by
higher-priority jobs that may become ready during the suspension of Ji
possibly deferred by their own self-suspension

For a job Ji that may self suspend K times during execution
Bi = Bi(ss) + (K+1) Bi(np)
At every resumption Ji may incur Bi(np) again

2010/11 UniPD, T. Vardanega Real-time systems 197 of 330

Example

T2

T1 = {0, 4, 2.5, 4}, T2 = {3, 10, 2, 10} ⇒ U = 0.825
under RM scheduling

T1

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

T2 : deadline miss!

B2(ss) = 0 + min(2.5, 1.5) = 1.5 > slack(T2) = 0.5

T1 self-suspends for 1.5 T2 : deadline miss!

2010/11 UniPD, T. Vardanega Real-time systems 198 of 330

Access contention

Access to shared resources causes potential for
contention that must be controlled by specialized
protocols
A resource access control protocol specifies

When and under what condition a resource access request
may be granted
The order in which requests must be serviced

Access contention situations may cause priority
inversion to arise

2010/11 UniPD, T. Vardanega Real-time systems 199 of 330

Example – 1

T1T2RT3RT1

2 4 6 8 10 12

T1 = {-, -, 2, 20, R(4)}, T2 = {2, -, 3, 17, R(4)} , T3 = {6, -, 3, 14, R(2)}
under EDF

T1 :: e; R(4); e. T2 :: e; e; R(4); e. T3 :: e; e; R(2); e.

14 16 18

R T2 R T3 R

Max use of shared resource per execution

R in use by T1

R released by T1

R in use by T3 R in use by T2

R released by T3

T3 completes T2 completes

T1 completes

2010/11 UniPD, T. Vardanega Real-time systems 200 of 330

Example – 2

T1 = {-, -, 2, 20, R(2.5)}, T2 = {2, -, 3, 17, R(4)} , T3 = {6, -, 3, 14, R(2)}
under EDF

Same as before except with shorter use of R by T1

T1T2R T3RT1

2 4 6 8 10 12 14 16 18

R T2 R T3R

T3 : deadline miss!

2010/11 UniPD, T. Vardanega Real-time systems 201 of 330

Assumptions and notations

It is safer for real-time design to require that
All jobs do not self suspend (directly or indirectly)
All jobs can be preempted

We say that job Jh is directly blocked by a lower-priority
job Jl when

Jl is granted exclusive access to a shared resource R
Jh has requested R and its request has not been granted

To study the problem we may want to use a wait-for graph

2010/11 UniPD, T. Vardanega Real-time systems 202 of 330

Example

T1

T2

T3

T4

R1, 5

R2, 1

(2; 3)

(1; 1)

(1; 2)

[R2,1;8[R1,4;1][R1,1;5]]

Units available

Units required Duration of use

Obviously!

Wait-for graph

2010/11 UniPD, T. Vardanega Real-time systems 203 of 330

Resource access control – 1

Inhibiting preemption in critical sections
A job that requires access to a resource is always granted it
A job that has been assigned a resource runs at a priority
higher than any other job

These two clauses imply each other
They jointly prevent deadlock situations from occurring

They cause bounded priority inversion
At most once per job

Reason is obvious

For a maximum duration Bi(rc) = max(k=i+1,..,n) Ck
For job indices in monotonically non-increasing order and Ck worst-case
duration of critical-section activity by job Jk

2010/11 UniPD, T. Vardanega Real-time systems 204 of 330

Critique – 1

This strategy causes distributed overhead
All jobs – including those that do not compete for resource access –
incur some time penalty
Very unfair hence not desirable

Better if time overhead is solely incurred by the jobs that
actually compete for resource access

The priority of the job that is granted the resource must only be
higher than that of its competitor jobs

The principle of the ceiling priority: we shall return to it
The resource requirements must be statically known

2010/11 UniPD, T. Vardanega Real-time systems 205 of 330

Resource access control – 2

Basic priority inheritance protocol (BPIP)
The priority of a job varies over time from that initially assigned
The variation follows inheritance principles

Protocol rules
Scheduling: jobs are dispatched by preemptive priority-driven scheduling;
at release time they take on their assigned priority
Allocation: when job J requires access to resource R at time t

If R is free, R is assigned to J until release
If R is busy, the request is denied and J becomes blocked

Priority inheritance: when job J becomes blocked, job Jl that blocks it
takes on J’s current priority as its inherited priority and retains it until R is
released; at that point Jl reverts to its previous priority

2010/11 UniPD, T. Vardanega Real-time systems 206 of 330

Critique – 2

BPIP incurs two forms of blocking
Direct blocking owing to resource contention
Inheritance blocking owing to priority raising

Priority inheritance is transitive
Direct blocking is transitive as jobs may need to acquire multiple resources

BPIP does not prevent deadlock as cyclic blocking is a devious form of
transitive direct blocking
BPIP incurs reducible distributed overhead (i.e., that can be dispensed with)

Under BPIP a job may become blocked multiple times when competing for
more than one shared resource

BPIP does not need to have a-priori knowledge of the shared resources
It is inherently dynamic

2010/11 UniPD, T. Vardanega Real-time systems 207 of 330

Resource access control – 3

Basic priority ceiling protocol (BPCP)
As BPIP but with the additional constraint that all
resource requirements must be statically known
Every resource R is assigned a priority ceiling attribute set
to the highest priority of the jobs that require R

At time t the system has a ceiling Π(t) attribute set to the
highest priority ceiling of all resources currently in use
Otherwise it defaults to Ω < the lowest priority of all jobs

