
7.a WCET analysis techniques

Credits to Enrico Mezzetti
(emezzett@math.unipd.it)

2010/11 UniPD, T. Vardanega Real-time systems 284 of 370

Computing the WCET – 1

Why not measure the WCET of a task on its real hardware?

Triggering the WCET by test is very difficult
Worst-case input covering all executions of a real program is
intractable in practice
Worst-case initial state is difficult to determine with modern HW

Complex pipelines (out-of-order execution)
Caches
Branch predictors and speculative execution

Target Hardware
(black box)

Task
Worst-case input

Worst-case HW state

Logic
Analyser,

Oscyiloscope,
etc

WCET ?

2010/11 UniPD, T. Vardanega Real-time systems 285 of 370

Computing the WCET – 2

Exact WCET not generally computable (~ the halting problem)
A WCET estimate or bound are key to predictability

Must be safe to be an upper bound to all possible executions
Must be tight to avoid costly over-dimensioning

2010/11 UniPD, T. Vardanega Real-time systems 286 of 370

Static analysis – 1

Analyze a program without executing it
Needs an abstract model of the target HW
And the actual executable

Execution time depends on execution path and HW
High-level analysis addresses the program behavior

Path analysis

Low-level analysis determines the timing behavior of
individual instructions

Not constant for modern HW
Must be aware of the HW inner workings (pipeline, caches, etc.)

2010/11 UniPD, T. Vardanega Real-time systems 287 of 370

Static analysis – 2

High-level analysis
Must analyze all possible execution paths of the program

Builds the Control-flow Graph (CFG)
Superset of all possible execution paths
Basic block is the unit of analysis

Sequence of instructions with no branches/loops

Challenges with path analysis
Input-data dependency
Infeasible paths
Loop bounds (and recursion depth)
Dynamic calls (through pointers)

2010/11 UniPD, T. Vardanega Real-time systems 288 of 370

Static analysis – 3

High-level analysis (cont’d)
Several techniques are used

Control-flow analysis to compute execution paths
Data-flow analysis to find loop bounds
Value analysis to resolve memory accesses
CFG unit: basic blocks

Information automatically gathered is not exhaustive
User annotation of flow-facts is needed

To facilitate detection of infeasible paths
To refine loop bounds
To define frequency relations between basic blocks
To specify the target of dynamic calls and referenced memory addresses

2010/11 UniPD, T. Vardanega Real-time systems 289 of 370

Static analysis – 4

Low-level analysis
Requires abstract modeling of all HW features

Processor, memory subsystem, buses, peripherals…
It is conservative : it must never underestimate actual timing
All possible HW states should be accounted for

Challenges with HW modeling
Precise modeling of complex hardware is difficult

Inherent complexity (e.g., out-of-order pipelines)
Lack of comprehensive information (copyrights, patents, …)
Differences between specification and implementation (!)

Representation of all HW states is computationally infeasible

2010/11 UniPD, T. Vardanega Real-time systems 290 of 370

Static analysis – 5

Low-level analysis (cont’d)
Concrete HW states

Determined by the execution history
Cannot compute all HW states for all possible executions

Invariant HW states are grouped into execution contexts
Conservative overestimation to reduce the research space

Applied techniques
Abstract interpretation

Computes abstract states and specific operators in the abstract domain
Update function to update the abstract state along the exec path
Join function to merge control-flow after a branch

Some techniques are specific to each HW feature

2010/11 UniPD, T. Vardanega Real-time systems 291 of 370

Static analysis: the big picture

Open problems
Can we always trust HW modeling?
How much overestimation do we incur?

Inclusion of infeasible paths
Overestimation intrinsic in abstract state computation

Weaknesses of user annotations
Labor intensive and error prone

Analysis framework and
Abstract HW model

Program
(exec, disassembly,...)

