
6. System issues

2010/11 UniPD, T. Vardanega Real-time systems 249 of 369

Context switch

Preemption causes time and space overheads which should 
be duly accounted for in realistic schedulability tests
Under preemption every single job incurs at least two 
context switches

One at activation to install its execution context
One at completion to clean up

The resulting costs should be charged to the job
Knowing the timing behavior of the run-time system we could 
incorporate overhead costs in schedulability tests

2010/11 UniPD, T. Vardanega Real-time systems 250 of 369

Priority levels – 1

The FPS techniques that we have studied assume jobs 
to have distinct priorities

It is not obvious however that concrete systems can always 
meet this requirement
Consequently jobs may have to share priority levels
At the same level of priority, dispatching may be FIFO or 
round-robin

If priority levels are shared then we have a worst-case 
situation to contemplate in the analysis

That job Ji be released immediately after all other jobs 
residing at its level of priority

2010/11 UniPD, T. Vardanega Real-time systems 251 of 369

Priority levels – 2

Let Tε(i) denote the set of jobs with priority equal 
to Ji excluding Ji itself
The time demand equation for Ji to study in the 
interval 0 < t ≤ min (Di, pi) then becomes

Wi,1(t) = ei + bi + Σj Є Tε(i) ej + Σ(k=1,…,i-1) ⎡t/pk⎤ ek

This obviously worsens Ji’s response time
But the impact in terms of schedulability loss at system level 
may not be as bad (see later …)

2010/11 UniPD, T. Vardanega Real-time systems 252 of 369

Priority levels – 3

When the number [1,..,Ωn] of assigned priorities is greater than 
the number [π1,.., πΩs] of available priorities (priority grid) 
then we need some Ωn–to–Ωs mapping

All (top-range) assigned priorities ≥ π1 take value π1

Those in the interval (πk-1 , πk] take value πk progressing in the 
interval 1 < k ≤ Ωs

Two main techniques
Uniform mapping

Constant ratio mapping [Lehoczky & Sha, 1986]

2010/11 UniPD, T. Vardanega Real-time systems 253 of 369

Priority levels – 4

Uniform mapping
Availability is uniformly apportioned to needs
Q = ⎣ Ωn / Ωs ⎦ ⇒ πk = kQ for k=1,2,…, Ωs-1 and πΩs = Ωn

Example: from (Ωn=9 , Ωs=3) we have Q=3 and thus 
π1=3, π2=6, π3=9 whence 1-3 → π1, 4-6 → π2, 7-9 → π3

Constant ratio mapping

Keeps the ratio (πi-1+1 )/πi constant for i=2,…, Ωs for the 
convenience of higher-priority jobs
Example: from the case above, with constant ratio at ½ we have
π1=1, π2=4, π3=10 whence 1 → π1, 2-4 → π2, 5-9 → π3



2010/11 UniPD, T. Vardanega Real-time systems 254 of 369

Priority levels – 5

3

6

9

Ωn Ωs

Ωn / Ωs 1

2

3

4

5

6

7

8

9

1

ratio = 1/2

4

10

ratio = 1/2

Uniform mapping Constant ratio mapping

2010/11 UniPD, T. Vardanega Real-time systems 255 of 369

Priority levels – 6

Lehoczky & Sha showed that the use of constant ratio 
mapping degrades the schedulable utilization of the RM 
scheduling algorithm gracefully

For large n with Di = pi for all i, and g denoting the minimum ratio 
in the given priority grid
Schedulable utilization f(g) evaluates to 

ln(2g)+1-g for g>1/2
g for g≤1/2

The f(g)/ln 2 ratio is termed relative schedulability
Relative to the limit of the RM utilization test

Example: with Ωs = 256 and Ωn = 100.000, relative schedulability 
evaluates to 0,9986

Hence 256 priority levels suffice for RM scheduling

2010/11 UniPD, T. Vardanega Real-time systems 256 of 369

Tick scheduling – 1

So far we have tacitly assumed that the scheduler operates 
on an event-driven basis

The scheduler always immediately executes upon the occurrence of
a scheduling event
If it was so then we could reasonably assume that a job is placed in 
the ready queue at its release time

