
5.b Task interactions and blocking 
(recap, exercises and extensions)

Credits to A. Burns and A. Wellings
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Task interactions and blocking

If a task is suspended waiting for a lower-priority 
task to complete some required computation then 
the priority model is, in some sense, being 
undermined
It is said to suffer priority inversion
If a task is waiting for a lower-priority task, it is said 
to be blocked
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Priority inversion – 1

To illustrate an initial example of priority inversion, 
consider the execution of the periodic task set shown below 
under simple locking (i.e., by use of binary semaphores)

4EEQVE4 (high)d

2EVVE3c

2EE2b

0EQQQQE1 (low)a

Release timeExecution sequencePriorityTask

Legend: E: one unit of execution; Q (or V): one unit of use of resource Q (or V)
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Priority inversion – 2

Executing
Executing with Q locked

Preempted

Executing with V locked
Blocked

Task

a

b

c

d
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Time
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Basic priority inheritance protocol

If task p is blocking task q, then q runs with p's priority

0 2 4 6 8 10 12 14 16

a

b

c

d
Task

Time

Direct blocking
from task a

Inheritance blocking

Inheritance blocking

Direct blocking
from task c

Task d is blocked

Task a inherits the priority of task d
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Bounding direct blocking under BPIP

If the system has K critical sections that can lead to a task 
being blocked under BPIP then the maximum number of 
times that the task can be blocked is K
The upper bound on the blocking time B for task i with K
critical sections in the system is therefore given by

With usage(k,i)={1 | 0} depending on task i’s use of 
the critical section k and C(k) the duration of use

In essence task i blocks for the longest duration of use on access to all 
the resources it needs
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Incorporating blocking in response time
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Ceiling priority protocols

Two variants
Original ceiling priority protocol (a.k.a. basic priority ceiling)
Immediate (a.k.a.) base version) ceiling priority protocol

Using them on a single processor
A high-priority task can only be blocked by lower-priority tasks at 
most once per job
Deadlocks are prevented
Transitive blocking is prevented
Mutual exclusive access to resources is ensured by the protocol 
itself so that locks are not needed
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Original ceiling priority protocol

Each task has an assigned static priority
Each resource has a static ceiling attribute defined as the 
maximum priority of the tasks that may use it
A task has a current priority that is set to the maximum of 
its assigned priority and any priorities it inherited from 
blocking higher-priority tasks
A task can only lock a resource if its current priority is 
higher than the highest ceiling of any currently locked 
resource (excluding any that it has already locked itself)

The blocking suffered by job i is bounded by the longest critical 
section with ceiling higher than Pi )(),(max
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Inheritance with OCPP

a

b

c

d
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Task

Time

Avoidance blocking

Inheritance blocking

c’s priority < system ceiling : access is denied

a inherits c’s priority

Direct blocking

a inherits d’s priority

Inheritance blocking

Q is locked : access is denied

a inherits c’s priority
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Immediate ceiling priority protocol

Each task has an assigned static priority
Perhaps determined by deadline monotonic assignment

Each resource has a static ceiling attribute defined as the 
maximum priority of the tasks that may use it
A task has a dynamic current priority that is the maximum of its 
own static priority and the ceiling values of any resources it is 
currently using
Any job of that task will only suffer a block at release

Once the job starts executing all the resources it needs must be free
If they were not then some task would have priority ≥ than the job’s 
hence its execution would be postponed
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Inheritance with ICPP
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Inheritance blocking

Inheritance blocking

Inheritance
blocking

a inherits Q’s ceiling priority
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OCPP versus ICPP

Although the worst-case behavior of the two ceiling priority 
schemes is identical (from a scheduling viewpoint), there are 
some points of difference

ICPP is easier to implement than OCPP as blocking relationships 
need not be monitored
ICPP leads to less context switches as blocking occurs prior to job 
activation
ICPP requires more priority movements as they happen with all
resource usages
OCPP changes priority only if an actual block has occurred

ICPP is called Priority Protect Protocol in POSIX and Priority Ceiling 
Emulation in Ada and Real-Time Java
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An extendible task model

Our workload model so far allows
Deadlines that can be less than period (D<T)
Periodic and sporadic tasks 

As well as aperiodic tasks under some server scheme

Task interactions with the resulting blocking being 
factored in the response time equations
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Extensions

Cooperative scheduling
Release jitter
Arbitrary deadlines
Fault tolerance
Offsets
Optimal priority assignment
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Cooperative scheduling – 1

Unrestrained preemptive behavior is not always acceptable 
for safety-critical systems

Perhaps only for the purposes of reducing response time
Cooperative or deferred preemption splits tasks into slots
Mutual exclusion is realized by non-preemption
The use of deferred preemption has two important benefits

It increases the timing feasibility of the system as it can lead to 
lower response time values
With deferred preemption no interference can occur (by definition) 
during the last slot of execution
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Cooperative scheduling – 2

Let the execution time of the final slot be

When the response time equation converges, that is,      
when                     ,  the response time is given by
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Release jitter – 1

This is a serious problem for precedence-constrained tasks in distributed 
systems and multi-cores
Example: a periodic task K with period 20 releases a sporadic task V at
the end of its (K’s) job activation

V becomes running immediately on the arrival of the release event
What is the time between any two subsequent releases of V?