User annotations

Safe
WCET bounds

2010/11 UniPD, T. Vardanega Real-time systems 292 of 370

Static analysis – 7

Safeness is at risk
When local worst case does not always lead to global worst case
When timing anomalies occur

Complex hardware architectures (e.g., out-of-order pipelines)
Even improper design choices (e.g., cache replacement policies)
Counter-intuitive timing behavior
Faster execution of a single instruction causes long-term negative effects

Both are very difficult to account for in static analysis

2010/11 UniPD, T. Vardanega Real-time systems 293 of 370

Scheduling anomaly: example

Some dependence between instructions
Shared resources (e.g. pipeline stages)

Faster execution of A leads to a worse overall execution because
of the order in which instructions are executed

2010/11 UniPD, T. Vardanega Real-time systems 294 of 370

Hybrid analysis (measurement based) – 1

To obtain realistic (less pessimistic) WCET estimates
On the real target processor
On the final executable
Safeness not guaranteed (!)

Hybrid approaches exploit
The measurement of basic blocks on the real HW

To avoid pessimism from abstract modeling

Static analysis techniques to combine the obtained measures
Knowledge of the program execution paths

2010/11 UniPD, T. Vardanega Real-time systems 295 of 370

Hybrid analysis (measurement based) – 2

Approaches to collect timing information
Software instrumentation

The program is augmented with instrumentation code
Instrumentation effects the timing behavior of the program

A.k.a.: probe effect
Cannot be simply removed at end of analysis

Hardware instrumentation
Depends on specialized HW features (e.g., debug interface)

Confidence in the results contingent on the coverage of the
executions

Exposed to the same problems as static analysis and measurement

2010/11 UniPD, T. Vardanega Real-time systems 296 of 370

Hybrid analysis: the big picture

Open problems
Can we trust the resulting estimates?

Contingent on worst-case input and worst-case HW state
Consideration of infeasible paths

Needs the real execution environment or an identical copy
May cause serious cost impact and inherent difficulty of exactness

Program executable

Opt User annotations WCET
estimates

Target Hardware
(black box)

Execution
traces Path info

2010/11 UniPD, T. Vardanega Real-time systems 297 of 370

Summary

The challenge of computing the WCET
Static analysis

High-level analysis
Low-level analysis

Hybrid analysis (measurement-based)

7.b Schedulability analysis
techniques

Credits to Marco Panunzio
(panunzio@math.unipd.it)

2010/11 UniPD, T. Vardanega Real-time systems 299 of 370

Feasibility region

The topological region that represents the set of
feasible systems with respect to given workload model
parameters

N-dimensional space with N-parameter analysis
Function of the timing parameters
Specific to the scheduling policy in force

par2

Feasibility
region

t2t1

t1 is feasible
t2 is not feasible

par1

2010/11 UniPD, T. Vardanega Real-time systems 300 of 370

Advanced utilization tests

Hyperbolic bound improves Liu & Layland utilization test
For systems with periodic tasks under FPS and RM priority assignment
E. Bini and G. Buttazzo: “A Hyperbolic Bound for the Rate Monotonic
Algorithm”. Proceedings of the 13th ECRTS, 2001

2)1(
1

≤+∏
=

N

i

iU

1

0.83

U1

RM

EDF

)12(1

1

−≤∑
=

N
N

i

i NU

1
1

≤∑
=

N

i
iU

2010/11 UniPD, T. Vardanega Real-time systems 301 of 370

Fine-grained response time analysis

IICSTSCCS
T

JRCCSBR R
extInt

R
clock

ihpj
j

j

A
j

n
i

ii
n
i

n
i

n
i +++++⎥

⎥

⎤
⎢
⎢

⎡ +
+++= ∑

∈

+

)(

1)21(1

ii CCSBR ++= 11

JRR Wn
ii +=

Blocking time
(resource access
protocol or kernel)

“In” context switch “Out” context switch
Interference from
the clock

Interference from
interrupts

“Activation” jitter

“Wake-up” jitter

Time to issue a
suspension call

2010/11 UniPD, T. Vardanega Real-time systems 302 of 370

Transactions – 1

Causal relations between activities
Consider information relevant to analysis that is not captured
by classic workload models