But the scheduler may also operate in a time-driven fashion
In that case the scheduling decisions are made and executed 
periodically on the arrival of clock interrupts
This mode of operation is termed tick scheduling

2010/11 UniPD, T. Vardanega Real-time systems 257 of 369

Tick scheduling – 2

With tick scheduling the time at which the 
scheduler acknowledges a job’s release time may be 
delayed by 1 clock interrupt

This delay has negative impact on the job’s response time
We must assume a logical place where jobs in the 
“release time arrived but not yet acknowledged” state are 
held
The time and space overhead of transferring jobs from 
that logical place to the ready queue is not null and must 
be accounted for in the schedulability test together with 
the time and space overhead of handling clock interrupts

2010/11 UniPD, T. Vardanega Real-time systems 258 of 369

Example
T = {t1=(0.1, 4, 1, 4), t2=(0.1, 5, 1.8, 5), t3=(0, 20, 5, 20)}
t3’s first section not preemptable and with duration 1.1

From RTA with event-driven scheduling we have R1= 2.1, R2= 3.9, R3= 14.4 (OK)
What with tick scheduling, clock period 1 and time overhead 0.05 + (0.06 * n) ?

0 1 2 3 4 5 6

t3

t2

t1

(t3) (t1,t2) (t1) (t2)

Deadline miss

Ready 
at tick

2010/11 UniPD, T. Vardanega Real-time systems 259 of 369

Tick scheduling – 3

The effect of tick scheduling is captured in the RTA for job Ji
By introducing a notional task T0 = (p0, e0) at the highest priority to 
account for the cost of handling clock interrupts
For all jobs Jk at priority greater than or equal to Ji, by adding to ek the 
time overhead m0 due to moving them to the ready queue

(Kk + 1) times for the Kk times that job Jk may self suspend
For all jobs Jl at priority lower than Ji, by introducing a notional task 
(pl, m0), for every such job to account for the time overhead of moving 
them to the ready queue
Computing bi(np) as a function of p0 as Ji may suffer up to p0 units of 
delay after becoming ready already without non-preemptable execution 
and thus bi(np) = (⎡maxk (θk / p0)⎤ + 1) p0 including non-preemption

Where θk is the maximum time of non-preemptable execution by any job Jk



2010/11 UniPD, T. Vardanega Real-time systems 260 of 369

Real-time operating systems – 1

Must be small, modular, extensible
Small footprint because there are often stored in ROM (which 
used to be little) and because most embedded systems have little
RAM

Real-time embedded systems do not include permanent storage other 
than for background aperiodic activities

Modular because this facilitates verification, validation and 
certification of its design and implementation, including of temporal 
predictability
Extensible because some but not all specific systems may need 
functionalities above and beyond the core ones

Adhering to the principle of microkernel architecture
Minimal kernel services include scheduling, inter-process 
communication and synchronization, interrupt handling

2010/11 UniPD, T. Vardanega Real-time systems 261 of 369

Real-time operating systems – 2

Tasks must be known to the RTOS
Tasks (a.k.a. single-threaded processes, threads) are the unit of CPU 
allocation by the scheduler

Tasks issue jobs, one at a time, which are subject to scheduling and dispatching
The scheduler decides which task gets the CPU

Typically by the position assigned to tasks in the (notional) ready queue
The dispatcher gets tasks to run and operates the context switch

Upon creation of a task, some memory is assigned from RAM to create 
the Task Control Block for that task
The insertion of a task in a state (e.g., ready) queue is made by placing a 
pointer to the relevant TCB
The disposal of a task at end of life requires removal of its TCB and de-
allocation of any memory it had in use

In typical embedded systems, tasks never terminate

2010/11 UniPD, T. Vardanega Real-time systems 262 of 369

Task control block

Thread ID

Start address

Context

Task parameters

Scheduling information

Synchronization information

Time usage information

Timer information

…

Task type

Phase

Period
Relative deadline

Event list

…

Assigned priority

Current priority

2010/11 UniPD, T. Vardanega Real-time systems 263 of 369

Real-time operating systems – 3

For better generality tasks are often realized at application level instead of 
as primitive entities of the RTOS

The difference of approach may have important semantic implications
Periodic task

An RTOS thread that hangs on a suspension point which is periodically 
released
After release it executes application-specific code (which corresponds to 
the job) and then returns to the suspension point