Time

K

t t+20

Rl,1=t+15

Sporadic release at t+15

Sporadic release at t+21

Rl,2=t+20+Cl=t+21

Two sporadic releases of
V spaced by 21-15 = 6 (!)
Task V has a release jitter Jv
which is equal to the 
difference between the 
worst-case and the best-case 
response time of periodic 
task K
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Sporadic task Ts released at  0, T-J, 2T-J, 3T-J
Examination of the derivation of the RTA schedulability equation implies 
that task Ti will suffer 

One interference from Ts if
Two interferences if 
Three interferences if

This can be represented in the response time equation as

If response time is to be measured relative to the real release time then the 
jitter value must be added

Release jitter – 2
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Arbitrary deadlines – 1 

To cater for situations where D > T

The number of releases to account for is bounded by 
the lowest value of q for which

The level-i busy period does not extent past that backlog 

The worst-case response time is then the maximum 
value found for any q
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Arbitrary deadlines – 2

When the formulation of the RTA equation is combined with the 
effect of release jitter, two alterations must be made
First, the interference factor must be increased if any higher priority 
tasks suffers release jitter

Second, if the task under analysis can suffer release jitter then two 
consecutive windows could overlap if response time plus jitter is 
greater than period 
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Fault tolerance – 1 

Fault tolerance via either forward or backward error recovery always 
results in extra computation

This could be an exception handler or a recovery block.  
In a real-time fault-tolerant system, deadlines should still be met even 
when a certain level of faults occur 

This level of fault tolerance is known as the fault model
If the extra computation time that results from an error in task i is 

Where hep(i) is set of tasks with priority equal to or higher than i
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Fault tolerance – 2

If F is the number of faults allowed

If there is a minimum arrival interval
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Offsets

So far we assumed all tasks share a common release time 
(the critical instant)

Task             T          D            C         R      U=0.9
a      8    5    4    4
b     20   10    4    8
c     20   12    4   16

What if we allowed offsets (phase?)
Task             T          D            C       O        R
a      8    5    4   0   4
b     20   10    4   0   8
c     20   12    4  10   8

Deadline miss!

Arbitrary offsets 
are not amenable 
to analysis!
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Non-optimal analysis – 1

In most realistic systems, task periods are not arbitrary but 
are likely to be related to one another
In the previous example two tasks have a common period
In these situations we might give one of such tasks an offset 
(e.g., tentatively of T/2) and then analyze the resulting 
system using a transformation technique that removes the 
offset so that critical instant analysis continues to apply
Using that technique with the example, tasks b and c
(which would be given the offset of 10) are replaced by a 
single notional task with period T/2, computation time 4, 
deadline equal to period and no offset
In fact slide 145 tells us how to apply general offsets to 
response time analysis
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Non-optimal analysis – 2

This notional task has two important properties
If it is feasible (when sharing a critical instant with all other tasks) then the 
two real tasks that it represents will meet their deadlines when one is given 
the half-period offset
If all lower priority tasks are feasible when suffering interference from the 
notional task (and all other high-priority tasks) then they will remain 
schedulable when the notional task is replaced by the two real tasks (one 
of which with the offset)

These properties follow from the observation that the notional task 
always has no less CPU utilization than the two real tasks it subsumes

Task           T          D          C      O       R    U=0.9
a      8    5    4   0   4
n     10   10    4   0   8
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Notional task parameters
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Can be extended to more than two tasks
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procedure Assign_Pri (Set : in out Task_Set; 
N   : Natural; -- number of tasks
OK  : out Boolean) is

begin
for K in 1..N loop

for Next in K..N loop
Swap(Set, K, Next);
Process_Test(Set, K, OK); -- is task K feasible now?
exit when OK;

end loop;
exit when not OK; -- failed to find a schedulable task

end loop;
end Assign_Pri;

Priority assignment (simulated annealing)

Theorem: If task p is assigned the lowest priority and is feasible then, if a 
feasible priority ordering exists for the complete task set, an ordering exists 
with task p assigned the lowest priority
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Summary

Completing the survey and critique of resource access 
control protocols using some examples
Relevant extensions to the simple workload model
A simulated-annealing heuristic for the assignment of 
priorities