Dependencies in the activation of jobs

Originally introduced for the analysis of distributed systems
Also useful for the analysis of single-node “collaboration patterns”

τ1 τ2 τ3

τ4

τ5

2010/11 UniPD, T. Vardanega Real-time systems 303 of 370

Transactions – 2

Two main kinds of dependence
Direct precedence relation (e.g., producer-consumer)

τ2 cannot proceed until τ1 completes

Indirect priority relation
τ4 does not suffer interference from τ3 (under FPS and synchronous
release of τ1 and τ4 for priorities increasing with values)

τ2 τ3
τ1

τ4 p1=4

τ2 τ3τ1 p1=5 p2=3 p3=6

2010/11 UniPD, T. Vardanega Real-time systems 304 of 370

Example – 1

A “callback pattern” to permit in out interactions
between tasks in Ravenscar systems

2010/11 UniPD, T. Vardanega Real-time systems 305 of 370

Example – 2

T1 (Producer)
[cyclic]

T2 (Consumer)
[sporadic]

Q1

T3 (Callback)
[sporadic]

Q2

fetches request

deposits request

fetches result
deposit result

T1 T2 T3

End-to-end deadline
The feasibility of the end-to-end response time against this deadline is what matters (!)

2010/11 UniPD, T. Vardanega Real-time systems 306 of 370

Sensitivity analysis – 1

Investigates the changes in a given system that
Improve the fit of an already feasible system
Make feasible an infeasible system

C1

C2

Cmax
1Δ

Cmax
2Δλmax

Cmax
1Δ

Cmax
2Δ

Position of the system in
the feasibility region

τ

τ Maximum feasible variation for the
WCET of t1 (negative in the example)

Maximum feasible variation for the
WCET of t2 (negative in the example)

2010/11 UniPD, T. Vardanega Real-time systems 307 of 370

Sensitivity analysis – 2

Major computation complexity
Theory still under development

Does not account for shared resources, multi-node systems,
partitioned systems

High potential
To explore solution space in the dimensioning phase of design

Presently only applicable to period/MIAT and WCET

To study the consequences of changes to timing parameters
To permit the inclusion of better functional value in the system
To renegotiate timing (or functional) parameters

2010/11 UniPD, T. Vardanega Real-time systems 308 of 370

MAST

Modeling and Analysis Suite for Real-Time Systems
(MAST, http://mast.unican.es)

Developed at University of Cantabria, Spain
Open source
Implements several analysis techniques

For uni-processor and multi-processor systems
Under FPS or EDF

2010/11 UniPD, T. Vardanega Real-time systems 309 of 370

Classic workload model

T1 (Sporadic) MIAT=1.750 WCET=0.500

T2 (Cyclic) T=2.000 WCET=0.500

T3 (Cyclic) T=4.000 WCET=0.500

1 2 3 4 5 6

T1

T2

T3

Critical Instant for T3

Level 3 busy period

2010/11 UniPD, T. Vardanega Real-time systems 310 of 370

MAST – real-time model

2010/11 UniPD, T. Vardanega Real-time systems 311 of 370

MAST – transaction

To model causal relations between activities
Triggered by external events

Periodic, sporadic, aperiodic, etc…

2010/11 UniPD, T. Vardanega Real-time systems 312 of 370

MAST – operations

The real-time model includes the description of all
the operations in the system

Simple
operation BCET

ACET
WCET

Shared Resource
List

Composite
OperationName

SO 2SO 1 CO 1

Name

Simple Operation

BCET

ACET
WCET

Shared Resource
List

Composite Operation

Name

SO 2SO 1 CO 1

Name

Composite
Operation

SO 2SO 1 CO 1

Name

Enclosing Operation

CO 2SO 3 EO 1

Name
WCETBCET ACET

Composite
OperationName

Message Transmission
Name

Best Message Size
Avg Message Size
Worst Message Size

2010/11 UniPD, T. Vardanega Real-time systems 313 of 370

MAST – creation of a transaction

Event
Handler

Event
Handler

External
event

Operation
en1

Activity

Operation
en2

Scheduling
Server S2

Activity

Tr1

e1 e2 e3

Scheduling
Server S1

Timing
Requirements

Timing
Requirements

2010/11 UniPD, T. Vardanega Real-time systems 314 of 370

Example: 1 – Ravenscar callback

T1 (Producer)
[cyclic]