Sporadic task
An RTOS thread whose suspension point is not released periodically but 
with bounded minimum distance
After release issues its job ands then returns to the suspension point

Aperiodic task
Indistinguishable from the other tasks other than for the absence of 
deadline (because of which it executes in the background)

2010/11 UniPD, T. Vardanega Real-time systems 264 of 369

Task states – 1

2010/11 UniPD, T. Vardanega Real-time systems 265 of 369

Task states – 2

Tasks enter the suspended state only voluntarily
By making a primitive invocation that causes them to 
hang on a periodic / sporadic suspension point

The RTOS needs specialized structures to handle 
the distinct forms of suspension

A time-based queue for periodic suspensions
An event-based queue for sporadic suspensions

But someone shall still take care of warranting minimum 
separation between subsequent releases (!)



2010/11 UniPD, T. Vardanega Real-time systems 266 of 369

System calls – 1

The most part of RTOS services are executed in 
response to direct or indirect invocations by tasks

These invocations are termed system calls
System calls need not be directly visible to the 
application

They are hidden in procedure calls exported by compiler 
libraries
The library procedure does all of the preparatory work 
needed to make the correct invocation of the actual 
system call on behalf of the application

2010/11 UniPD, T. Vardanega Real-time systems 267 of 369

System calls – 2

In embedded systems the RTOS and the application 
share memory

Not the case in general-purpose operating systems
Real-time embedded applications are more trustworthy 
and we do not want to pay the space and time 
overhead arising from address space separation
The RTOS must then protect its own data structures 
from the risk of race condition

RTOS services must therefore be non-preemptable

2010/11 UniPD, T. Vardanega Real-time systems 268 of 369

System calls – 3

2010/11 UniPD, T. Vardanega Real-time systems 269 of 369

The scheduler – 1

This is a distinct part of the RTOS that does not 
execute in response to application invocation

It acts every time a task changes state
The corresponding time events are termed dispatching points

Scheduler “activation” is often periodic in response to 
clock interrupts

Not only with tick scheduling

2010/11 UniPD, T. Vardanega Real-time systems 270 of 369

The scheduler – 2

At every clock interrupt the scheduler must
Manage the queue of time-based events pending
Increment the execution time budget counter of the running job to 
support the time-based scheduling policy in force (e.g., round-robin)
Manage the ready queue

The 10 ms or above period (tick size) typical of general-purpose 
operating systems is not fit for RTOS

But a higher frequency may incur excessive overhead

The scheduler needs to make provisions for event-driven 
execution too

2010/11 UniPD, T. Vardanega Real-time systems 271 of 369

I/O issues

The I/O subsystem of a real-time system may 
require its own scheduler
Simple methods to access an I/O resource

Use a non-preemptive FIFO policy
Use some kind of TDMA scheme

Preemptive scheduling techniques as those in use 
for processor scheduling

For instance, RM, EDF, LLF
can be used to schedule I/O requests



2010/11 UniPD, T. Vardanega Real-time systems 272 of 369

Interrupt handling – 1

Hardware interrupts are the most efficient manner for the 
processor to notify the application about the occurrence of 
external events

E.g., the completion of asynchronous I/O operations
Frequency and computational load of the interrupt handling 
activities vary with the interrupt source
For reasons of efficiency the interrupt handling service is 
typically subdivided in an immediate part and a deferred part

The immediate part executes at the level of interrupt priority, above 
all software priorities
The deferred part executes as a normal software activity
The application must be able to tell the RTOS which code to 
associate to immediate and deferred parts respectively

2010/11 UniPD, T. Vardanega Real-time systems 273 of 369

Interrupt handling – 2

When the hardware interface asserts an interrupt the processor saves the 
PC and PSW registers in the interrupt stack and jumps to the address of 
the relevant interrupt service routine (ISR)

At this time interrupts are disabled to prevent race conditions from 
happening on the arrival of further interrupts
Interrupts arriving at that time may be lost or just kept pending depending 
on the hardware capability
Interrupts operate at an assigned level of priority
The interrupt source may be determined by polling or via an interrupt vector

