
5.b Task interactions and blocking
(recap, exercises and extensions)

Credits to A. Burns and A. Wellings

2010/11 UniPD, T. Vardanega Real-time systems 220 of 369

Task interactions and blocking

If a task is suspended waiting for a lower-priority
task to complete some required computation then
the priority model is, in some sense, being
undermined
It is said to suffer priority inversion
If a task is waiting for a lower-priority task, it is said
to be blocked

2010/11 UniPD, T. Vardanega Real-time systems 221 of 369

Priority inversion – 1

To illustrate an initial example of priority inversion,
consider the execution of the periodic task set shown below
under simple locking (i.e., by use of binary semaphores)

4EEQVE4 (high)d

2EVVE3c

2EE2b

0EQQQQE1 (low)a

Release timeExecution sequencePriorityTask

Legend: E: one unit of execution; Q (or V): one unit of use of resource Q (or V)

2010/11 UniPD, T. Vardanega Real-time systems 222 of 369

Priority inversion – 2

Executing
Executing with Q locked

Preempted

Executing with V locked
Blocked

Task

a

b

c

d

0 2 4 6 8 10 12 14 16
Time

2010/11 UniPD, T. Vardanega Real-time systems 223 of 369

Basic priority inheritance protocol

If task p is blocking task q, then q runs with p's priority

0 2 4 6 8 10 12 14 16

a

b

c

d
Task

Time

Direct blocking
from task a

Inheritance blocking

Inheritance blocking

Direct blocking
from task c

Task d is blocked

Task a inherits the priority of task d

2010/11 UniPD, T. Vardanega Real-time systems 224 of 369

Bounding direct blocking under BPIP

If the system has K critical sections that can lead to a task
being blocked under BPIP then the maximum number of
times that the task can be blocked is K
The upper bound on the blocking time B for task i with K
critical sections in the system is therefore given by

With usage(k,i)={1 | 0} depending on task i’s use of
the critical section k and C(k) the duration of use

In essence task i blocks for the longest duration of use on access to all
the resources it needs

∑=
=

K

k
i kCikusageB

1
)(),(

2010/11 UniPD, T. Vardanega Real-time systems 225 of 369

Incorporating blocking in response time

iiii IBCR ++=

j
ihpj j

i
iii C

T
RBCR ∑

∈ ⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
++=

)(

j
ihpj

j

n
i

ii
n
i C

T
wBCw ∑ ⎥

⎥

⎤
⎢
⎢

⎡
++=

∈

+

)(

1

2010/11 UniPD, T. Vardanega Real-time systems 226 of 369

Ceiling priority protocols

Two variants
Original ceiling priority protocol (a.k.a. basic priority ceiling)
Immediate (a.k.a.) base version) ceiling priority protocol

Using them on a single processor
A high-priority task can only be blocked by lower-priority tasks at
most once per job
Deadlocks are prevented
Transitive blocking is prevented
Mutual exclusive access to resources is ensured by the protocol
itself so that locks are not needed

2010/11 UniPD, T. Vardanega Real-time systems 227 of 369

Original ceiling priority protocol

Each task has an assigned static priority
Each resource has a static ceiling attribute defined as the
maximum priority of the tasks that may use it
A task has a current priority that is set to the maximum of
its assigned priority and any priorities it inherited from
blocking higher-priority tasks
A task can only lock a resource if its current priority is
higher than the highest ceiling of any currently locked
resource (excluding any that it has already locked itself)

The blocking suffered by job i is bounded by the longest critical
section with ceiling higher than Pi)(),(max

1
kCikusageB

k

ki =
=

2010/11 UniPD, T. Vardanega Real-time systems 228 of 369

Inheritance with OCPP

a

b

c

d

0 2 4 6 8 10 12 14 16

Task

Time

Avoidance blocking

Inheritance blocking

c’s priority < system ceiling : access is denied

a inherits c’s priority

Direct blocking

a inherits d’s priority

Inheritance blocking

Q is locked : access is denied

a inherits c’s priority

2010/11 UniPD, T. Vardanega Real-time systems 229 of 369

Immediate ceiling priority protocol

Each task has an assigned static priority
Perhaps determined by deadline monotonic assignment

Each resource has a static ceiling attribute defined as the
maximum priority of the tasks that may use it
A task has a dynamic current priority that is the maximum of its
own static priority and the ceiling values of any resources it is
currently using
Any job of that task will only suffer a block at release

Once the job starts executing all the resources it needs must be free
If they were not then some task would have priority ≥ than the job’s
hence its execution would be postponed