T2 (Consumer)
[sporadic]

Q1

T3 (Callback)
[sporadic]

Q2

fetches request

deposits request

fetches result
deposits result

T1 T2 T3

End-to-end deadline

2010/11 UniPD, T. Vardanega Real-time systems 315 of 370

Example: 2 – shared resources in MAST

Simple
operation BCET

ACET
WCET

Shared Resource
List

Name

Simple operation

WCET = 2

Q1

Put_Q1 BCET

ACET
WCET

Shared Resource
List

Simple operation

WCET = 1

Q1

Get_Q1

Simple
operation

Shared Resource
List

Name

Shared Resource

ICP

Ceiling = NA

Q1

2010/11 UniPD, T. Vardanega Real-time systems 316 of 370

Example: 3 – modeling tasks in MAST

Simple
operation BCET

ACET

WCET
Shared Resource

List

Name

Simple operation

WCET = 8

None

Produce_SO

Composite
Operation

SO 2SO 1

Name

Enclosing Operation

Put_Q1Produce_SO

Produce_EO
WCET=10

External
event

Operation
Produce_EO

Activity

Producer

E1 O1

Scheduling
Server Producer_SS

D = 40

Composite
Operation

SO 2SO 1

Name

Scheduling Server

CPU1.PS

Producer_SS

FPP Priority = 4

Event
Handler

T=40

2010/11 UniPD, T. Vardanega Real-time systems 317 of 370

Example: 4 – timing attributes

Producer [1] (C) T1=40 C1=10 p1=4

Consumer [2] (S) T2=40 C2=10 p2=2

Callback [3] (S) T3=40 C3=5 p3=5

Q1 Ceiling=4

Q2 Ceiling=5

2010/11 UniPD, T. Vardanega Real-time systems 318 of 370

Example: 5 – classic RTA results

B1=2 B2=0 B3=2

Classic RTA

R1 = 17

R2 = 25

R3 = 7

Producer [1] (C) T1=40 C1=10 p1=4

Consumer [2] (S) T2=40 C2=10 p2=2

Callback [3] (S) T3=40 C3=5 p3=5

Q1 Ceiling=4

Q2 Ceiling=5

This misses out completely that T3 is to be preceded by T2 and T1 (!)

2010/11 UniPD, T. Vardanega Real-time systems 319 of 370

Example: 6 – introducing transactions

External
event

Operation
Produce_EO

Activity

Producer_TR

E1
O1

Scheduling
Server Producer_SS

D = 40

Event
Handler

T=40

Operation
Consume_EO

Activity

O2

Scheduling
Server Consumer_SS

D = 40

Operation
Callback_EO

Activity

O3

Scheduling
Server Callback_SS

D = 40
Event

Handler
Event

Handler

2010/11 UniPD, T. Vardanega Real-time systems 320 of 370

Example: 7 - end-to-end analysis

Precedence and offset-based

R1 (Tr) = 12

R2 (Tr) = 20

R3 (Tr) = 27

Response time relative
to the beginning of the
transaction!

B1=2 B2=0 B3=2

Classic RTA

R1 = 17

R2 = 25

R3 = 7

Producer [1] (C) T1=40 C1=10 p1=4

Consumer [2] (S) T2=40 C2=10 p2=2

Callback [3] (S) T3=40 C3=5 p3=5

Q1 Ceiling=4

Q2 Ceiling=5

2010/11 UniPD, T. Vardanega Real-time systems 321 of 370

Summary

Feasibility region
Advanced utilization tests
Fine-grained response time analysis
Transactions
Sensitivity analysis
Example tool (MAST)