Polling is hardware independent hence more generally applicable but it 
increases latency of interrupt service
Vectoring needs specialized hardware but it incurs less latency

As these actions complete, registers are restored and interrupts are enabled 
again

2010/11 UniPD, T. Vardanega Real-time systems 274 of 369

Interrupt handling – 3

The worst-case latency incurred on interrupt handling is 
determined by the time needed to

Bring the current instruction to completion, save registers, clear the 
pipeline, acquire the interrupt vector, activate the trap mechanism
Disable interrupts
Complete the (remaining) execution of the ISR at higher priority

This duration corresponds to interference across interrupts
Save the context of the interrupted task, identify the interrupt
source and jump to the corresponding ISR
Begin execution of the selected ISR

Interrupt service can have a device-independent part and a 
device-specific part

2010/11 UniPD, T. Vardanega Real-time systems 275 of 369

Interrupt handling – 4

To reduce distributed overhead, the deferred part of the 
interrupt handling service must be preemptable

Hence it must execute at software priority

But it still may directly or indirectly operate on RTOS 
level data structures

Those structures must be therefore protected by 
appropriate access control protocols
If we can do that then we do not need the RTOS to spawn 
its own tasks for this purpose

2010/11 UniPD, T. Vardanega Real-time systems 276 of 369

Interrupt handling – 5

To achieve better responsiveness for the deferred 
part of interrupt services schemes such as slack 
stealing or bandwidth preservation could be used

Bandwidth preservation retains the reserve of execution 
budget not used by aperiodic activities across periodic 
replenishments

But their implementation needs specialized support 
from the RTOS

2010/11 UniPD, T. Vardanega Real-time systems 277 of 369

Time management – 1

A system clock consists of
A periodic counting register

Automatically reset to the tick size every time it reaches the triggering edge
and triggers the clock tick

The register a hardware part automatically decremented at very 
clock pulse and a software part incremented by the handler of 
the clock tick
A queue of time events fired in the interval, whose treatment 
is pending
An (immediate) interrupt handling service



2010/11 UniPD, T. Vardanega Real-time systems 278 of 369

Time management – 2

The frequency of the clock tick fixes the resolution
(granularity) of the software part of the clock

The resolution should be an integer divisor of the tick 
size so that the RTOS may perform tick scheduling at 
every N clock ticks
Then we have more frequent time-service interrupts and 
less frequent (1/N) clock interrupts

Time-service interrupts maintain the system clock
Clock interrupts are used for scheduling

2010/11 UniPD, T. Vardanega Real-time systems 279 of 369

Time management – 3

The resolution of the software clock is an important design 
parameter of an RTOS

The finer the resolution the better the clock accuracy but the larger 
the time-service interrupt overhead

There is a delicate balance between the clock accuracy 
needed by the application and the clock resolution that can 
be afforded by the system

There is intrinsic latency in any query made by a software task to 
the software clock

E.g., 439 clock cycles in ORK for the Leon microprocessor, 
corresponding to about 11 microseconds at 40 MHz

The resolution cannot be finer-grained than the maximum 
latency that may be incurred in accessing the clock (!)

2010/11 UniPD, T. Vardanega Real-time systems 280 of 369

Time management – 4

Beside periodic clocks RTOS may also support one-
shot timers a.k.a. interval timers

They operate in a programmed (non-repetitive) way

The RTOS scans the queue of the programmed 
time events to set the time of the next interrupt due 
from the interval timer

The resolution of the interval timer is limited by the time 
overhead of its handling by the RTOS

E.g., 7.061 clock cycles in ORK for Leon

2010/11 UniPD, T. Vardanega Real-time systems 281 of 369

Time management – 5

The accuracy of time events is given by the difference 
between the time at which the event occurred and the time 
value as programmed
It depends on three fundamental factors of influence

The frequency at which the time-event queues are inspected
If interval timers were not used, this would correspond to the period 
of time-service interrupts

The policy with which the RTOS handles the time-event queues
LIFO vs. FIFO

The time overhead cost of handling time events in the queue
The release time of periodic tasks is inherently exposed to 
jitter (!)

2010/11 UniPD, T. Vardanega Real-time systems 282 of 369

Summary

RTOS design issues
Context switch
Priority levels
Tick scheduling
Interrupt handling
Time management