2010/11 UniPD, T. Vardanega Real-time systems 230 of 369

Inheritance with ICPP

a

b

c

d

0 2 4 6 8 10 12 14 16

Task

Time

Inheritance blocking

Inheritance blocking

Inheritance
blocking

a inherits Q’s ceiling priority

2010/11 UniPD, T. Vardanega Real-time systems 231 of 369

OCPP versus ICPP

Although the worst-case behavior of the two ceiling priority
schemes is identical (from a scheduling viewpoint), there are
some points of difference

ICPP is easier to implement than OCPP as blocking relationships
need not be monitored
ICPP leads to less context switches as blocking occurs prior to job
activation
ICPP requires more priority movements as they happen with all
resource usages
OCPP changes priority only if an actual block has occurred

ICPP is called Priority Protect Protocol in POSIX and Priority Ceiling
Emulation in Ada and Real-Time Java

2010/11 UniPD, T. Vardanega Real-time systems 232 of 369

An extendible task model

Our workload model so far allows
Deadlines that can be less than period (D<T)
Periodic and sporadic tasks

As well as aperiodic tasks under some server scheme

Task interactions with the resulting blocking being
factored in the response time equations

2010/11 UniPD, T. Vardanega Real-time systems 233 of 369

Extensions

Cooperative scheduling
Release jitter
Arbitrary deadlines
Fault tolerance
Offsets
Optimal priority assignment

2010/11 UniPD, T. Vardanega Real-time systems 234 of 369

Cooperative scheduling – 1

Unrestrained preemptive behavior is not always acceptable
for safety-critical systems

Perhaps only for the purposes of reducing response time
Cooperative or deferred preemption splits tasks into slots
Mutual exclusion is realized by non-preemption
The use of deferred preemption has two important benefits

It increases the timing feasibility of the system as it can lead to
lower response time values
With deferred preemption no interference can occur (by definition)
during the last slot of execution

2010/11 UniPD, T. Vardanega Real-time systems 235 of 369

Cooperative scheduling – 2

Let the execution time of the final slot be

When the response time equation converges, that is,
when , the response time is given by

iF

j
ihpj

j

n
i

iiMAX
n
i C

T
wFCBw ∑ ⎥

⎥

⎤
⎢
⎢

⎡
+−+=

∈

+

)(

1

1+= n
i

n
i ww

i
n
ii FwR +=

2010/11 UniPD, T. Vardanega Real-time systems 236 of 369

Release jitter – 1

This is a serious problem for precedence-constrained tasks in distributed
systems and multi-cores
Example: a periodic task K with period 20 releases a sporadic task V at
the end of its (K’s) job activation

V becomes running immediately on the arrival of the release event
What is the time between any two subsequent releases of V?

Time

K

t t+20

Rl,1=t+15

Sporadic release at t+15

Sporadic release at t+21

Rl,2=t+20+Cl=t+21

Two sporadic releases of
V spaced by 21-15 = 6 (!)
Task V has a release jitter Jv
which is equal to the
difference between the
worst-case and the best-case
response time of periodic
task K

2010/11 UniPD, T. Vardanega Real-time systems 237 of 369

Sporadic task Ts released at 0, T-J, 2T-J, 3T-J
Examination of the derivation of the RTA schedulability equation implies
that task Ti will suffer

One interference from Ts if
Two interferences if
Three interferences if

This can be represented in the response time equation as

If response time is to be measured relative to the real release time then the
jitter value must be added

Release jitter – 2

),0[JTRi −∈
)2,[JTJTRi −−∈
)3,2[JTJTRi −−∈

j
ihpj

j

ji
iii C

T
JR

BCR ∑ ⎥
⎥

⎤
⎢
⎢

⎡ +
++=

∈)(

ii
periodic

i JRR +=

2010/11 UniPD, T. Vardanega Real-time systems 238 of 369

Arbitrary deadlines – 1

To cater for situations where D > T

The number of releases to account for is bounded by
the lowest value of q for which

The level-i busy period does not extent past that backlog

The worst-case response time is then the maximum
value found for any q

j
ihpj j

n
i

ii
n
i C

T
qwCqBqw ∑

∈

+
⎥
⎥

⎤
⎢
⎢

⎡
+++=

)(

1)()1()(

i
n
ii qTqwqR −=)()(

ii TqR ≤)(

)(max
,...2,1,0

qRR iqi =
=

2010/11 UniPD, T. Vardanega Real-time systems 239 of 369

Arbitrary deadlines – 2

When the formulation of the RTA equation is combined with the
effect of release jitter, two alterations must be made
First, the interference factor must be increased if any higher priority
tasks suffers release jitter