2010/11 UniPD, T. Vardanega Real-time systems 208 of 330

Resource access control – 4

Protocol rules
Scheduling: jobs are dispatched by preemptive priority-driven
scheduling; at release time they take on their assigned priority
Allocation: when job J requests access to resource R at time t

If R is assigned to another job, request is denied and J becomes blocked
If R is free and J’s priority π(t) is > Π(t), the request is granted
If J owns the resource with priority ceiling = Π(t), the request is granted
Otherwise the request is denied and J becomes blocked

Priority inheritance: when job J becomes blocked, job Jl that blocks it
takes on J’s current priority π(t) until it releases all resources with
priority ceiling ≥ π(t); then Jl’s priority reverts to the level that
preceded resource access

2010/11 UniPD, T. Vardanega Real-time systems 209 of 330

Critique – 3

BPCP is not greedy (whereas BPIP is)
Under BPCP a request for a free resource may be denied

Hence under BPCP each job J incurs three distinct forms of
blocking caused by lower-priority job Jl

J R Jl

1. Direct blocking

Jh R Jl

2. Priority-inheritance blocking

J R X Jlπ(t) Π(t) = π(X) > π(t)

3. Avoidance blocking

J π[Jh] > π[J]
requires owns

2010/11 UniPD, T. Vardanega Real-time systems 210 of 330

Critique – 4

Avoidance blocking is what makes BPCP not greedy and
prevents deadlock from occurring

If at time t job J has current priority π(t) > Π(t) then it must be the
case that

J will never use any of the resources currently used at time t
So won’t all jobs with higher priority than J

The value of the system ceiling Π(t) determines the partition of jobs
to which a resource free at time t can be assigned without risking
deadlock

All jobs with priority higher than the system ceiling Π(t)
Caveat

To stop job J from blocking itself in the attempt of acquiring
multiple resources, BPCP must grant its request if π(t) ≤ Π(t) but J
holds the resources {X} with priority ceiling = Π(t)

2010/11 UniPD, T. Vardanega Real-time systems 211 of 330

Critique – 5

BPCP does not incur reducible distributed overhead
because it does not permit transitive blocking
Theorem [Sha & Rajkumar & Lehoczky, 1990]: under
BPCP a job may become blocked for at most the duration
of one critical section

Under BPCP when a job becomes blocked, its blocking can only be
caused by a single job
The job that causes others to block cannot itself be blocked

Hence BPCP does not permit transitive blocking
Demonstration: by exercise

The maximum possible value of that duration is termed the
blocking time Bi(rc) due to resource contention

Bi(rc) must be accounted for in the schedulability test for Ji

2010/11 UniPD, T. Vardanega Real-time systems 212 of 330

Computing the BPCP blocking time – 1

J1

R1

J6

J2

J3

J4

J5

R2

R3

10

6

2

4

1

5

…

Bi(rc) = max value in row i across all tables
Low

High

2010/11 UniPD, T. Vardanega Real-time systems 213 of 330

Computing the BPCP blocking time – 2

Table “directly blocked by” is straightforward

Table “priority-inheritance blocked by”
The value in cell [i, k] is the maximum value found in
(rows 1, …, i-1; column k) in Table “directly blocked by”

Table “avoidance blocked by”
If (desirably) jobs are assigned distinct priorities, the cells here are as
in Table “priority-inheritance blocked by” except for the jobs that do not
request resources (whose cell value is set to zero)

2010/11 UniPD, T. Vardanega Real-time systems 214 of 330

Resource access control – 4

(Stack-based) ceiling priority protocol
Improves over BPCP in terms of

Saving memory resources especially precious to embedded
systems by sharing stack space across jobs

Stack-based CPP prevents a job’s stack space from fragmenting
because it ensures that no job request for resources may be denied
during execution

Which BPCP instead allows
Stack fragmentation follows from blocking and not from preemption (!)

Of course we must also require that jobs do not self suspend
This protocol has lower algorithmic complexity

To reduce the run-time overhead in space and time (e.g., from the
dynamic computation of the system ceiling)

2010/11 UniPD, T. Vardanega Real-time systems 215 of 330

Ceiling priority protocol – 1

Stack-based version [Baker, 1991]
Computation of and updates to ceiling Π(t): when all
resources are free, Π(t) evaluates to Ω; the ceiling value is
updated any time a resource is assigned or released
Scheduling: on its release time a job stays blocked until its
assigned priority π(t) > Π(t)

Jobs that are not blocked are dispatched to execution by preemptive
priority-driven scheduling

Allocation: whenever a job issues a request for a resource, the
request is granted

2010/11 UniPD, T. Vardanega Real-time systems 216 of 330

Comments

Under SB-CPP a job can only begin execution when the
resources it needs are free

Otherwise π(t) > Π(t) could not hold

Under SB-CPP a job that may get preempted does not
become blocked

The preempting job does certainly not share any resources with the
preempted job

SB-CPP prevents deadlock from occurring

Under SB-CPP Bi(rc) is computed in the same way as with
BPCP

2010/11 UniPD, T. Vardanega Real-time systems 217 of 330

Ceiling priority protocol – 2

Base version
CPP does not use the system ceiling Π(t) although the resources
continue to have a ceiling priority attribute
Scheduling:

Each job that does not hold any resource executes at the level of its
assigned priority
Jobs with the same priority are scheduled in a FIFO ordering
(FIFO_within_priorities)
The current priority of a job that holds any resources takes on the
highest value among the ceiling priority of those resources

Allocation: whenever a job issues a request for a resource, the
request is granted

2010/11 UniPD, T. Vardanega Real-time systems 218 of 330

Summary

Issues arising from task interactions under
preemptive priority-based scheduling
Survey of resource access control protocols
Critique of the surveyed protocols