Second, if the task under analysis can suffer release jitter then two
consecutive windows could overlap if response time plus jitter is
greater than period

j
ihpj j

j
n
i

ii
n
i C

T
Jqw

CqBqw ∑
∈

+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ +
+++=

)(

1)(
)1()(

ii
n
ii JqTqwqR +−=)()(

2010/11 UniPD, T. Vardanega Real-time systems 240 of 369

Fault tolerance – 1

Fault tolerance via either forward or backward error recovery always
results in extra computation

This could be an exception handler or a recovery block.
In a real-time fault-tolerant system, deadlines should still be met even
when a certain level of faults occur

This level of fault tolerance is known as the fault model
If the extra computation time that results from an error in task i is

Where hep(i) is set of tasks with priority equal to or higher than i

f
iC

f
kihepkjihpj

j

i
iii CC

T
RBCR max

)()(∈∈
+⎥

⎥

⎤
⎢
⎢

⎡
++= ∑

2010/11 UniPD, T. Vardanega Real-time systems 241 of 369

Fault tolerance – 2

If F is the number of faults allowed

If there is a minimum arrival interval

f
kihepkjihpj

j

i
iii FCC

T
RBCR max

)()(∈∈
+⎥

⎥

⎤
⎢
⎢

⎡
++= ∑

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
++=

∈∈
∑ f

k
f

i

ihepk
j

ihpj j

i
iii C

T
R

C
T
R

BCR max
)()(

fT

2010/11 UniPD, T. Vardanega Real-time systems 242 of 369

Offsets

So far we assumed all tasks share a common release time
(the critical instant)

Task T D C R U=0.9
a 8 5 4 4
b 20 10 4 8
c 20 12 4 16

What if we allowed offsets (phase?)
Task T D C O R
a 8 5 4 0 4
b 20 10 4 0 8
c 20 12 4 10 8

Deadline miss!

Arbitrary offsets
are not amenable
to analysis!

2010/11 UniPD, T. Vardanega Real-time systems 243 of 369

Non-optimal analysis – 1

In most realistic systems, task periods are not arbitrary but
are likely to be related to one another
In the previous example two tasks have a common period
In these situations we might give one of such tasks an offset
(e.g., tentatively of T/2) and then analyze the resulting
system using a transformation technique that removes the
offset so that critical instant analysis continues to apply
Using that technique with the example, tasks b and c
(which would be given the offset of 10) are replaced by a
single notional task with period T/2, computation time 4,
deadline equal to period and no offset
In fact slide 145 tells us how to apply general offsets to
response time analysis

2010/11 UniPD, T. Vardanega Real-time systems 244 of 369

Non-optimal analysis – 2

This notional task has two important properties
If it is feasible (when sharing a critical instant with all other tasks) then the
two real tasks that it represents will meet their deadlines when one is given
the half-period offset
If all lower priority tasks are feasible when suffering interference from the
notional task (and all other high-priority tasks) then they will remain
schedulable when the notional task is replaced by the two real tasks (one
of which with the offset)

These properties follow from the observation that the notional task
always has no less CPU utilization than the two real tasks it subsumes

Task T D C O R U=0.9
a 8 5 4 0 4
n 10 10 4 0 8

2010/11 UniPD, T. Vardanega Real-time systems 245 of 369

Notional task parameters

),(
),(
),(

22

ban

ban

ban

ba
n

PPMaxP
DDMinD
CCMaxC

TTT

=
=
=

==

Can be extended to more than two tasks

2010/11 UniPD, T. Vardanega Real-time systems 246 of 369

procedure Assign_Pri (Set : in out Task_Set;
N : Natural; -- number of tasks
OK : out Boolean) is

begin
for K in 1..N loop

for Next in K..N loop
Swap(Set, K, Next);
Process_Test(Set, K, OK); -- is task K feasible now?
exit when OK;

end loop;
exit when not OK; -- failed to find a schedulable task

end loop;
end Assign_Pri;

Priority assignment (simulated annealing)

Theorem: If task p is assigned the lowest priority and is feasible then, if a
feasible priority ordering exists for the complete task set, an ordering exists
with task p assigned the lowest priority

2010/11 UniPD, T. Vardanega Real-time systems 247 of 369

Summary

Completing the survey and critique of resource access
control protocols using some examples
Relevant extensions to the simple workload model
A simulated-annealing heuristic for the assignment of
priorities

